Combinatorial Recurrences and Linear Difference Equations
In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of lin...
Saved in:
| Published in: | Electronic notes in discrete mathematics Vol. 54; pp. 313 - 318 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2016
|
| Subjects: | |
| ISSN: | 1571-0653, 1571-0653 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers. |
|---|---|
| AbstractList | In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers. In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related with the solution of linear three–terms recurrences. We show through some simple examples how this triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers Peer Reviewed |
| Author | Encinas, Andrés M. Jiménez, M. José |
| Author_xml | – sequence: 1 givenname: M. José surname: Jiménez fullname: Jiménez, M. José email: maria.jose.jimenez@upc.edu organization: Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain – sequence: 2 givenname: Andrés M. surname: Encinas fullname: Encinas, Andrés M. email: andres.marcos.encinas@upc.edu organization: Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa_6B1pPmnZtwBuZ8wMKguw-nCSnkLGlmnSC_952Gyhe7OJwPuA5vDwzNvGdJ8ZuOWQc-OJuk5G3uywf5gxkBmVxwaa8rHgKi1JM_sxXbBbjBkDUvCqnTC67nXYe-y443CbvZPYhkDcUE_Q2aZwnDMmja1s6nJPV5x571_l4zS5b3Ea6OfU5Wz-t1suXtHl7fl0-NKkRwItUE6CwUgBRixpqi_XCFAIAdKW51Rpki0ZW0uaiQNK1tFTl0hYWUaIQc8aPb03cGxXIUDDYqw7d7zJWDlWuhrcl5wNTn5jQxRioVcb1h9R9QLdVHNRoTW3UaE2N1hRINVgb0Pwf-hHcDsP3eej-CNHg4ctRUNG40ZZ1Q8Ze2c6dw38AHcSJPw |
| CitedBy_id | crossref_primary_10_1016_j_laa_2018_10_015 crossref_primary_10_1080_10236198_2017_1408608 |
| Cites_doi | 10.1155/IJMMS.2005.507 10.1016/j.jcta.2014.02.007 10.1016/S0012-365X(00)00373-3 10.1016/j.aam.2006.11.002 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes Universitat Politècnica de Catalunya. Departament de Matemàtiques |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 2 fullname: Universitat Politècnica de Catalunya. COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes |
| Copyright | 2016 Elsevier B.V. info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| DBID | AAYXX CITATION XX2 |
| DOI | 10.1016/j.endm.2016.09.054 |
| DatabaseName | CrossRef Recercat |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1571-0653 |
| EndPage | 318 |
| ExternalDocumentID | oai_recercat_cat_2072_300511 10_1016_j_endm_2016_09_054 S1571065316301482 |
| GrantInformation_xml | – fundername: Comisión Interministerial de Ciencia y Tecnología grantid: MTM2014-60450-R funderid: http://dx.doi.org/10.13039/501100007273 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNNM ACRLP ACXMD ADBBV ADEZE ADGUI ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIGVJ AIKHN AITUG AJMQA AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM M41 MHUIS MO0 M~E N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD XX2 |
| ID | FETCH-LOGICAL-c3014-be0a3d930eefab08da86c43000b7b1dbb09fac979d234aeb89de729d4daa9a33 |
| ISSN | 1571-0653 |
| IngestDate | Fri Nov 07 13:37:12 EST 2025 Tue Nov 18 22:14:58 EST 2025 Sat Nov 29 01:47:08 EST 2025 Fri Feb 23 02:23:31 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Combinatorial identities triangular matrices finite difference equations orthogonal polynomials |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3014-be0a3d930eefab08da86c43000b7b1dbb09fac979d234aeb89de729d4daa9a33 |
| OpenAccessLink | https://recercat.cat/handle/2072/300511 |
| PageCount | 6 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_300511 crossref_citationtrail_10_1016_j_endm_2016_09_054 crossref_primary_10_1016_j_endm_2016_09_054 elsevier_sciencedirect_doi_10_1016_j_endm_2016_09_054 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronic notes in discrete mathematics |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Spivey (br0080) 2011; 14 Graham, Knuth, Patashnik (br0030) 1994 Rainville (br0070) 1960 Došlić (br0020) 2005; 4 Mason, Handscomb (br0050) 2003 Neuwirth (br0060) 2001; 239 Liu, Wang (br0040) 2007; 39 Barbero, Salas, Villaseñor (br0010) 2014; 125 Liu (10.1016/j.endm.2016.09.054_br0040) 2007; 39 Barbero (10.1016/j.endm.2016.09.054_br0010) 2014; 125 Mason (10.1016/j.endm.2016.09.054_br0050) 2003 Došlić (10.1016/j.endm.2016.09.054_br0020) 2005; 4 Neuwirth (10.1016/j.endm.2016.09.054_br0060) 2001; 239 Spivey (10.1016/j.endm.2016.09.054_br0080) 2011; 14 Graham (10.1016/j.endm.2016.09.054_br0030) 1994 Rainville (10.1016/j.endm.2016.09.054_br0070) 1960 |
| References_xml | – year: 1994 ident: br0030 article-title: Concrete Mathematics – year: 1960 ident: br0070 article-title: Special Functions – year: 2003 ident: br0050 article-title: Chebyshev Polynomials – volume: 14 year: 2011 ident: br0080 article-title: On Solutions to a General Combinatorial Recurrence publication-title: J. Integer Seq. – volume: 239 start-page: 35 year: 2001 end-page: 51 ident: br0060 article-title: Recursively defined combinatorial functions: extending Galton's board publication-title: Discrete Math. – volume: 4 start-page: 507 year: 2005 end-page: 522 ident: br0020 article-title: Log–balanced combinatorial sequences publication-title: Int. J. Math. Math. Sci. – volume: 39 start-page: 453 year: 2007 end-page: 476 ident: br0040 article-title: On the log–convexity of combinatorial sequences publication-title: Adv. in Appl. Math. – volume: 125 start-page: 146 year: 2014 end-page: 165 ident: br0010 article-title: Bivariate generating functions for a class of linear recurrences: General structure publication-title: J. Combin. Theory Ser. A. – volume: 4 start-page: 507 year: 2005 ident: 10.1016/j.endm.2016.09.054_br0020 article-title: Log–balanced combinatorial sequences publication-title: Int. J. Math. Math. Sci. doi: 10.1155/IJMMS.2005.507 – year: 1994 ident: 10.1016/j.endm.2016.09.054_br0030 – volume: 14 year: 2011 ident: 10.1016/j.endm.2016.09.054_br0080 article-title: On Solutions to a General Combinatorial Recurrence publication-title: J. Integer Seq. – volume: 125 start-page: 146 year: 2014 ident: 10.1016/j.endm.2016.09.054_br0010 article-title: Bivariate generating functions for a class of linear recurrences: General structure publication-title: J. Combin. Theory Ser. A. doi: 10.1016/j.jcta.2014.02.007 – year: 2003 ident: 10.1016/j.endm.2016.09.054_br0050 – volume: 239 start-page: 35 year: 2001 ident: 10.1016/j.endm.2016.09.054_br0060 article-title: Recursively defined combinatorial functions: extending Galton's board publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00373-3 – year: 1960 ident: 10.1016/j.endm.2016.09.054_br0070 – volume: 39 start-page: 453 year: 2007 ident: 10.1016/j.endm.2016.09.054_br0040 article-title: On the log–convexity of combinatorial sequences publication-title: Adv. in Appl. Math. doi: 10.1016/j.aam.2006.11.002 |
| SSID | ssj0038175 |
| Score | 2.0300515 |
| Snippet | In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in... In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well known recurrences that appear in... |
| SourceID | csuc crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 313 |
| SubjectTerms | 11 Number theory 11C Polynomials and matrices 39 Difference and functional equations 39A Difference equations Classificació AMS Combinatorial identities Difference equations Equacions diferencials i integrals Equacions en diferències Finite difference equations Matemàtiques i estadística Matrices Matrius (Matemàtica) Orthogonal polynomials Polinomis ortogonals Triangular matrices Àrees temàtiques de la UPC |
| Title | Combinatorial Recurrences and Linear Difference Equations |
| URI | https://dx.doi.org/10.1016/j.endm.2016.09.054 https://recercat.cat/handle/2072/300511 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1571-0653 dateEnd: 20190331 omitProxy: false ssIdentifier: ssj0038175 issn: 1571-0653 databaseCode: AIEXJ dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1571-0653 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0038175 issn: 1571-0653 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagcODCG1FeyoETq1RJ7NT2EUERB3bFoUJ7s_yK1BXr3W1atCd-OzOxk6YLrNgDh6atm07dzHheGX9DyFveeMGp17C-K58zZ6rc8LnNa2aF48ZXrNsL8-0LPzoSx8fyayorart2AjwEcXkpz_8rq2EMmI1bZ2_A7oEoDMBrYDocge1w_CfGwwqHaBdj6VUHnG87BCYsvMIcOcSeCN3zMfVFgVW9uNiOsnZ9kn7XHSecbXwsml2BigEf--B0gHrd1R-uTuMt9xAz0oczvLcQhwanPViYV9uXUcYPWzh1nHko50MN26AsOVZNRbDfmf_DWNKwNRupSFrSkbWlUfv-pshjTuFk5oNDvIBy3qHRJkJ7qNlXrNlQY9iXr50opKGQhiqkAhq3yZ2K1xJ14OHPRW-3Eaqw7tB10z9IW6xiNeDVeey5MRPbbu3Imxl5KMuH5H4KLbL3USQekVs-PCYP-rYdWdLiT4jck5BsJCEZSEgWJSTbSUg2SMhTsvy0WH74nKcOGrnFUDk3vtDUSVp432hTCKfF3DIKZtBwUzpjCtloK7l0FWXaGyGdh2jLMae11JQ-I5NwFvxzkoEpYGAPvG0YBxfGG9vAc6O5rIVomJ2Ssr8eyiZ0eWxy8l39nQ9TcjB85zxiq1x79ju8zAocAb-2eqMQGH14g4-q4JXC9gtlOSV1zwyVXMnoIioQsGt-5MWNpvSS3Nuti1dksllv_Wty1_7YrNr1m066fgFkDJHN |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+Recurrences+and+Linear+Difference+Equations&rft.jtitle=Electronic+notes+in+discrete+mathematics&rft.au=Jim%C3%A9nez%2C+M.+Jos%C3%A9&rft.au=Encinas%2C+Andr%C3%A9s+M.&rft.date=2016-10-01&rft.issn=1571-0653&rft.eissn=1571-0653&rft.volume=54&rft.spage=313&rft.epage=318&rft_id=info:doi/10.1016%2Fj.endm.2016.09.054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_endm_2016_09_054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1571-0653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1571-0653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1571-0653&client=summon |