ADCN: An anisotropic density‐based clustering algorithm for discovering spatial point patterns with noise
Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estim...
Uložené v:
| Vydané v: | Transactions in GIS Ročník 22; číslo 1; s. 348 - 369 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Blackwell Publishing Ltd
01.02.2018
|
| Predmet: | |
| ISSN: | 1361-1682, 1467-9671 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementation and test the runtime over multiple cases. |
|---|---|
| AbstractList | Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius
Eps
to find at least
MinPts
points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(
n
log
n
) when using a spatial index and O(
n
2
) otherwise. We provide an implementation and test the runtime over multiple cases. Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementation and test the runtime over multiple cases. |
| Author | Janowicz, Krzysztof Mai, Gengchen Hu, Yingjie Gao, Song |
| Author_xml | – sequence: 1 givenname: Gengchen orcidid: 0000-0002-7818-7309 surname: Mai fullname: Mai, Gengchen email: gengchen_mai@geog.ucsb.edu organization: University of California – sequence: 2 givenname: Krzysztof surname: Janowicz fullname: Janowicz, Krzysztof organization: University of California – sequence: 3 givenname: Yingjie surname: Hu fullname: Hu, Yingjie organization: University of Tennessee – sequence: 4 givenname: Song orcidid: 0000-0003-4359-6302 surname: Gao fullname: Gao, Song organization: University of California |
| BookMark | eNp9kMFOwzAMhiMEEtvgwhNE4obUkTRtunCbBoxJExwY5ypNk5HRJSXJmHbjEXhGnoSMckIIX2zL32_Lfx8cGmskAGcYDXGMy7DUfohTgskB6OGMFgmjBT6MNaE4wXSUHoO-9yuEUJaxogdexteT-ys4NpAb7W1wttUC1tJ4HXaf7x8V97KGotn4IJ02S8ibpXU6PK-hsg7W2gv71k18y4PmDWytNgHGJiqMh9sIQ2O1lyfgSPHGy9OfPABPtzeLyV0yf5jOJuN5IgjCJGFpSmWKi5qJnGYFU0WtspwWVaV4zSiVmCpaScERU4rkkjAqq1xxgkimiGBkAM67va2zrxvpQ7myG2fiyTJFKMfZKCUkUhcdJZz13klVtk6vuduVGJV7M8u9meW3mRFGv2ChQ3zXmuC4bv6W4E6y1Y3c_bO8XExnj53mC9knjEQ |
| CitedBy_id | crossref_primary_10_1080_13658816_2025_2490687 crossref_primary_10_1177_03611981211010795 crossref_primary_10_3233_JIFS_202806 crossref_primary_10_1080_15230406_2025_2537980 crossref_primary_10_3390_ijgi8050218 crossref_primary_10_3390_ijgi7050164 crossref_primary_10_3390_app15062943 crossref_primary_10_1186_s12942_023_00353_4 crossref_primary_10_1080_13658816_2022_2053980 crossref_primary_10_3233_JIFS_189082 crossref_primary_10_3390_ijgi9030147 crossref_primary_10_1109_LSENS_2023_3347626 crossref_primary_10_1111_tgis_12552 crossref_primary_10_1016_j_eswa_2025_127252 crossref_primary_10_1111_tgis_12550 crossref_primary_10_1080_13658816_2021_2004602 |
| Cites_doi | 10.1371/journal.pone.0131469 10.1016/j.patcog.2013.05.010 10.1080/01621459.1971.10482356 10.1080/13658810601034226 10.1007/s11004-009-9229-1 10.1080/13658816.2015.1070267 10.1109/34.1000236 10.1007/978-3-642-31900-6_25 10.1016/j.compenvurbsys.2015.09.001 10.1080/00045608.2015.1081120 10.1080/13658816.2016.1209506 10.1680/geot.1963.13.3.198 10.1109/TPAMI.1979.4766909 10.1023/A:1009745219419 10.1080/13658810701517096 10.1016/j.datak.2006.01.013 10.1016/j.compenvurbsys.2011.02.003 10.1007/s11004-005-7310-y 10.1007/s00138-015-0682-1 10.1080/13658816.2016.1145225 10.1162/153244303321897735 10.1007/s11004-012-9428-z 10.1111/sjos.12041 10.1016/j.compenvurbsys.2016.01.003 10.1016/j.spasta.2015.12.005 10.1007/s00477-013-0686-1 10.2307/490885 10.1109/IS.2010.5548396 10.1093/jof/103.4.169 10.1016/j.patcog.2008.03.023 |
| ContentType | Journal Article |
| Copyright | 2018 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2018 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1111/tgis.12313 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Computer and Information Systems Abstracts – Academic ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1467-9671 |
| EndPage | 369 |
| ExternalDocumentID | 10_1111_tgis_12313 TGIS12313 |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A04 AABNI AAESR AAHHS AAHQN AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABSOO ABTAH ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACGFS ACHQT ACIWK ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEIGN AEIMD AEMOZ AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFKFF AFPWT AFRAH AFWVQ AFYRF AFZJQ AHBTC AHQJS AIFKG AIURR AIWBW AJBDE AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EAD EAP EAYBP EBA EBO EBR EBS EBU EDH EJD EMK ESX F00 F01 FEDTE G-S G.N G50 GODZA HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM- MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OIG P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 W8V W99 WBKPD WIH WII WMRSR WOHZO WQZ WRC WSUWO WXSBR XG1 ZY4 ZZTAW ~IA ~WP AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AIDQK AIDYY AIQQE BANNL CITATION O8X 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c3013-9226e217d9c56479f7df4567bbfad966e16f6beca09ff35e396eb5fa3034f3c93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425596600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-1682 |
| IngestDate | Fri Jul 25 21:33:58 EDT 2025 Tue Nov 18 20:57:46 EST 2025 Sat Nov 29 05:20:05 EST 2025 Wed Jan 22 16:22:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3013-9226e217d9c56479f7df4567bbfad966e16f6beca09ff35e396eb5fa3034f3c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7818-7309 0000-0003-4359-6302 |
| PQID | 2005148233 |
| PQPubID | 45950 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2005148233 crossref_primary_10_1111_tgis_12313 crossref_citationtrail_10_1111_tgis_12313 wiley_primary_10_1111_tgis_12313_TGIS12313 |
| PublicationCentury | 2000 |
| PublicationDate | February 2018 2018-02-00 20180201 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Transactions in GIS |
| PublicationYear | 2018 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 1971; 66 2009; 41 2013; 27 2012 2011 2015; 105 2010 2013; 45 2015; 54 2015; 10 2016; 30 1996 2014; 47 2007 2002; 3 1964; 64 2006 2011; 35 2004 2014; 41 2016; 15 2016; 57 1999 1963; 13 1971; 53 2017; 31 2015; 26 1967; 1 2005; 103 2002; 24 2007; 60 1979; 2 2016 2008; 22 1998; 2 2008; 41 2005; 37 2007; 21 1989 Fortin M. J. (e_1_2_7_15_1) 2016 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Han J. (e_1_2_7_17_1) 2011 e_1_2_7_18_1 Ester M. (e_1_2_7_13_1) 1996 Hoek E. (e_1_2_7_19_1) 1964; 64 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 Borah B. (e_1_2_7_6_1) 2004 e_1_2_7_27_1 Wang J. (e_1_2_7_40_1) 2012 MacQueen J. (e_1_2_7_28_1) 1967 Stefanakis E. (e_1_2_7_36_1) 2007; 21 Gao S. (e_1_2_7_16_1) 2017; 31 Zhao G. (e_1_2_7_43_1) 2015; 26 e_1_2_7_30_1 Isaaks E. H. (e_1_2_7_24_1) 1989 e_1_2_7_25_1 e_1_2_7_32_1 e_1_2_7_23_1 Moreira A. (e_1_2_7_31_1) 2007 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 Zhou W. (e_1_2_7_45_1) 2010 e_1_2_7_20_1 e_1_2_7_37_1 Mai G. (e_1_2_7_29_1) 2016 Tsai C.‐F. (e_1_2_7_39_1) 2006 Damiani M. L. (e_1_2_7_8_1) 2016; 30 Stroet C. B. T. (e_1_2_7_38_1) 2005; 37 Liu P. (e_1_2_7_26_1) 2007 Ankerst M. (e_1_2_7_2_1) 1999 |
| References_xml | – volume: 60 start-page: 208 issue: 1 year: 2007 end-page: 221 article-title: ST‐DBSCAN: An algorithm for clustering spatial‐temporal data publication-title: Data & Knowledge Engineering – volume: 31 start-page: 1245 year: 2017 end-page: 1271 article-title: A data‐synthesis‐driven method for detecting and extracting vague cognitive regions publication-title: International Journal of Geographical Information Science – year: 2011 – start-page: 1 year: 2007 end-page: 4 – volume: 1 start-page: 281 year: 1967 end-page: 297 – volume: 30 start-page: 907 issue: 5 year: 2016 end-page: 928 article-title: Introducing presence and stationarity index to study partial migration patterns: An application of a spatio‐temporal clustering technique publication-title: International Journal of Geographical Information Science – volume: 10 start-page: e0131469 year: 2015 article-title: Understanding human mobility from Twitter publication-title: PloS One – volume: 66 start-page: 846 year: 1971 end-page: 850 article-title: Objective criteria for the evaluation of clustering methods publication-title: Journal of the American Statistical Association – volume: 57 start-page: 48 year: 2016 end-page: 58 article-title: Characterizing the shapes of noisy, non‐uniform, and disconnected point clusters in the plane publication-title: Computers, Environment & Urban Systems – volume: 35 start-page: 320 year: 2011 end-page: 332 article-title: An adaptive spatial clustering algorithm based on Delaunay triangulation publication-title: Computers, Environment & Urban Systems – year: 1989 – volume: 21 start-page: 427 year: 2007 end-page: 442 article-title: NET‐DBSCAN: Clustering the nodes of a dynamic linear network publication-title: International Journal of Geographical Information Science – volume: 54 start-page: 240 year: 2015 end-page: 254 article-title: Extracting and understanding urban areas of interest using geotagged photos publication-title: Computers, Environment & Urban Systems – start-page: 114 year: 2010 end-page: 119) – volume: 64 start-page: 501 year: 1964 end-page: 523 article-title: Fracture of anisotropic rock publication-title: Journal of the South African Institute of Mining & Metallurgy – volume: 30 start-page: 1873 year: 2016 end-page: 1898 article-title: Activity patterns, socioeconomic status and urban spatial structure: What can social media data tell us? publication-title: International Journal of Geographical Information Science – volume: 2 start-page: 169 year: 1998 end-page: 194 article-title: Density‐based clustering in spatial databases: The algorithm GDBSCAN and its applications publication-title: Data Mining & Knowledge Discovery – volume: 45 start-page: 31 issue: 1 year: 2013 end-page: 48 article-title: Non‐stationary geostatistical modeling based on distance weighted statistics and distributions publication-title: Mathematical Geosciences – volume: 53 start-page: 28 issue: 1 year: 1971 end-page: 39 article-title: The standard deviational ellipse: An updated tool for spatial description publication-title: Geografiska Annaler: Series B, Human Geography – start-page: 702 year: 2006 end-page: 711 – volume: 15 start-page: 100 year: 2016 end-page: 114 article-title: Estimating geometric anisotropy in spatial point patterns publication-title: Spatial Statistics – year: 2016 publication-title: Spatial analysis in ecology – volume: 103 start-page: 169 year: 2005 end-page: 173 article-title: Consumer‐grade global positioning system (GPS) accuracy and reliability publication-title: Journal of Forestry – volume: 3 start-page: 583 year: 2002 end-page: 617 article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions publication-title: Journal of Machine Learning Research – start-page: 194 year: 2012 end-page: 199) – start-page: 49 year: 1999 end-page: 60) – start-page: 226 year: 1996 end-page: 231 – volume: 13 start-page: 198 year: 1963 end-page: 210 article-title: Stresses and displacements in a cross‐anisotropic soil publication-title: Geotechnique – volume: 27 start-page: 1507 year: 2013 end-page: 1523 article-title: On wavelet‐based energy densities for spatial point processes publication-title: Stochastic Environmental Research & Risk Assessment – volume: 22 start-page: 463 year: 2008 end-page: 478 article-title: The effect of instructions on distance and similarity judgements in information spatializations publication-title: International Journal of Geographical Information Science – volume: 47 start-page: 427 issue: 1 year: 2014 end-page: 440 article-title: QUAC: Quick unsupervised anisotropic clustering publication-title: Pattern Recognition – volume: 105 start-page: 1179 year: 2015 end-page: 1197 article-title: Modeling and visualizing regular human mobility patterns with uncertainty: An example using Twitter data publication-title: Annals of the Association of American Geographers – volume: 31 start-page: 523 year: 2017 end-page: 541 article-title: Mining online footprints to predict user's next location publication-title: International Journal of Geographical Information Science – volume: 26 start-page: 675 year: 2015 end-page: 688 article-title: Anisotropic clustering on surfaces for crack extraction publication-title: Machine Vision & Applications – volume: 41 start-page: 585 year: 2009 end-page: 601 article-title: Kriging in the presence of locally varying anisotropy using non‐Euclidean distances publication-title: Mathematical Geosciences – volume: 41 start-page: 3224 year: 2008 end-page: 3236 article-title: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane publication-title: Pattern Recognition – start-page: 58) year: 2016 – start-page: 165 year: 2010 end-page: 170 – volume: 41 start-page: 414 year: 2014 end-page: 435 article-title: Geometric anisotropic spatial point pattern analysis and Cox processes publication-title: Scandinavian Journal of Statistics – start-page: 61 year: 2007 end-page: 68) – volume: 2 start-page: 224 year: 1979 end-page: 227 article-title: A cluster separation measure publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence – start-page: 92 year: 2004 end-page: 96) – volume: 24 start-page: 603 issue: 5 year: 2002 end-page: 619 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence – volume: 37 start-page: 635 year: 2005 end-page: 649 article-title: Mapping curvilinear structures with local anisotropy kriging publication-title: Mathematical Geology – start-page: 92 volume-title: Proceedings of the First International Conference on Intelligent Sensing and Information year: 2004 ident: e_1_2_7_6_1 – ident: e_1_2_7_25_1 doi: 10.1371/journal.pone.0131469 – start-page: 58) volume-title: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems year: 2016 ident: e_1_2_7_29_1 – start-page: 226 volume-title: Proceedings of Second International Conference on Knowledge Discovery and Data Mining year: 1996 ident: e_1_2_7_13_1 – ident: e_1_2_7_18_1 doi: 10.1016/j.patcog.2013.05.010 – start-page: 1 volume-title: Proceedings of the 2007 International Conference on Service Systems and Service Management