Combinatorial Recurrences and Linear Difference Equations

In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of lin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic notes in discrete mathematics Ročník 54; s. 313 - 318
Hlavní autoři: Jiménez, M. José, Encinas, Andrés M.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2016
Témata:
ISSN:1571-0653, 1571-0653
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers.
AbstractList In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related with the solution of linear three–terms recurrences. We show through some simple examples how this triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers Peer Reviewed
In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers.
Author Encinas, Andrés M.
Jiménez, M. José
Author_xml – sequence: 1
  givenname: M. José
  surname: Jiménez
  fullname: Jiménez, M. José
  email: maria.jose.jimenez@upc.edu
  organization: Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain
– sequence: 2
  givenname: Andrés M.
  surname: Encinas
  fullname: Encinas, Andrés M.
  email: andres.marcos.encinas@upc.edu
  organization: Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain
BookMark eNp9kF1LwzAUhoNMcJv-Aa_6B1pPmnZtwBuZ8wMKguw-nCSnkLGlmnSC_952Gyhe7OJwPuA5vDwzNvGdJ8ZuOWQc-OJuk5G3uywf5gxkBmVxwaa8rHgKi1JM_sxXbBbjBkDUvCqnTC67nXYe-y443CbvZPYhkDcUE_Q2aZwnDMmja1s6nJPV5x571_l4zS5b3Ea6OfU5Wz-t1suXtHl7fl0-NKkRwItUE6CwUgBRixpqi_XCFAIAdKW51Rpki0ZW0uaiQNK1tFTl0hYWUaIQc8aPb03cGxXIUDDYqw7d7zJWDlWuhrcl5wNTn5jQxRioVcb1h9R9QLdVHNRoTW3UaE2N1hRINVgb0Pwf-hHcDsP3eej-CNHg4ctRUNG40ZZ1Q8Ze2c6dw38AHcSJPw
CitedBy_id crossref_primary_10_1016_j_laa_2018_10_015
crossref_primary_10_1080_10236198_2017_1408608
Cites_doi 10.1155/IJMMS.2005.507
10.1016/j.jcta.2014.02.007
10.1016/S0012-365X(00)00373-3
10.1016/j.aam.2006.11.002
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes
Copyright 2016 Elsevier B.V.
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
XX2
DOI 10.1016/j.endm.2016.09.054
DatabaseName CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1571-0653
EndPage 318
ExternalDocumentID oai_recercat_cat_2072_300511
10_1016_j_endm_2016_09_054
S1571065316301482
GrantInformation_xml – fundername: Comisión Interministerial de Ciencia y Tecnología
  grantid: MTM2014-60450-R
  funderid: http://dx.doi.org/10.13039/501100007273
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACXMD
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJMQA
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
M41
MHUIS
MO0
M~E
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
XX2
ID FETCH-LOGICAL-c3014-be0a3d930eefab08da86c43000b7b1dbb09fac979d234aeb89de729d4daa9a33
ISSN 1571-0653
IngestDate Fri Nov 07 13:37:12 EST 2025
Tue Nov 18 22:14:58 EST 2025
Sat Nov 29 01:47:08 EST 2025
Fri Feb 23 02:23:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Combinatorial identities
triangular matrices
finite difference equations
orthogonal polynomials
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3014-be0a3d930eefab08da86c43000b7b1dbb09fac979d234aeb89de729d4daa9a33
OpenAccessLink https://recercat.cat/handle/2072/300511
PageCount 6
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_300511
crossref_citationtrail_10_1016_j_endm_2016_09_054
crossref_primary_10_1016_j_endm_2016_09_054
elsevier_sciencedirect_doi_10_1016_j_endm_2016_09_054
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Electronic notes in discrete mathematics
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Spivey (br0080) 2011; 14
Graham, Knuth, Patashnik (br0030) 1994
Rainville (br0070) 1960
Došlić (br0020) 2005; 4
Mason, Handscomb (br0050) 2003
Neuwirth (br0060) 2001; 239
Liu, Wang (br0040) 2007; 39
Barbero, Salas, Villaseñor (br0010) 2014; 125
Liu (10.1016/j.endm.2016.09.054_br0040) 2007; 39
Barbero (10.1016/j.endm.2016.09.054_br0010) 2014; 125
Mason (10.1016/j.endm.2016.09.054_br0050) 2003
Došlić (10.1016/j.endm.2016.09.054_br0020) 2005; 4
Neuwirth (10.1016/j.endm.2016.09.054_br0060) 2001; 239
Spivey (10.1016/j.endm.2016.09.054_br0080) 2011; 14
Graham (10.1016/j.endm.2016.09.054_br0030) 1994
Rainville (10.1016/j.endm.2016.09.054_br0070) 1960
References_xml – year: 1994
  ident: br0030
  article-title: Concrete Mathematics
– year: 1960
  ident: br0070
  article-title: Special Functions
– year: 2003
  ident: br0050
  article-title: Chebyshev Polynomials
– volume: 14
  year: 2011
  ident: br0080
  article-title: On Solutions to a General Combinatorial Recurrence
  publication-title: J. Integer Seq.
– volume: 239
  start-page: 35
  year: 2001
  end-page: 51
  ident: br0060
  article-title: Recursively defined combinatorial functions: extending Galton's board
  publication-title: Discrete Math.
– volume: 4
  start-page: 507
  year: 2005
  end-page: 522
  ident: br0020
  article-title: Log–balanced combinatorial sequences
  publication-title: Int. J. Math. Math. Sci.
– volume: 39
  start-page: 453
  year: 2007
  end-page: 476
  ident: br0040
  article-title: On the log–convexity of combinatorial sequences
  publication-title: Adv. in Appl. Math.
– volume: 125
  start-page: 146
  year: 2014
  end-page: 165
  ident: br0010
  article-title: Bivariate generating functions for a class of linear recurrences: General structure
  publication-title: J. Combin. Theory Ser. A.
– volume: 4
  start-page: 507
  year: 2005
  ident: 10.1016/j.endm.2016.09.054_br0020
  article-title: Log–balanced combinatorial sequences
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/IJMMS.2005.507
– year: 1994
  ident: 10.1016/j.endm.2016.09.054_br0030
– volume: 14
  year: 2011
  ident: 10.1016/j.endm.2016.09.054_br0080
  article-title: On Solutions to a General Combinatorial Recurrence
  publication-title: J. Integer Seq.
– volume: 125
  start-page: 146
  year: 2014
  ident: 10.1016/j.endm.2016.09.054_br0010
  article-title: Bivariate generating functions for a class of linear recurrences: General structure
  publication-title: J. Combin. Theory Ser. A.
  doi: 10.1016/j.jcta.2014.02.007
– year: 2003
  ident: 10.1016/j.endm.2016.09.054_br0050
– volume: 239
  start-page: 35
  year: 2001
  ident: 10.1016/j.endm.2016.09.054_br0060
  article-title: Recursively defined combinatorial functions: extending Galton's board
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00373-3
– year: 1960
  ident: 10.1016/j.endm.2016.09.054_br0070
– volume: 39
  start-page: 453
  year: 2007
  ident: 10.1016/j.endm.2016.09.054_br0040
  article-title: On the log–convexity of combinatorial sequences
  publication-title: Adv. in Appl. Math.
  doi: 10.1016/j.aam.2006.11.002
SSID ssj0038175
Score 2.0300515
Snippet In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in...
In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well known recurrences that appear in...
SourceID csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 313
SubjectTerms 11 Number theory
11C Polynomials and matrices
39 Difference and functional equations
39A Difference equations
Classificació AMS
Combinatorial identities
Difference equations
Equacions diferencials i integrals
Equacions en diferències
Finite difference equations
Matemàtiques i estadística
Matrices
Matrius (Matemàtica)
Orthogonal polynomials
Polinomis ortogonals
Triangular matrices
Àrees temàtiques de la UPC
Title Combinatorial Recurrences and Linear Difference Equations
URI https://dx.doi.org/10.1016/j.endm.2016.09.054
https://recercat.cat/handle/2072/300511
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1571-0653
  dateEnd: 20190331
  omitProxy: false
  ssIdentifier: ssj0038175
  issn: 1571-0653
  databaseCode: AIEXJ
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1571-0653
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0038175
  issn: 1571-0653
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdQx4EL34gyhnLgxJTKzpfjI2KdOLAJiR52s_wVqRPztqZFO_G3773YSVOGJkDi0KhxnTj1e35fef49Qt4bAzawgfVtnOFpUakm1QVXaa0aQ2udVTaAuH7hp6f12Zn4GtNt266cAPe-vrkRV_-V1NAGxMats39B7uGm0ADfgehwBLLD8Y8IDyscvF30pZcdcL7pEJgw8Qpj5OB7InTPUayLAqt6fr0ZRe36IP22Oo6_XLuQNLsEEQM29uHFAPW6zT9cXoRX7j5EpE9m-G4hNA1GuzfwXG2fRhl-bKHrOPLAqiGHLYbD7myJCRKUYypVQACeud-0RbFbFiO5mbN8pILzIJLvSPcQaDifOW8RRIBVHURtvNEuavY3HBOHBHsTg6agpfcyXgoUfCc_572yRnzCsoPUjU8Y91WFFMBfx9mxXSam3ZiRCTMySxZPyePoTyQfAx88Iw-cf06e9LU6kii6XxCxwxbJiC0SYIsksEWyZYtkYIuXZHE8X3z6nMayGanBv5pqR1VuRU6da5SmtVV1ZYocdJ_mmlmtqWiUEVzYLC-U07WwDlwsW1ilhMrzV2TiL717TRJRCuheKsqcKHillYEeWtmGGZZpWk4J6-dDmggpj5VNvss-d_Bc4hxKnENJhYQ5nJLD4ZqrAKhyb-8POM0StL9bGbWWiIY-nOAnozyTWHOBsSkpe2LIaD8Gu1ACA90zyJt_vG6fPNoui7dksl5t3AF5aH6sl-3qXcdnt8hckrQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+Recurrences+and+Linear+Difference+Equations&rft.jtitle=Electronic+notes+in+discrete+mathematics&rft.au=Jim%C3%A9nez%2C+M.+Jos%C3%A9&rft.au=Encinas%2C+Andr%C3%A9s+M.&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=1571-0653&rft.eissn=1571-0653&rft.volume=54&rft.spage=313&rft.epage=318&rft_id=info:doi/10.1016%2Fj.endm.2016.09.054&rft.externalDocID=S1571065316301482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1571-0653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1571-0653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1571-0653&client=summon