Combinatorial Recurrences and Linear Difference Equations

In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of lin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic notes in discrete mathematics Ročník 54; s. 313 - 318
Hlavní autoři: Jiménez, M. José, Encinas, Andrés M.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2016
Témata:
ISSN:1571-0653, 1571-0653
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers.
ISSN:1571-0653
1571-0653
DOI:10.1016/j.endm.2016.09.054