year: 2007 ident: e_1_2_7_26_1 – ident: e_1_2_7_33_1 doi: 10.1080/01621459.1971.10482356 – volume: 21 start-page: 427 year: 2007 ident: e_1_2_7_36_1 article-title: NET‐DBSCAN: Clustering the nodes of a dynamic linear network publication-title: International Journal of Geographical Information Science doi: 10.1080/13658810601034226 – ident: e_1_2_7_5_1 doi: 10.1007/s11004-009-9229-1 – volume: 30 start-page: 907 issue: 5 year: 2016 ident: e_1_2_7_8_1 article-title: Introducing presence and stationarity index to study partial migration patterns: An application of a spatio‐temporal clustering technique publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2015.1070267 – start-page: 281 volume-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability year: 1967 ident: e_1_2_7_28_1 – ident: e_1_2_7_7_1 doi: 10.1109/34.1000236 – start-page: 194 volume-title: Rough sets and knowledge technology: Proceedings of the Seventh International Conference, RSKT 2012, Chengdu, China, August 17–20, 2012 year: 2012 ident: e_1_2_7_40_1 doi: 10.1007/978-3-642-31900-6_25 – ident: e_1_2_7_20_1 doi: 10.1016/j.compenvurbsys.2015.09.001 – start-page: 702 volume-title: International Conference on Artificial Intelligence and Soft Computing – ICAISC 2006: Proceedings of the Eighth International Conference year: 2006 ident: e_1_2_7_39_1 – ident: e_1_2_7_22_1 doi: 10.1080/00045608.2015.1081120 – ident: e_1_2_7_21_1 doi: 10.1080/13658816.2016.1209506 – volume-title: Applied geostatistics year: 1989 ident: e_1_2_7_24_1 – ident: e_1_2_7_3_1 doi: 10.1680/geot.1963.13.3.198 – ident: e_1_2_7_9_1 doi: 10.1109/TPAMI.1979.4766909 – ident: e_1_2_7_35_1 doi: 10.1023/A:1009745219419 – start-page: 61 volume-title: Proceedings of the Second International Conference on Computer Graphics Theory and Applications year: 2007 ident: e_1_2_7_31_1 – ident: e_1_2_7_14_1 doi: 10.1080/13658810701517096 – volume: 64 start-page: 501 year: 1964 ident: e_1_2_7_19_1 article-title: Fracture of anisotropic rock publication-title: Journal of the South African Institute of Mining & Metallurgy – ident: e_1_2_7_4_1 doi: 10.1016/j.datak.2006.01.013 – ident: e_1_2_7_10_1 doi: 10.1016/j.compenvurbsys.2011.02.003 – volume: 37 start-page: 635 year: 2005 ident: e_1_2_7_38_1 article-title: Mapping curvilinear structures with local anisotropy kriging publication-title: Mathematical Geology doi: 10.1007/s11004-005-7310-y – volume: 26 start-page: 675 year: 2015 ident: e_1_2_7_43_1 article-title: Anisotropic clustering on surfaces for crack extraction publication-title: Machine Vision & Applications doi: 10.1007/s00138-015-0682-1 – ident: e_1_2_7_23_1 doi: 10.1080/13658816.2016.1145225 – ident: e_1_2_7_37_1 doi: 10.1162/153244303321897735 – year: 2016 ident: e_1_2_7_15_1 publication-title: Spatial analysis in ecology – ident: e_1_2_7_27_1 doi: 10.1007/s11004-012-9428-z – ident: e_1_2_7_30_1 doi: 10.1111/sjos.12041 – ident: e_1_2_7_44_1 doi: 10.1016/j.compenvurbsys.2016.01.003 – ident: e_1_2_7_32_1 doi: 10.1016/j.spasta.2015.12.005 – ident: e_1_2_7_12_1 doi: 10.1007/s00477-013-0686-1 – start-page: 165 volume-title: Proceedings of the 11th IEEE International Conference on Information Reuse and Integration year: 2010 ident: e_1_2_7_45_1 – start-page: 49 volume-title: Proceedings of ACM SIGMOD Conference year: 1999 ident: e_1_2_7_2_1 – ident: e_1_2_7_42_1 doi: 10.2307/490885 – ident: e_1_2_7_34_1 doi: 10.1109/IS.2010.5548396 – volume-title: Data mining: Concepts and techniques year: 2011 ident: e_1_2_7_17_1 – ident: e_1_2_7_41_1 doi: 10.1093/jof/103.4.169 – ident: e_1_2_7_11_1 doi: 10.1016/j.patcog.2008.03.023 – volume: 31 start-page: 1245 year: 2017 ident: e_1_2_7_16_1 article-title: A data‐synthesis‐driven method for detecting and extracting vague cognitive regions publication-title: International Journal of Geographical Information Science |
| SSID | ssj0004497 |
| Score | 2.2836676 |
| Snippet | Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 348 |
| SubjectTerms | Algorithms Anisotropy Clustering Clusters Density Mathematical models Noise Optics |
| Title | ADCN: An anisotropic density‐based clustering algorithm for discovering spatial point patterns with noise |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.12313 https://www.proquest.com/docview/2005148233 |
| Volume | 22 |
| WOSCitedRecordID | wos000425596600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-9671 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004497 issn: 1361-1682 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF2KFfTFu3ipsqAvCpG2aS4rvpRqVZAi2kLfQvZmgzUpSRT65if4jX6JM7lYBRHEt8DuJmF3Z-fMMnMOIYdOXSommg1DOC4zWpo3DO5D1GppiWjeklxllPk3Tq_nDofstkLOylqYnB_i88INLSM7r9HAfZ58MfIUAvsTOHdRsraKVVUQelXP77qDm1ldZCsXVzFtFEN2mwU9KWbyzEZ_d0gzlPkVq2bOprv8v99cIUsFyKTtfFeskooK18hCoXc-mq6Tx_Z5p3dK2yH1wyCJ0jiaBIJKTGZPp--vb-jbJBXjZ6RRAOdG_fFDFAfp6IkCyKVYyoupn9iSYEo2fGwSBWFKJxldZ5hQvN-lYRQkaoMMuhf9zpVRyC4YwkStBwaITEGkIpmw7JbDtCM1wCyHc-1LiI5Uw9Y2LL1fZ1qbljKZrbilfXCGLW0KZm6SuTAK1RahTWY5deE7EDZxQH4CrZ3DKcCkli5TbJsclXPviYKTHKUxxl4Zm-D0edn0bZODz76TnInjx161cgm9whoTlNq0kO_UhObjbLF-eYPXv7y-z552_tJ5lywClnLzhO4amUvjZ7VH5sVLGiTxfrEzPwC_vOnj |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF2kFfTFu3h3QV8UIm1z2axvpbVWrEW0gm8h2YsGa1KaVPDNT_Ab_RJnkrRVEEF8C-xuEmZ3ds4ss-cQcsgqUnFRqxqCudywdFA1Ah-yVltLRPO2DFRGmd9h3a57f8-vi9ocvAuT80NMDtzQM7L9Gh0cD6S_eHkKmf0JbLyoWVu2HJO5JVJu3rTuOtOLkVaurmI6qIbs1gp-UizlmY7-HpGmMPMrWM2iTWvxn_-5RBYKmEnr-bpYJjMqWiFzheL54-sqeao3G91TWo-oH4VJnA7jQSioxHL29PXj7R2jm6SiP0IiBQhv1O8_xMMwfXymAHMpXubF4k9sSbAoGz42iMMopYOMsDNKKJ7w0igOE7VG7lpnvUbbKIQXDGGi2gMHTKYgV5Fc2I7FuGZSA9BiQaB9CfmRqjragcn3K1xr01Ymd1Rgax_CoaVNwc11UoriSG0QWuM2qwifQeIUAPYT6O8B7ANcaulyxTfJ0dj4nihYyVEco--NsxM0n5eZb5McTPoOci6OH3vtjOfQK_wxQbFNGxlPTWg-zmbrlzd4vfOL2-xp6y-d98lcu3fV8ToX3cttMg_Iys3Lu3dIKR2O1C6ZFS9pmAz3imX6CbtX7dM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF2kivriXby7oC8KkbbJJlnfSmtVLEW0gm8h2YsGaxKaKPjmJ_iNfokzSXoRRBDfArubhNmdnTPL7DmEHDpVqbio1wzhuNywdFAzAh-yVqYlonkmA5VT5necbte9v-fXZW0O3oUp-CFGB27oGfl-jQ6uEqknvDyDzP4ENl7UrJ22GGdWhUy3btp3nfHFSKtQVzFtVEN26yU_KZbyjEd_j0hjmDkJVvNo0178538ukYUSZtJGsS6WyZSKVshcqXj--LZKnhqtZveUNiLqR2EaZ4M4CQWVWM6evX2-f2B0k1T0X5BIAcIb9fsP8SDMHp8pwFyKl3mx-BNbUizKho8lcRhlNMkJO6OU4gkvjeIwVWvkrn3Wa14YpfCCIUxUe-CAyRTkKpILZlsO147UALScINC-hPxI1Wxtw-T7Va61yZTJbRUw7UM4tLQpuLlOKlEcqQ1C65w5VeE7kDgFgP0E-nsA-wCXWrpc8U1yNDS-J0pWchTH6HvD7ATN5-Xm2yQHo75JwcXxY6-d4Rx6pT-mKLbJkPHUhObjfLZ-eYPXO7-8zZ-2_tJ5n8xet9pe57J7tU3mAVi5RXX3Dqlkgxe1S2bEaxamg71ylX4BYpDtTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADCN%3A+An+anisotropic+density%E2%80%90based+clustering+algorithm+for+discovering+spatial+point+patterns+with+noise&rft.jtitle=Transactions+in+GIS&rft.au=Mai%2C+Gengchen&rft.au=Janowicz%2C+Krzysztof&rft.au=Hu%2C+Yingjie&rft.au=Gao%2C+Song&rft.date=2018-02-01&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=22&rft.issue=1&rft.spage=348&rft.epage=369&rft_id=info:doi/10.1111%2Ftgis.12313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_tgis_12313 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon |