ADCN: An anisotropic density‐based clustering algorithm for discovering spatial point patterns with noise

Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Transactions in GIS Ročník 22; číslo 1; s. 348 - 369
Hlavní autori: Mai, Gengchen, Janowicz, Krzysztof, Hu, Yingjie, Gao, Song
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.02.2018
Predmet:
ISSN:1361-1682, 1467-9671
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementation and test the runtime over multiple cases.
AbstractList Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O( n log n ) when using a spatial index and O( n 2 ) otherwise. We provide an implementation and test the runtime over multiple cases.
Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementation and test the runtime over multiple cases.
Author Janowicz, Krzysztof
Mai, Gengchen
Hu, Yingjie
Gao, Song
Author_xml – sequence: 1
  givenname: Gengchen
  orcidid: 0000-0002-7818-7309
  surname: Mai
  fullname: Mai, Gengchen
  email: gengchen_mai@geog.ucsb.edu
  organization: University of California
– sequence: 2
  givenname: Krzysztof
  surname: Janowicz
  fullname: Janowicz, Krzysztof
  organization: University of California
– sequence: 3
  givenname: Yingjie
  surname: Hu
  fullname: Hu, Yingjie
  organization: University of Tennessee
– sequence: 4
  givenname: Song
  orcidid: 0000-0003-4359-6302
  surname: Gao
  fullname: Gao, Song
  organization: University of California
BookMark eNp9kMFOwzAMhiMEEtvgwhNE4obUkTRtunCbBoxJExwY5ypNk5HRJSXJmHbjEXhGnoSMckIIX2zL32_Lfx8cGmskAGcYDXGMy7DUfohTgskB6OGMFgmjBT6MNaE4wXSUHoO-9yuEUJaxogdexteT-ys4NpAb7W1wttUC1tJ4HXaf7x8V97KGotn4IJ02S8ibpXU6PK-hsg7W2gv71k18y4PmDWytNgHGJiqMh9sIQ2O1lyfgSPHGy9OfPABPtzeLyV0yf5jOJuN5IgjCJGFpSmWKi5qJnGYFU0WtspwWVaV4zSiVmCpaScERU4rkkjAqq1xxgkimiGBkAM67va2zrxvpQ7myG2fiyTJFKMfZKCUkUhcdJZz13klVtk6vuduVGJV7M8u9meW3mRFGv2ChQ3zXmuC4bv6W4E6y1Y3c_bO8XExnj53mC9knjEQ
CitedBy_id crossref_primary_10_1080_13658816_2025_2490687
crossref_primary_10_1177_03611981211010795
crossref_primary_10_3233_JIFS_202806
crossref_primary_10_1080_15230406_2025_2537980
crossref_primary_10_3390_ijgi8050218
crossref_primary_10_3390_ijgi7050164
crossref_primary_10_3390_app15062943
crossref_primary_10_1186_s12942_023_00353_4
crossref_primary_10_1080_13658816_2022_2053980
crossref_primary_10_3233_JIFS_189082
crossref_primary_10_3390_ijgi9030147
crossref_primary_10_1109_LSENS_2023_3347626
crossref_primary_10_1111_tgis_12552
crossref_primary_10_1016_j_eswa_2025_127252
crossref_primary_10_1111_tgis_12550
crossref_primary_10_1080_13658816_2021_2004602
Cites_doi 10.1371/journal.pone.0131469
10.1016/j.patcog.2013.05.010
10.1080/01621459.1971.10482356
10.1080/13658810601034226
10.1007/s11004-009-9229-1
10.1080/13658816.2015.1070267
10.1109/34.1000236
10.1007/978-3-642-31900-6_25
10.1016/j.compenvurbsys.2015.09.001
10.1080/00045608.2015.1081120
10.1080/13658816.2016.1209506
10.1680/geot.1963.13.3.198
10.1109/TPAMI.1979.4766909
10.1023/A:1009745219419
10.1080/13658810701517096
10.1016/j.datak.2006.01.013
10.1016/j.compenvurbsys.2011.02.003
10.1007/s11004-005-7310-y
10.1007/s00138-015-0682-1
10.1080/13658816.2016.1145225
10.1162/153244303321897735
10.1007/s11004-012-9428-z
10.1111/sjos.12041
10.1016/j.compenvurbsys.2016.01.003
10.1016/j.spasta.2015.12.005
10.1007/s00477-013-0686-1
10.2307/490885
10.1109/IS.2010.5548396
10.1093/jof/103.4.169
10.1016/j.patcog.2008.03.023
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1111/tgis.12313
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Computer and Information Systems Abstracts – Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1467-9671
EndPage 369
ExternalDocumentID 10_1111_tgis_12313
TGIS12313
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A04
AABNI
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABSOO
ABTAH
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACGFS
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEMOZ
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFPWT
AFRAH
AFWVQ
AFYRF
AFZJQ
AHBTC
AHQJS
AIFKG
AIURR
AIWBW
AJBDE
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EAD
EAP
EAYBP
EBA
EBO
EBR
EBS
EBU
EDH
EJD
EMK
ESX
F00
F01
FEDTE
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM-
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WII
WMRSR
WOHZO
WQZ
WRC
WSUWO
WXSBR
XG1
ZY4
ZZTAW
~IA
~WP
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
BANNL
CITATION
O8X
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3013-9226e217d9c56479f7df4567bbfad966e16f6beca09ff35e396eb5fa3034f3c93
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425596600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-1682
IngestDate Fri Jul 25 21:33:58 EDT 2025
Tue Nov 18 20:57:46 EST 2025
Sat Nov 29 05:20:05 EST 2025
Wed Jan 22 16:22:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3013-9226e217d9c56479f7df4567bbfad966e16f6beca09ff35e396eb5fa3034f3c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7818-7309
0000-0003-4359-6302
PQID 2005148233
PQPubID 45950
PageCount 22
ParticipantIDs proquest_journals_2005148233
crossref_primary_10_1111_tgis_12313
crossref_citationtrail_10_1111_tgis_12313
wiley_primary_10_1111_tgis_12313_TGIS12313
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transactions in GIS
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1971; 66
2009; 41
2013; 27
2012
2011
2015; 105
2010
2013; 45
2015; 54
2015; 10
2016; 30
1996
2014; 47
2007
2002; 3
1964; 64
2006
2011; 35
2004
2014; 41
2016; 15
2016; 57
1999
1963; 13
1971; 53
2017; 31
2015; 26
1967; 1
2005; 103
2002; 24
2007; 60
1979; 2
2016
2008; 22
1998; 2
2008; 41
2005; 37
2007; 21
1989
Fortin M. J. (e_1_2_7_15_1) 2016
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Han J. (e_1_2_7_17_1) 2011
e_1_2_7_18_1
Ester M. (e_1_2_7_13_1) 1996
Hoek E. (e_1_2_7_19_1) 1964; 64
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
Borah B. (e_1_2_7_6_1) 2004
e_1_2_7_27_1
Wang J. (e_1_2_7_40_1) 2012
MacQueen J. (e_1_2_7_28_1) 1967
Stefanakis E. (e_1_2_7_36_1) 2007; 21
Gao S. (e_1_2_7_16_1) 2017; 31
Zhao G. (e_1_2_7_43_1) 2015; 26
e_1_2_7_30_1
Isaaks E. H. (e_1_2_7_24_1) 1989
e_1_2_7_25_1
e_1_2_7_32_1
e_1_2_7_23_1
Moreira A. (e_1_2_7_31_1) 2007
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Zhou W. (e_1_2_7_45_1) 2010
e_1_2_7_20_1
e_1_2_7_37_1
Mai G. (e_1_2_7_29_1) 2016
Tsai C.‐F. (e_1_2_7_39_1) 2006
Damiani M. L. (e_1_2_7_8_1) 2016; 30
Stroet C. B. T. (e_1_2_7_38_1) 2005; 37
Liu P. (e_1_2_7_26_1) 2007
Ankerst M. (e_1_2_7_2_1) 1999
References_xml – volume: 60
  start-page: 208
  issue: 1
  year: 2007
  end-page: 221
  article-title: ST‐DBSCAN: An algorithm for clustering spatial‐temporal data
  publication-title: Data & Knowledge Engineering
– volume: 31
  start-page: 1245
  year: 2017
  end-page: 1271
  article-title: A data‐synthesis‐driven method for detecting and extracting vague cognitive regions
  publication-title: International Journal of Geographical Information Science
– year: 2011
– start-page: 1
  year: 2007
  end-page: 4
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
– volume: 30
  start-page: 907
  issue: 5
  year: 2016
  end-page: 928
  article-title: Introducing presence and stationarity index to study partial migration patterns: An application of a spatio‐temporal clustering technique
  publication-title: International Journal of Geographical Information Science
– volume: 10
  start-page: e0131469
  year: 2015
  article-title: Understanding human mobility from Twitter
  publication-title: PloS One
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: Journal of the American Statistical Association
– volume: 57
  start-page: 48
  year: 2016
  end-page: 58
  article-title: Characterizing the shapes of noisy, non‐uniform, and disconnected point clusters in the plane
  publication-title: Computers, Environment & Urban Systems
– volume: 35
  start-page: 320
  year: 2011
  end-page: 332
  article-title: An adaptive spatial clustering algorithm based on Delaunay triangulation
  publication-title: Computers, Environment & Urban Systems
– year: 1989
– volume: 21
  start-page: 427
  year: 2007
  end-page: 442
  article-title: NET‐DBSCAN: Clustering the nodes of a dynamic linear network
  publication-title: International Journal of Geographical Information Science
– volume: 54
  start-page: 240
  year: 2015
  end-page: 254
  article-title: Extracting and understanding urban areas of interest using geotagged photos
  publication-title: Computers, Environment & Urban Systems
– start-page: 114
  year: 2010
  end-page: 119)
– volume: 64
  start-page: 501
  year: 1964
  end-page: 523
  article-title: Fracture of anisotropic rock
  publication-title: Journal of the South African Institute of Mining & Metallurgy
– volume: 30
  start-page: 1873
  year: 2016
  end-page: 1898
  article-title: Activity patterns, socioeconomic status and urban spatial structure: What can social media data tell us?
  publication-title: International Journal of Geographical Information Science
– volume: 2
  start-page: 169
  year: 1998
  end-page: 194
  article-title: Density‐based clustering in spatial databases: The algorithm GDBSCAN and its applications
  publication-title: Data Mining & Knowledge Discovery
– volume: 45
  start-page: 31
  issue: 1
  year: 2013
  end-page: 48
  article-title: Non‐stationary geostatistical modeling based on distance weighted statistics and distributions
  publication-title: Mathematical Geosciences
– volume: 53
  start-page: 28
  issue: 1
  year: 1971
  end-page: 39
  article-title: The standard deviational ellipse: An updated tool for spatial description
  publication-title: Geografiska Annaler: Series B, Human Geography
– start-page: 702
  year: 2006
  end-page: 711
– volume: 15
  start-page: 100
  year: 2016
  end-page: 114
  article-title: Estimating geometric anisotropy in spatial point patterns
  publication-title: Spatial Statistics
– year: 2016
  publication-title: Spatial analysis in ecology
– volume: 103
  start-page: 169
  year: 2005
  end-page: 173
  article-title: Consumer‐grade global positioning system (GPS) accuracy and reliability
  publication-title: Journal of Forestry
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– start-page: 194
  year: 2012
  end-page: 199)
– start-page: 49
  year: 1999
  end-page: 60)
– start-page: 226
  year: 1996
  end-page: 231
– volume: 13
  start-page: 198
  year: 1963
  end-page: 210
  article-title: Stresses and displacements in a cross‐anisotropic soil
  publication-title: Geotechnique
– volume: 27
  start-page: 1507
  year: 2013
  end-page: 1523
  article-title: On wavelet‐based energy densities for spatial point processes
  publication-title: Stochastic Environmental Research & Risk Assessment
– volume: 22
  start-page: 463
  year: 2008
  end-page: 478
  article-title: The effect of instructions on distance and similarity judgements in information spatializations
  publication-title: International Journal of Geographical Information Science
– volume: 47
  start-page: 427
  issue: 1
  year: 2014
  end-page: 440
  article-title: QUAC: Quick unsupervised anisotropic clustering
  publication-title: Pattern Recognition
– volume: 105
  start-page: 1179
  year: 2015
  end-page: 1197
  article-title: Modeling and visualizing regular human mobility patterns with uncertainty: An example using Twitter data
  publication-title: Annals of the Association of American Geographers
– volume: 31
  start-page: 523
  year: 2017
  end-page: 541
  article-title: Mining online footprints to predict user's next location
  publication-title: International Journal of Geographical Information Science
– volume: 26
  start-page: 675
  year: 2015
  end-page: 688
  article-title: Anisotropic clustering on surfaces for crack extraction
  publication-title: Machine Vision & Applications
– volume: 41
  start-page: 585
  year: 2009
  end-page: 601
  article-title: Kriging in the presence of locally varying anisotropy using non‐Euclidean distances
  publication-title: Mathematical Geosciences
– volume: 41
  start-page: 3224
  year: 2008
  end-page: 3236
  article-title: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane
  publication-title: Pattern Recognition
– start-page: 58)
  year: 2016
– start-page: 165
  year: 2010
  end-page: 170
– volume: 41
  start-page: 414
  year: 2014
  end-page: 435
  article-title: Geometric anisotropic spatial point pattern analysis and Cox processes
  publication-title: Scandinavian Journal of Statistics
– start-page: 61
  year: 2007
  end-page: 68)
– volume: 2
  start-page: 224
  year: 1979
  end-page: 227
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– start-page: 92
  year: 2004
  end-page: 96)
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  end-page: 619
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– volume: 37
  start-page: 635
  year: 2005
  end-page: 649
  article-title: Mapping curvilinear structures with local anisotropy kriging
  publication-title: Mathematical Geology
– start-page: 92
  volume-title: Proceedings of the First International Conference on Intelligent Sensing and Information
  year: 2004
  ident: e_1_2_7_6_1
– ident: e_1_2_7_25_1
  doi: 10.1371/journal.pone.0131469
– start-page: 58)
  volume-title: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
  year: 2016
  ident: e_1_2_7_29_1
– start-page: 226
  volume-title: Proceedings of Second International Conference on Knowledge Discovery and Data Mining
  year: 1996
  ident: e_1_2_7_13_1
– ident: e_1_2_7_18_1
  doi: 10.1016/j.patcog.2013.05.010
– start-page: 1
  volume-title: Proceedings of the 2007 International Conference on Service Systems and Service Management
  year: 2007
  ident: e_1_2_7_26_1
– ident: e_1_2_7_33_1
  doi: 10.1080/01621459.1971.10482356
– volume: 21
  start-page: 427
  year: 2007
  ident: e_1_2_7_36_1
  article-title: NET‐DBSCAN: Clustering the nodes of a dynamic linear network
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658810601034226
– ident: e_1_2_7_5_1
  doi: 10.1007/s11004-009-9229-1
– volume: 30
  start-page: 907
  issue: 5
  year: 2016
  ident: e_1_2_7_8_1
  article-title: Introducing presence and stationarity index to study partial migration patterns: An application of a spatio‐temporal clustering technique
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658816.2015.1070267
– start-page: 281
  volume-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
  year: 1967
  ident: e_1_2_7_28_1
– ident: e_1_2_7_7_1
  doi: 10.1109/34.1000236
– start-page: 194
  volume-title: Rough sets and knowledge technology: Proceedings of the Seventh International Conference, RSKT 2012, Chengdu, China, August 17–20, 2012
  year: 2012
  ident: e_1_2_7_40_1
  doi: 10.1007/978-3-642-31900-6_25
– ident: e_1_2_7_20_1
  doi: 10.1016/j.compenvurbsys.2015.09.001
– start-page: 702
  volume-title: International Conference on Artificial Intelligence and Soft Computing – ICAISC 2006: Proceedings of the Eighth International Conference
  year: 2006
  ident: e_1_2_7_39_1
– ident: e_1_2_7_22_1
  doi: 10.1080/00045608.2015.1081120
– ident: e_1_2_7_21_1
  doi: 10.1080/13658816.2016.1209506
– volume-title: Applied geostatistics
  year: 1989
  ident: e_1_2_7_24_1
– ident: e_1_2_7_3_1
  doi: 10.1680/geot.1963.13.3.198
– ident: e_1_2_7_9_1
  doi: 10.1109/TPAMI.1979.4766909
– ident: e_1_2_7_35_1
  doi: 10.1023/A:1009745219419
– start-page: 61
  volume-title: Proceedings of the Second International Conference on Computer Graphics Theory and Applications
  year: 2007
  ident: e_1_2_7_31_1
– ident: e_1_2_7_14_1
  doi: 10.1080/13658810701517096
– volume: 64
  start-page: 501
  year: 1964
  ident: e_1_2_7_19_1
  article-title: Fracture of anisotropic rock
  publication-title: Journal of the South African Institute of Mining & Metallurgy
– ident: e_1_2_7_4_1
  doi: 10.1016/j.datak.2006.01.013
– ident: e_1_2_7_10_1
  doi: 10.1016/j.compenvurbsys.2011.02.003
– volume: 37
  start-page: 635
  year: 2005
  ident: e_1_2_7_38_1
  article-title: Mapping curvilinear structures with local anisotropy kriging
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-7310-y
– volume: 26
  start-page: 675
  year: 2015
  ident: e_1_2_7_43_1
  article-title: Anisotropic clustering on surfaces for crack extraction
  publication-title: Machine Vision & Applications
  doi: 10.1007/s00138-015-0682-1
– ident: e_1_2_7_23_1
  doi: 10.1080/13658816.2016.1145225
– ident: e_1_2_7_37_1
  doi: 10.1162/153244303321897735
– year: 2016
  ident: e_1_2_7_15_1
  publication-title: Spatial analysis in ecology
– ident: e_1_2_7_27_1
  doi: 10.1007/s11004-012-9428-z
– ident: e_1_2_7_30_1
  doi: 10.1111/sjos.12041
– ident: e_1_2_7_44_1
  doi: 10.1016/j.compenvurbsys.2016.01.003
– ident: e_1_2_7_32_1
  doi: 10.1016/j.spasta.2015.12.005
– ident: e_1_2_7_12_1
  doi: 10.1007/s00477-013-0686-1
– start-page: 165
  volume-title: Proceedings of the 11th IEEE International Conference on Information Reuse and Integration
  year: 2010
  ident: e_1_2_7_45_1
– start-page: 49
  volume-title: Proceedings of ACM SIGMOD Conference
  year: 1999
  ident: e_1_2_7_2_1
– ident: e_1_2_7_42_1
  doi: 10.2307/490885
– ident: e_1_2_7_34_1
  doi: 10.1109/IS.2010.5548396
– volume-title: Data mining: Concepts and techniques
  year: 2011
  ident: e_1_2_7_17_1
– ident: e_1_2_7_41_1
  doi: 10.1093/jof/103.4.169
– ident: e_1_2_7_11_1
  doi: 10.1016/j.patcog.2008.03.023
– volume: 31
  start-page: 1245
  year: 2017
  ident: e_1_2_7_16_1
  article-title: A data‐synthesis‐driven method for detecting and extracting vague cognitive regions
  publication-title: International Journal of Geographical Information Science
SSID ssj0004497
Score 2.2836676
Snippet Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 348
SubjectTerms Algorithms
Anisotropy
Clustering
Clusters
Density
Mathematical models
Noise
Optics
Title ADCN: An anisotropic density‐based clustering algorithm for discovering spatial point patterns with noise
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.12313
https://www.proquest.com/docview/2005148233
Volume 22
WOSCitedRecordID wos000425596600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004497
  issn: 1361-1682
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF2KFfTFu3ipsqAvCpG2aS4rvpRqVZAi2kLfQvZmgzUpSRT65if4jX6JM7lYBRHEt8DuJmF3Z-fMMnMOIYdOXSommg1DOC4zWpo3DO5D1GppiWjeklxllPk3Tq_nDofstkLOylqYnB_i88INLSM7r9HAfZ58MfIUAvsTOHdRsraKVVUQelXP77qDm1ldZCsXVzFtFEN2mwU9KWbyzEZ_d0gzlPkVq2bOprv8v99cIUsFyKTtfFeskooK18hCoXc-mq6Tx_Z5p3dK2yH1wyCJ0jiaBIJKTGZPp--vb-jbJBXjZ6RRAOdG_fFDFAfp6IkCyKVYyoupn9iSYEo2fGwSBWFKJxldZ5hQvN-lYRQkaoMMuhf9zpVRyC4YwkStBwaITEGkIpmw7JbDtCM1wCyHc-1LiI5Uw9Y2LL1fZ1qbljKZrbilfXCGLW0KZm6SuTAK1RahTWY5deE7EDZxQH4CrZ3DKcCkli5TbJsclXPviYKTHKUxxl4Zm-D0edn0bZODz76TnInjx161cgm9whoTlNq0kO_UhObjbLF-eYPXv7y-z552_tJ5lywClnLzhO4amUvjZ7VH5sVLGiTxfrEzPwC_vOnj
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF2kFfTFu3h3QV8UIm1z2axvpbVWrEW0gm8h2YsGa1KaVPDNT_Ab_RJnkrRVEEF8C-xuEmZ3ds4ss-cQcsgqUnFRqxqCudywdFA1Ah-yVltLRPO2DFRGmd9h3a57f8-vi9ocvAuT80NMDtzQM7L9Gh0cD6S_eHkKmf0JbLyoWVu2HJO5JVJu3rTuOtOLkVaurmI6qIbs1gp-UizlmY7-HpGmMPMrWM2iTWvxn_-5RBYKmEnr-bpYJjMqWiFzheL54-sqeao3G91TWo-oH4VJnA7jQSioxHL29PXj7R2jm6SiP0IiBQhv1O8_xMMwfXymAHMpXubF4k9sSbAoGz42iMMopYOMsDNKKJ7w0igOE7VG7lpnvUbbKIQXDGGi2gMHTKYgV5Fc2I7FuGZSA9BiQaB9CfmRqjragcn3K1xr01Ymd1Rgax_CoaVNwc11UoriSG0QWuM2qwifQeIUAPYT6O8B7ANcaulyxTfJ0dj4nihYyVEco--NsxM0n5eZb5McTPoOci6OH3vtjOfQK_wxQbFNGxlPTWg-zmbrlzd4vfOL2-xp6y-d98lcu3fV8ToX3cttMg_Iys3Lu3dIKR2O1C6ZFS9pmAz3imX6CbtX7dM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF2kivriXby7oC8KkbbJJlnfSmtVLEW0gm8h2YsGaxKaKPjmJ_iNfokzSXoRRBDfArubhNmdnTPL7DmEHDpVqbio1wzhuNywdFAzAh-yVqYlonkmA5VT5necbte9v-fXZW0O3oUp-CFGB27oGfl-jQ6uEqknvDyDzP4ENl7UrJ22GGdWhUy3btp3nfHFSKtQVzFtVEN26yU_KZbyjEd_j0hjmDkJVvNo0178538ukYUSZtJGsS6WyZSKVshcqXj--LZKnhqtZveUNiLqR2EaZ4M4CQWVWM6evX2-f2B0k1T0X5BIAcIb9fsP8SDMHp8pwFyKl3mx-BNbUizKho8lcRhlNMkJO6OU4gkvjeIwVWvkrn3Wa14YpfCCIUxUe-CAyRTkKpILZlsO147UALScINC-hPxI1Wxtw-T7Va61yZTJbRUw7UM4tLQpuLlOKlEcqQ1C65w5VeE7kDgFgP0E-nsA-wCXWrpc8U1yNDS-J0pWchTH6HvD7ATN5-Xm2yQHo75JwcXxY6-d4Rx6pT-mKLbJkPHUhObjfLZ-eYPXO7-8zZ-2_tJ5n8xet9pe57J7tU3mAVi5RXX3Dqlkgxe1S2bEaxamg71ylX4BYpDtTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADCN%3A+An+anisotropic+density%E2%80%90based+clustering+algorithm+for+discovering+spatial+point+patterns+with+noise&rft.jtitle=Transactions+in+GIS&rft.au=Mai%2C+Gengchen&rft.au=Janowicz%2C+Krzysztof&rft.au=Hu%2C+Yingjie&rft.au=Gao%2C+Song&rft.date=2018-02-01&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=22&rft.issue=1&rft.spage=348&rft.epage=369&rft_id=info:doi/10.1111%2Ftgis.12313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_tgis_12313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon