A framework for spatial regionalization composed of novel clustering‐based algorithms under spatial contiguity constraints
Traditionally, the geospatial regionalization task consists of aggregating into regions, geographically connected areas that share similar characteristics. Although various spatial optimization approaches have been proposed for finding exact regionalization solutions, these approaches are not practi...
Saved in:
| Published in: | Transactions in GIS Vol. 26; no. 4; pp. 1775 - 1800 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.06.2022
|
| Subjects: | |
| ISSN: | 1361-1682, 1467-9671 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Traditionally, the geospatial regionalization task consists of aggregating into regions, geographically connected areas that share similar characteristics. Although various spatial optimization approaches have been proposed for finding exact regionalization solutions, these approaches are not practical when applied to a large number of areas or problems for online aggregation, due to the long execution times using hardware with low resources. In this article, we present a framework for executing spatial regionalization tasks. The pre‐condition for using our framework is the definition of a map describing the neighborhood relations—as spatial contiguity constraints—among the areas (or objects) to be regionalized. In our framework we implemented three clustering algorithms with spatial contiguity constraints: RegK‐Means and Agglomerative Hierarchical Regionalization (AHR), our adaptation of k‐means partition‐based clustering and hierarchical‐based clustering algorithms, respectively; and the Automatic Zoning Procedure (AZP), a traditional algorithm for regionalization that also has the premise of simplifying the neighborhood relation representation. We conducted an exploratory analysis composed of two different experiments. Our results showed that our framework leads to a faster way of executing regionalization tasks in the experimental analysis, allowing us to observe a significant gain of AHR and RegK‐Means over AZP in execution time, while showing better or similar results in other metrics, such as figure of merit. |
|---|---|
| AbstractList | Traditionally, the geospatial regionalization task consists of aggregating into regions, geographically connected areas that share similar characteristics. Although various spatial optimization approaches have been proposed for finding exact regionalization solutions, these approaches are not practical when applied to a large number of areas or problems for online aggregation, due to the long execution times using hardware with low resources. In this article, we present a framework for executing spatial regionalization tasks. The pre‐condition for using our framework is the definition of a map describing the neighborhood relations—as spatial contiguity constraints—among the areas (or objects) to be regionalized. In our framework we implemented three clustering algorithms with spatial contiguity constraints: RegK‐Means and Agglomerative Hierarchical Regionalization (AHR), our adaptation of k‐means partition‐based clustering and hierarchical‐based clustering algorithms, respectively; and the Automatic Zoning Procedure (AZP), a traditional algorithm for regionalization that also has the premise of simplifying the neighborhood relation representation. We conducted an exploratory analysis composed of two different experiments. Our results showed that our framework leads to a faster way of executing regionalization tasks in the experimental analysis, allowing us to observe a significant gain of AHR and RegK‐Means over AZP in execution time, while showing better or similar results in other metrics, such as figure of merit. Traditionally, the geospatial regionalization task consists of aggregating into regions, geographically connected areas that share similar characteristics. Although various spatial optimization approaches have been proposed for finding exact regionalization solutions, these approaches are not practical when applied to a large number of areas or problems for online aggregation, due to the long execution times using hardware with low resources. In this article, we present a framework for executing spatial regionalization tasks. The pre‐condition for using our framework is the definition of a map describing the neighborhood relations—as spatial contiguity constraints—among the areas (or objects) to be regionalized. In our framework we implemented three clustering algorithms with spatial contiguity constraints: RegK‐Means and Agglomerative Hierarchical Regionalization (AHR), our adaptation of k ‐means partition‐based clustering and hierarchical‐based clustering algorithms, respectively; and the Automatic Zoning Procedure (AZP), a traditional algorithm for regionalization that also has the premise of simplifying the neighborhood relation representation. We conducted an exploratory analysis composed of two different experiments. Our results showed that our framework leads to a faster way of executing regionalization tasks in the experimental analysis, allowing us to observe a significant gain of AHR and RegK‐Means over AZP in execution time, while showing better or similar results in other metrics, such as figure of merit. |
| Author | Viterbo, José Bernardini, Flávia Miranda, Leandro |
| Author_xml | – sequence: 1 givenname: Leandro orcidid: 0000-0002-1479-429X surname: Miranda fullname: Miranda, Leandro email: leandromiranda@id.uff.br organization: Fluminense Federal University – UFF – sequence: 2 givenname: José surname: Viterbo fullname: Viterbo, José organization: Fluminense Federal University – UFF – sequence: 3 givenname: Flávia surname: Bernardini fullname: Bernardini, Flávia organization: Fluminense Federal University – UFF |
| BookMark | eNp9kNFKwzAUhoNMcJve-AQB74TOnKYk7eUYOgcDL5zXJUvTmtklM0kdEy98BJ_RJ7HdBEHE3JyTk-8_5P8HqGesUQidAxlBe65Cpf0I4ozQI9SHhPEoYxx6bU8ZRMDS-AQNvF8RQpIk4330NsalE2u1te4Jl9ZhvxFBixo7VWlrRK1f27s1WNr1xnpVYFtiY19UjWXd-KCcNtXn-8dSdG-irqzT4XHtcWMK9bNNWhN01eiw61ofnNAm-FN0XIraq7PvOkQPN9eLyW00v5vOJuN5JCkBGgkB2bLgPOMyi1OZKEpjDilhNClYAUk7VLykikGqoChFWmZptmz9SRYny4LSIbo47N04-9woH_KVbVxrzucxS4ElKQXeUuRASWe9d6rMpQ5789136xxI3mWcdxnn-4xbyeUvycbptXC7v2E4wFtdq90_ZL6Yzu4Pmi8Dp5Mq |
| CitedBy_id | crossref_primary_10_1080_24694452_2024_2322477 |
| Cites_doi | 10.1007/978-3-319-59539-9_4 10.1068/a270425 10.1016/j.patcog.2018.02.015 10.14569/ijacsa.2016.070256 10.1007/s10723‐019‐09504‐z 10.1080/13658816.2015.1089442 10.1080/13658816.2015.1031671 10.1017/CBO9780511921803 10.1080/713811750 10.1111/j.1467‐9671.2012.01354.x 10.1145/2395116.2395117 10.1371/journal.pbio.2001573 10.1007/s10666‐007‐9084‐8 10.1080/13658810701674970 10.1111/2041‐210X.12208 10.7551/mitpress/9780262033589.001.0001 10.1093/bioinformatics/17.4.309 10.1002/widm.53 10.1111/tgis.12180 10.1007/978-3-319-14142-8 10.1080/09720502.2017.1386476 10.1080/13658810600665111 10.1111/tgis.12217 10.1007/978-3-662-03499-6_5 10.1093/bioinformatics/bti517 10.1109/BRACIS.2017.70 10.1111/tgis.12557 10.1016/j.compenvurbsys.2012.04.005 10.1007/BF02293706 10.1007/978-3-642-03647-7_11 10.1111/j.1538‐4632.1969.tb00615.x 10.1016/S0031‐3203(02)00060‐2 10.1016/j.ifacol.2015.06.441 10.1007/s00357‐005‐0012‐9 10.1145/3085228.3085294 10.1145/1656274.1656278 10.1177/0160017607301605 10.1016/j.knosys.2018.01.031 10.1145/3085228.3085288 10.1007/s40745‐015‐0040‐1 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1111/tgis.12903 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Computer and Information Systems Abstracts – Academic ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1467-9671 |
| EndPage | 1800 |
| ExternalDocumentID | 10_1111_tgis_12903 TGIS12903 |
| Genre | article |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: Process n.1420465 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A04 AABNI AAESR AAHHS AAHQN AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABSOO ABTAH ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACGFS ACHQT ACIWK ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEIGN AEIMD AEMOZ AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFKFF AFPWT AFRAH AFWVQ AFYRF AFZJQ AHBTC AHQJS AIFKG AIURR AIWBW AJBDE AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EAD EAP EAYBP EBA EBO EBR EBS EBU EDH EJD EMK ESX F00 F01 FEDTE G-S G.N G50 GODZA HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM- MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OIG P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 W8V W99 WBKPD WIH WII WMRSR WOHZO WQZ WRC WSUWO WXSBR XG1 ZY4 ZZTAW ~IA ~WP AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AIDQK AIDYY AIQQE BANNL CITATION O8X 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c3013-aa19bd7797c928c4e3327180634d6d14928e7f3e618e1dfa8f989b449c624bd33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761630800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-1682 |
| IngestDate | Fri Jul 25 22:40:18 EDT 2025 Sat Nov 29 05:20:07 EST 2025 Tue Nov 18 22:27:35 EST 2025 Wed Jan 22 16:22:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3013-aa19bd7797c928c4e3327180634d6d14928e7f3e618e1dfa8f989b449c624bd33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1479-429X |
| PQID | 2681648317 |
| PQPubID | 45950 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2681648317 crossref_citationtrail_10_1111_tgis_12903 crossref_primary_10_1111_tgis_12903 wiley_primary_10_1111_tgis_12903_TGIS12903 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Transactions in GIS |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2019; 8 2015; 2 2015; 1 2017; 20 2011 2010 2017; 21 2018; 145 2006; 7 2008 2003; 36 1997 2016; 30 2007 2008; 13 2006 2005; 21 2005 2003; 17 2007; 30 2005; 22 2020; 18 2009; 11 2015; 48 1982; 47 2016; 7 2014; 5 2012; 2 2013; 59 2013; 37 2006; 20 2013; 17 2012; 1 2017; 15 1969; 1 2001 1995; 27 2019; 23 2016; 20 2018 2017 2015 2008; 22 2001; 17 2013 1990; 8 2018; 79 1988 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_45_1 Müller E. (e_1_2_13_39_1) 2011 e_1_2_13_22_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_6_1 Jain A. K. (e_1_2_13_28_1) 1988 Fotheringham A. S. (e_1_2_13_20_1) 2008 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_15_1 e_1_2_13_38_1 Arthur D. (e_1_2_13_7_1) 2007 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_2_1 Metz J. (e_1_2_13_36_1) 2006 PySal Developers (e_1_2_13_43_1) 2010 e_1_2_13_29_1 Wagstaff K. (e_1_2_13_50_1) 2001 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_9_1 e_1_2_13_40_1 Han J. (e_1_2_13_25_1) 2005 Aggarwal C. C. (e_1_2_13_4_1) 2015 e_1_2_13_18_1 Demšar J. (e_1_2_13_16_1) 2006; 7 e_1_2_13_35_1 Afonso R. A. (e_1_2_13_3_1) 2015 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_52_1 Chaudhari B. (e_1_2_13_14_1) 2012; 1 Sreedhar Kumar S. (e_1_2_13_47_1) 2019; 8 e_1_2_13_5_1 Browdy M. H. (e_1_2_13_11_1) 1990; 8 Lichman M. (e_1_2_13_33_1) 2013 |
| References_xml | – year: 2011 – start-page: 577 year: 2001 end-page: 584 – volume: 20 start-page: 755 issue: 5 year: 2016 end-page: 774 article-title: Spawnn: A toolkit for spatial analysis with self‐organizing neural networks publication-title: Transactions in GIS – start-page: 83 year: 1997 end-page: 100 – year: 2005 – volume: 8 start-page: 29 issue: 1 year: 2019 end-page: 37 article-title: A brief survey of unsupervised agglomerative hierarchical clustering schemes publication-title: International Journal of Engineering Technology – start-page: 1027 year: 2007 end-page: 1035 – volume: 15 issue: 4 year: 2017 article-title: Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain publication-title: PLoS Biology – start-page: 452 year: 2017 end-page: 460 – volume: 22 start-page: 151 issue: 2 year: 2005 end-page: 183 article-title: Hierarchical clustering via joint between–within distances: Extending Ward's minimum variance method publication-title: Journal of Classification – volume: 17 start-page: 41 issue: 1 year: 2013 end-page: 61 article-title: Support vector machine for spatial variation publication-title: Transactions in GIS – volume: 8 start-page: 163 issue: 1 year: 1990 end-page: 179 article-title: Simulated annealing: An improved computer model for political redistricting publication-title: Yale Law & Policy Review – volume: 1 start-page: 699 year: 2015 end-page: 702 – volume: 2 start-page: 86 issue: 1 year: 2012 end-page: 97 article-title: Algorithms for hierarchical clustering: An overview publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 30 start-page: 390 issue: 2 year: 2016 end-page: 404 article-title: Spatially constrained clustering of ecological units to facilitate the design of integrated water monitoring networks in the St. Lawrence Basin publication-title: International Journal of Geographical Information Science – volume: 20 start-page: 797 issue: 7 year: 2006 end-page: 811 article-title: Efficient regionalization techniques for socio‐economic geographical units using minimum spanning trees publication-title: International Journal of Geographical Information Science – volume: 13 start-page: 93 issue: 1 year: 2008 end-page: 113 article-title: Optimal expansion strategy for a sewer system under uncertainty publication-title: Environmental Modeling and Assessment – volume: 30 start-page: 451 issue: 3 year: 2016 end-page: 473 article-title: Spatial optimization for regionalization problems with spatial interaction: A heuristic approach publication-title: International Journal of Geographical Information Science – volume: 5 start-page: 771 issue: 8 year: 2014 end-page: 779 article-title: Spatially constrained clustering of ecological networks publication-title: Methods in Ecology and Evolution – volume: 18 start-page: 263 issue: 2 year: 2020 end-page: 273 article-title: Research on parallel adaptive Canopy‐K‐means clustering algorithm for big data mining based on cloud platform publication-title: Journal of Grid Computing – volume: 23 start-page: 1048 issue: 5 year: 2019 end-page: 1077 article-title: Spatially constrained regionalization with multilayer perceptron publication-title: Transactions in GIS – volume: 48 start-page: 2362 issue: 3 year: 2015 end-page: 2367 article-title: Optimal allocation of public service centres in the central places of functional regions publication-title: IFAC‐PapersOnLine – volume: 59 start-page: 28:1 issue: 6 year: 2013 end-page: 28:22 article-title: The effectiveness of Lloyd‐type methods for the k‐means problem publication-title: Journal of the ACM – volume: 1 start-page: 154 issue: 2 year: 2012 end-page: 158 article-title: A comparative study of clustering algorithms using Weka tools publication-title: International Journal of Application or Innovation in Engineering & Management – year: 2008 – volume: 7 start-page: 1 year: 2006 end-page: 30 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 79 start-page: 402 year: 2018 end-page: 413 article-title: I‐k‐means−+: An iterative clustering algorithm based on an enhanced version of the ‐means publication-title: Pattern Recognition – year: 2015 – volume: 21 start-page: 647 issue: 4 year: 2017 end-page: 660 article-title: Using spatial analysis to understand the spatial heterogeneity of disability employment in China publication-title: Transactions in GIS – start-page: 347 year: 2011 end-page: 366 – volume: 27 start-page: 425 issue: 3 year: 1995 end-page: 446 article-title: Algorithms for reengineering 1991 census geography publication-title: Environment and Planning A – start-page: 31 year: 2017 end-page: 36 – volume: 17 start-page: 181 issue: 2 year: 2003 end-page: 196 article-title: Extending the automated zoning procedure to reconcile incompatible zoning systems publication-title: International Journal of Geographical Information Science – start-page: 139 year: 2017 end-page: 148 – volume: 2 start-page: 165 issue: 2 year: 2015 end-page: 193 article-title: A comprehensive survey of clustering algorithms publication-title: Annals of Data Science – volume: 1 start-page: 196 issue: 2 year: 1969 end-page: 212 article-title: Regionalization: Theory and alternative algorithms publication-title: Geographical Analysis – volume: 22 start-page: 801 issue: 7 year: 2008 end-page: 823 article-title: Regionalization with dynamically constrained agglomerative clustering and partitioning (Redcap) publication-title: International Journal of Geographical Information Science – year: 2010 – volume: 47 start-page: 413 issue: 4 year: 1982 end-page: 426 article-title: Clustering with relational constraint publication-title: Psychometrika – volume: 36 start-page: 451 issue: 2 year: 2003 end-page: 461 article-title: The global k‐means clustering algorithm publication-title: Pattern Recognition – volume: 11 start-page: 10 issue: 1 year: 2009 end-page: 18 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explorations – volume: 7 start-page: 410 issue: 2 year: 2016 end-page: 419 article-title: A variant of genetic algorithm based categorical data clustering for compact clusters and an experimental study on soybean data for local and global optimal solutions publication-title: International Journal of Advanced Computer Science and Applications – volume: 37 start-page: 59 year: 2013 end-page: 69 article-title: Housi: Heuristic for delimitation of housing submarkets and price homogeneous areas publication-title: Computers, Environment and Urban Systems – volume: 21 start-page: 3201 issue: 15 year: 2005 end-page: 3212 article-title: Computational cluster validation in post‐genomic data analysis publication-title: Bioinformatics – year: 1988 – year: 2006 – volume: 30 start-page: 195 issue: 3 year: 2007 end-page: 220 article-title: Supervised regionalization methods: A survey publication-title: International Regional Science Review – volume: 17 start-page: 309 issue: 4 year: 2001 end-page: 318 article-title: Validating clustering for gene expression data publication-title: Bioinformatics – start-page: 37 year: 2018 end-page: 54 – volume: 145 start-page: 289 year: 2018 end-page: 297 article-title: Improved K‐means algorithm based on density Canopy publication-title: Knowledge‐Based Systems – start-page: 175 year: 2010 end-page: 193 – year: 2013 – volume: 20 start-page: 1489 issue: 6–7 year: 2017 end-page: 1492 article-title: User clustering based on Canopy+ K‐means algorithm in cloud computing publication-title: Journal of Interdisciplinary Mathematics – ident: e_1_2_13_15_1 doi: 10.1007/978-3-319-59539-9_4 – ident: e_1_2_13_41_1 doi: 10.1068/a270425 – ident: e_1_2_13_27_1 doi: 10.1016/j.patcog.2018.02.015 – ident: e_1_2_13_46_1 doi: 10.14569/ijacsa.2016.070256 – volume: 1 start-page: 154 issue: 2 year: 2012 ident: e_1_2_13_14_1 article-title: A comparative study of clustering algorithms using Weka tools publication-title: International Journal of Application or Innovation in Engineering & Management – ident: e_1_2_13_52_1 doi: 10.1007/s10723‐019‐09504‐z – ident: e_1_2_13_2_1 doi: 10.1080/13658816.2015.1089442 – ident: e_1_2_13_30_1 doi: 10.1080/13658816.2015.1031671 – ident: e_1_2_13_29_1 doi: 10.1017/CBO9780511921803 – ident: e_1_2_13_35_1 doi: 10.1080/713811750 – ident: e_1_2_13_6_1 doi: 10.1111/j.1467‐9671.2012.01354.x – ident: e_1_2_13_42_1 doi: 10.1145/2395116.2395117 – volume-title: UCI machine learning repository year: 2013 ident: e_1_2_13_33_1 – ident: e_1_2_13_5_1 doi: 10.1371/journal.pbio.2001573 – ident: e_1_2_13_12_1 doi: 10.1007/s10666‐007‐9084‐8 – ident: e_1_2_13_22_1 doi: 10.1080/13658810701674970 – start-page: 699 volume-title: Proceedings of the 2015 Annual Conference on Brazilian Symposium on Information Systems year: 2015 ident: e_1_2_13_3_1 – volume-title: Data mining: Concepts and techniques year: 2005 ident: e_1_2_13_25_1 – ident: e_1_2_13_37_1 doi: 10.1111/2041‐210X.12208 – ident: e_1_2_13_13_1 doi: 10.7551/mitpress/9780262033589.001.0001 – volume-title: Algorithms for clustering data year: 1988 ident: e_1_2_13_28_1 – ident: e_1_2_13_54_1 doi: 10.1093/bioinformatics/17.4.309 – ident: e_1_2_13_40_1 doi: 10.1002/widm.53 – ident: e_1_2_13_23_1 doi: 10.1111/tgis.12180 – volume-title: Data mining: The text book year: 2015 ident: e_1_2_13_4_1 doi: 10.1007/978-3-319-14142-8 – ident: e_1_2_13_49_1 doi: 10.1080/09720502.2017.1386476 – ident: e_1_2_13_8_1 doi: 10.1080/13658810600665111 – volume-title: Pysal: The Python Spatial Analysis Library for open source, cross platform geospatial data science year: 2010 ident: e_1_2_13_43_1 – ident: e_1_2_13_32_1 doi: 10.1111/tgis.12217 – ident: e_1_2_13_51_1 doi: 10.1007/978-3-662-03499-6_5 – ident: e_1_2_13_26_1 doi: 10.1093/bioinformatics/bti517 – ident: e_1_2_13_38_1 doi: 10.1109/BRACIS.2017.70 – volume: 8 start-page: 163 issue: 1 year: 1990 ident: e_1_2_13_11_1 article-title: Simulated annealing: An improved computer model for political redistricting publication-title: Yale Law & Policy Review – start-page: 1027 volume-title: Proceedings of the 18th Annual ACM–SIAM Symposium on Discrete Algorithms year: 2007 ident: e_1_2_13_7_1 – ident: e_1_2_13_21_1 doi: 10.1111/tgis.12557 – ident: e_1_2_13_45_1 doi: 10.1016/j.compenvurbsys.2012.04.005 – volume: 8 start-page: 29 issue: 1 year: 2019 ident: e_1_2_13_47_1 article-title: A brief survey of unsupervised agglomerative hierarchical clustering schemes publication-title: International Journal of Engineering Technology – ident: e_1_2_13_19_1 doi: 10.1007/BF02293706 – ident: e_1_2_13_44_1 doi: 10.1007/978-3-642-03647-7_11 – volume-title: Generated clusters interpretation by hierarchical clustering algorithms year: 2006 ident: e_1_2_13_36_1 – start-page: 347 volume-title: Datenbanksysteme für Business, Technologie und Web year: 2011 ident: e_1_2_13_39_1 – volume-title: The SAGE handbook of spatial analysis year: 2008 ident: e_1_2_13_20_1 – ident: e_1_2_13_31_1 doi: 10.1111/j.1538‐4632.1969.tb00615.x – ident: e_1_2_13_34_1 doi: 10.1016/S0031‐3203(02)00060‐2 – ident: e_1_2_13_17_1 doi: 10.1016/j.ifacol.2015.06.441 – ident: e_1_2_13_48_1 doi: 10.1007/s00357‐005‐0012‐9 – ident: e_1_2_13_9_1 doi: 10.1145/3085228.3085294 – ident: e_1_2_13_24_1 doi: 10.1145/1656274.1656278 – ident: e_1_2_13_18_1 doi: 10.1177/0160017607301605 – ident: e_1_2_13_55_1 doi: 10.1016/j.knosys.2018.01.031 – ident: e_1_2_13_10_1 doi: 10.1145/3085228.3085288 – start-page: 577 volume-title: Proceedings of the 18th International Conference on Machine Learning year: 2001 ident: e_1_2_13_50_1 – volume: 7 start-page: 1 year: 2006 ident: e_1_2_13_16_1 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – ident: e_1_2_13_53_1 doi: 10.1007/s40745‐015‐0040‐1 |
| SSID | ssj0004497 |
| Score | 2.2998216 |
| Snippet | Traditionally, the geospatial regionalization task consists of aggregating into regions, geographically connected areas that share similar characteristics.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1775 |
| SubjectTerms | Aggregation Algorithms Clustering Figure of merit Frameworks Optimization |
| Title | A framework for spatial regionalization composed of novel clustering‐based algorithms under spatial contiguity constraints |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.12903 https://www.proquest.com/docview/2681648317 |
| Volume | 26 |
| WOSCitedRecordID | wos000761630800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1467-9671 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004497 issn: 1361-1682 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTiW1xfBPSiUHGbbpOAl0VdFUTEB3grbR7rwrqVbVcQPPgT_I3-EjNp6yqIIN5ySIaQyWS-CTPzAWwbYxKJWY2hBbNeEBrqcV9wT1nfxPdDYU3Ktcw_ZxcX_O5OXI7BQVULU_SH-PxwQ8tw7zUaeJxkX4w8t4H9Hv6i0HGYwKoqG3pNHF21b89HdZFBQa5CQyRD5n7ZnhQzeUarvzukEcr8ilWds2nP_m-bczBTgkzSKm7FPIzp_gJMlXzn98-L8NIipsrKIha2kgwTq-0S5Glw2LyoziSYcZ5mWpHUkH76pHtE9obYW8F6vPfXN_SBisS9Tjro5vcPGcGStJE0zIPvdoYW6OMwc3QUebYEt-3jm8NTr-Rh8CRF8oc4bohEMSaYFD6XgabUZ6hJGqhQ2RDL55oZqsMG1w1lYm4EF4k9fBn6QaIoXYZaP-3rFSAm0YI1hZXIVKBFU1jAkQRN2pQsSISJ67BTKSOSZZNy3FwvqoIVPM_InWcdtj7nPhatOX6ctV7pNCrNM4v8kNswkVvsVIddp71fJEQ3J2fXbrT6l8lrMO1jqYT7sVmHWj4Y6g2YlE95Nxtsllf1AzTp8QI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxtBEB9sFPRFbW0x1tqF9kXhSnO72T-Poo1K01BqBN-Ou_0TAzEnuYsg-OBH8DP2k7izdzEKIpS-7cPusuzs7Pxm-M0MwFfnXKaR1cg9mI0YdzSSsZKR8bZJfufKq1Qomd8VvZ48P1e_a24O5sJU9SEeA26oGeG_RgXHgPQTLS-9Z_8Nwyj0DSwyToVswOLhn85Zd54YyaruKpRjN2QZ1_VJkcozX_3cIs1h5lOwGqxNZ-0_z7kOqzXMJPvVu3gLC3b8DpbrjucXNxtwu0_cjJdFPHAlBVKr_RLs1BDQeZWfSZBznhfWkNyRcX5tR0SPplhdwdu8v3f3aAUNSUeDfDIsLy4Lgklp892QCT8cTD3Ux2ERGlKUxXs46_zoHxxHdSeGSFNs_5CmLZUZIZTQKpaaWUpjgbKkzHDjnaxYWuGo5S1pW8al0impMn_7mscsM5R-gMY4H9tNIC6zSrSV31EYZlVbeciRsTZta8Ey5dIm7M6kkei6TDkebpTM3BW8zyTcZxO-PM69qopzvDhreybUpFbQIom59I6i9OipCXtBfK_skPSPTk7DaOtfJn-G5eP-r27SPen9_AgrMSZOhPjNNjTKydR-giV9XQ6LyU79bh8Alq708g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dSxwxFL3UVaovVm3FrWsN6IuFke4kM0keF3Vb6bKIH-DbMJMPXVh3ZGdWEHzwJ_Q3-kvMzcy6CqVQfMtDJoTc3LnnhnPvAdi11mYKWY2xA7MBiy0NRChFoF1sEj9i6VzKt8zv8X5fXF7Kk5qbg7UwVX-Ilwc39Az_v0YHN7favvLy0mX2-_iMQudgnkUyYg2YPzztXvRmhZGsUlehMaohi7DuT4pUntnXbyPSDGa-Bqs-2nQ_vXOfK7Bcw0zSqe7FKnwwozVYrBXPr-8_w0OH2CkvizjgSgqkVrtPUKnBo_OqPpMg5zwvjCa5JaP8zgyJGk6wu4KLeU-PfzAKapIOr_LxoLy-KQgWpc1WQyb84GrioD4OCy9IURZf4KJ7dH7wK6iVGAJFUf4hTdsy05xLrmQoFDOUhhxtSZmOtUuyQmG4pSZuC9PWNhVWCpm501dxyDJN6To0RvnIbACxmZE8km5FrpmRkXSQI2MRjRRnmbRpE_am1khU3aYcNzdMpukKnmfiz7MJOy9zb6vmHH-d1ZoaNakdtEjCWLhEUTj01ITv3nz_WCE5_3l85kdf_2fyNnw8OewmveP-701YCrFuwj_ftKBRjidmCxbUXTkoxt_qa_sMNA70bQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+spatial+regionalization+composed+of+novel+clustering%E2%80%90based+algorithms+under+spatial+contiguity+constraints&rft.jtitle=Transactions+in+GIS&rft.au=Miranda%2C+Leandro&rft.au=Viterbo%2C+Jos%C3%A9&rft.au=Bernardini%2C+Fl%C3%A1via&rft.date=2022-06-01&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=26&rft.issue=4&rft.spage=1775&rft.epage=1800&rft_id=info:doi/10.1111%2Ftgis.12903&rft.externalDBID=10.1111%252Ftgis.12903&rft.externalDocID=TGIS12903 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon |