A high‐performance cellular automata model for urban expansion simulation based on convolution and graphic processing unit
Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA simulation, the computational intensity of CA models has increased. Additionally, due to the continuous development of CA modeling research, many...
Gespeichert in:
| Veröffentlicht in: | Transactions in GIS Jg. 28; H. 4; S. 947 - 968 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.06.2024
|
| Schlagworte: | |
| ISSN: | 1361-1682, 1467-9671 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA simulation, the computational intensity of CA models has increased. Additionally, due to the continuous development of CA modeling research, many scholars have made improvements to the models to enhance their simulation accuracy, resulting in an increasing computational complexity of the model. Consequently, the simulation task based on CA requires vast computing time and memory space. In recent years, deep learning (DL) has experienced rapid development. Many open‐source DL frameworks support graphic processing unit (GPU) parallel computing and provide efficient application programming interfaces (APIs) that can be easily called to handle tasks of interest. In this study, a high‐performance CA model was constructed based on the similarity between the neighborhood effect calculation process of the CA model and the convolutional process in a convolutional neural network (CNN). The convolution function in the DL library is used to calculate the neighborhood effect of the CA model to reduce the time and memory consumption of CA‐based simulation. The experimental results show that compared with the conventional CA model, the execution time of the GPU‐convolution‐CA model proposed in this study has been reduced by more than 98%. |
|---|---|
| AbstractList | Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA simulation, the computational intensity of CA models has increased. Additionally, due to the continuous development of CA modeling research, many scholars have made improvements to the models to enhance their simulation accuracy, resulting in an increasing computational complexity of the model. Consequently, the simulation task based on CA requires vast computing time and memory space. In recent years, deep learning (DL) has experienced rapid development. Many open‐source DL frameworks support graphic processing unit (GPU) parallel computing and provide efficient application programming interfaces (APIs) that can be easily called to handle tasks of interest. In this study, a high‐performance CA model was constructed based on the similarity between the neighborhood effect calculation process of the CA model and the convolutional process in a convolutional neural network (CNN). The convolution function in the DL library is used to calculate the neighborhood effect of the CA model to reduce the time and memory consumption of CA‐based simulation. The experimental results show that compared with the conventional CA model, the execution time of the GPU‐convolution‐CA model proposed in this study has been reduced by more than 98%. |
| Author | Wang, Haijun Zeng, Haoran Zhang, Bin |
| Author_xml | – sequence: 1 givenname: Haoran orcidid: 0000-0002-9973-4228 surname: Zeng fullname: Zeng, Haoran organization: Wuhan University – sequence: 2 givenname: Haijun surname: Wang fullname: Wang, Haijun email: landgiswhj@whu.edu.cn organization: Ministry of Natural Resources – sequence: 3 givenname: Bin surname: Zhang fullname: Zhang, Bin organization: China University of Geosciences |
| BookMark | eNp9kM1KxDAUhYOM4Iy68QkC7oSOuU1t2uUgOgqCC3Vd0vS2E2mTmrT-gAsfwWf0SczMuBLxbu7h8p174MzIxFiDhBwBm0OY06HRfg4cUr5DppCkIspTAZOgeQoRpFm8R2bePzLGkiQXU_K-oCvdrL4-Pnt0tXWdNAqpwrYdW-moHAfbyUHSzlbY0gDQ0ZXSUHztpfHaGup1F9BhLUvpsaJBKGuebTtujtJUtHGyX2lFe2cVeq9NQ0ejhwOyW8vW4-HP3icPlxf351fRze3y-nxxEynOgEeiivOSYZbFgGcCGE-qHLHmIPNMyBIFQJlxpkRdsYojqrMkAaVKnqrAScH3yfH2b8h_GtEPxaMdnQmRBWdpGse5gCxQJ1tKOeu9w7rone6keyuAFet2i3W7xabdALNfsNLDpoXBSd3-bYGt5UW3-PbP8-J-eX239XwDzKaTRA |
| CitedBy_id | crossref_primary_10_1007_s10489_024_05747_w crossref_primary_10_1061_JUPDDM_UPENG_5804 |
| Cites_doi | 10.1080/13658816.2021.19312 10.1109/ispass.2019.00016 10.1016/j.apgeog.2019.02.011 10.1016/0377‐2217(87)90080‐4 10.1080/13658816.2019.1687898 10.1016/j.ecolmodel.2023.110394 10.1016/j.landurbplan.2010.03.001 10.1080/15481603.2021.2016240 10.1068/b240247 10.1177/0309132519895305 10.1007/s10586‐017‐0850‐3 10.1016/j.jag.2023.103265 10.1016/S0198‐9715(99)00015‐0 10.1007/s12524‐021‐01420‐8 10.1080/13658816.2015.1039538 10.1111/tgis.12881 10.1080/13658810902984228 10.1109/TMI.2016.2528162 10.1080/13658816.2019.1648813 10.1016/j.jag.2011.12.014 10.14358/PERS.69.9.1043 10.1080/13658816.2014.883079 10.1177/23998083221149018 10.1007/s11434‐016‐1111‐1 10.1080/13658816.2012.762454 10.1016/j.compenvurbsys.2014.11.003 10.1145/1356052.1356053 10.1109/GEOINFORMATICS.2009.5293544 10.1109/IISWC53511.2021.00029 10.1080/13658816.2013.831868 10.1007/BF02837545 10.1016/j.apgeog.2014.06.016 10.1007/s11227‐013‐0913‐z 10.1007/s11434‐012‐5085‐3 10.5194/essd‐2023‐87 10.1002/spe.626 10.1080/13658816.2018.1480783 10.1016/j.habitatint.2009.09.008 10.1080/13658816.2013.869820 10.1109/cvpr.2015.7298594 10.1068/a251175 10.1080/15481603.2021.1883946 10.1109/IPDPS47924.2020.00032 10.1007/s11442‐014‐1082‐6 10.1080/13658816.2017.1390118 10.1007/s11442‐010‐0483‐4 10.1080/13658816.2023.2186412 10.1080/15481603.2020.1829376 10.1080/13658810903107464 10.1016/j.landurbplan.2022.104604 10.2307/143141 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. Copyright © 2024 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: Copyright © 2024 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1111/tgis.13163 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Computer and Information Systems Abstracts – Academic ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1467-9671 |
| EndPage | 968 |
| ExternalDocumentID | 10_1111_tgis_13163 TGIS13163 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China funderid: 42171411 – fundername: the Ministry of education of Humanities and Social Science project funderid: 23YJC630223 – fundername: the Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources funderid: 2023NGCM01 – fundername: the Natural Science Foundation of Hubei Province funderid: 2023AFB022 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A04 AABNI AAESR AAHQN AAMMB AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABSOO ACAHQ ACBKW ACBWZ ACCZN ACGFS ACHQT ACIWK ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEFGJ AEIGN AEIMD AEMOZ AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFKFF AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AHBTC AHQJS AIDQK AIDYY AIQQE AIURR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EAD EAP EAYBP EBA EBO EBR EBS EBU EDH EJD EMK ESX F00 F01 FEDTE G-S G.N G50 GODZA HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM- MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OIG P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 W8V W99 WBKPD WIH WII WMRSR WOHZO WQZ WSUWO WXSBR XG1 ZY4 ZZTAW ~IA ~WP AAYXX BANNL CITATION O8X 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c3013-7d29b0e8821e571034d9eef31a987abe711b830c7fd0d3eec5441ccb36c9eea73 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-1682 |
| IngestDate | Sun Nov 09 08:25:10 EST 2025 Sat Nov 29 05:20:09 EST 2025 Tue Nov 18 22:20:48 EST 2025 Sun Sep 21 06:14:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3013-7d29b0e8821e571034d9eef31a987abe711b830c7fd0d3eec5441ccb36c9eea73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9973-4228 |
| PQID | 3066229718 |
| PQPubID | 45950 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3066229718 crossref_primary_10_1111_tgis_13163 crossref_citationtrail_10_1111_tgis_13163 wiley_primary_10_1111_tgis_13163_TGIS13163 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Transactions in GIS |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2010; 34 1993; 25 2021; 49 2017; 20 2021; 45 1987; 30 2013; 27 2013; 21 2013; 65 2023; 482 2023; 15 2023; 37 2015; 50 2002; 12 1997; 24 2009 2019; 105 1999; 23 2008; 34 2016; 30 2006 2014; 24 2022; 26 2020; 57 2020; 34 2023; 229 2014; 28 2012; 57 2016; 35 2021; 58 2010; 20 2020; 2020 2010; 24 2021 2019 2003; 69 2022; 36 2022; 59 2016; 61 2015 2023; 118 2018; 32 2010; 96 2023; 50 2005; 35 2014; 53 1970; 46 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Chellapilla K. (e_1_2_10_7_1) 2006 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 30 start-page: 494 issue: 3 year: 2016 end-page: 514 article-title: A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU heterogeneous architectures publication-title: International Journal of Geographical Information Science – volume: 30 start-page: 344 issue: 3 year: 1987 end-page: 346 article-title: Cellular dynamics: How individual decisions lead to global urban change publication-title: European Journal of Operational Research – volume: 59 start-page: 71 year: 2022 end-page: 95 article-title: Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: A comparative study of four methods publication-title: GIScience & Remote Sensing – start-page: 79 year: 2019 end-page: 92 article-title: Modeling deep learning accelerator enabled GPUs publication-title: IEEE International Symposium on Performance Analysis of Systems and Software – volume: 34 start-page: 236 issue: 2 year: 2010 end-page: 243 article-title: Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing publication-title: Habitat Internaltional – volume: 26 start-page: 755 year: 2022 end-page: 778 article-title: Tensor‐CA: A high‐performance cellular automata model for land‐use simulation based on vectorization and GPU publication-title: Transactions in GIS – volume: 53 start-page: 160 year: 2014 end-page: 171 article-title: Land‐use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross‐border region scale publication-title: Applied Geography – volume: 46 start-page: 234 issue: 2 year: 1970 end-page: 240 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Economic Geography – volume: 32 start-page: 399 issue: 2 year: 2018 end-page: 424 article-title: A high‐performance cellular automata model for urban simulation based on vectorization and parallel computing technology publication-title: International Journal of Geographical Information Science – volume: 35 start-page: 101 issue: 2 year: 2005 end-page: 121 article-title: Minimizing development and maintenance costs in supporting persistently optimized BLAS publication-title: Software: Practice and Experience – volume: 105 start-page: 15 year: 2019 end-page: 24 article-title: Simulating the urban growth of a predominantly informal Ghanaian city‐region with a cellular automata model: Implications for urban planning and policy publication-title: Applied Geography – volume: 35 start-page: 1285 issue: 5 year: 2016 end-page: 1298 article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Transactions on Medical Imaging – volume: 57 start-page: 924 issue: 7 year: 2020 end-page: 942 article-title: A cellular automata approach of urban sprawl simulation with Bayesian spatially‐varying transformation rules publication-title: GIScience & Remote Sensing – start-page: 1 year: 2015 end-page: 9 article-title: Going deeper with convolutions publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 12 start-page: 275 issue: 3 year: 2002 end-page: 282 article-title: The land‐use and land cover change database and its relative studies in China publication-title: Journal of Geographical Sciences – volume: 20 start-page: 483 issue: 4 year: 2010 end-page: 494 article-title: Spatial patterns and driving forces of land‐use change in China during the early 21st century publication-title: Journal of Geographical Sciences – volume: 28 start-page: 720 issue: 3–4 year: 2014 end-page: 738 article-title: A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence publication-title: International Journal of Geographical Information Science – volume: 28 start-page: 1317 issue: 7 year: 2014 end-page: 1335 article-title: A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules publication-title: International Journal of Geographical Information Science – volume: 49 start-page: 2721 issue: 11 year: 2021 end-page: 2740 article-title: Urban sprawl assessment in eight mid‐sized Indian cities using RS and GIS publication-title: Journal of the Indian Society of Remote Sensing – volume: 57 start-page: 2442 issue: 19 year: 2012 end-page: 2452 article-title: GPU‐CA model for large‐scale land‐use change simulation publication-title: Chinese Science Bulletin – volume: 25 start-page: 1175 issue: 8 year: 1993 end-page: 1199 article-title: Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land‐use patterns publication-title: Environment and Planning A: Economy and Space – volume: 58 start-page: 386 issue: 3 year: 2021 end-page: 404 article-title: A new type of dual‐scale neighborhood based on vectorization for cellular automata models publication-title: GIScience & Remote Sensing – volume: 34 start-page: 1 issue: 3 year: 2008 end-page: 25 article-title: Anatomy of high‐performance matrix multiplication publication-title: ACM Transactions on Mathematical Software – volume: 20 start-page: 2763 issue: 3 year: 2017 end-page: 2777 article-title: Performance analysis and comparison of cellular automata GPU implementations publication-title: Cluster Computing – volume: 23 start-page: 205 issue: 3 year: 1999 end-page: 233 article-title: Modeling urban dynamics through GIS‐based cellular automata publication-title: Computers, Environment and Urban Systems – volume: 15 start-page: 4749 year: 2023 end-page: 4780 article-title: SinoLC‐1: The first 1‐meter resolution national‐scale land‐cover map of China created with the deep learning framework and open‐access data publication-title: Earth System Science Data – volume: 28 start-page: 234 issue: 2 year: 2014 end-page: 255 article-title: Modeling urban land‐use dynamics in a fast developing city using the modified logistic cellular automaton with a patch‐based simulation strategy publication-title: International Journal of Geographical Information Science – volume: 118 year: 2023 article-title: Cross‐resolution national‐scale land‐cover mapping based on noisy label learning: A case study of China publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 69 start-page: 1043 issue: 9 year: 2003 end-page: 1052 article-title: Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning publication-title: Photogrammetric Engineering and Remote Sensing – volume: 34 start-page: 74 year: 2020 end-page: 97 article-title: A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods publication-title: International Journal of Geographical Information Science – volume: 24 start-page: 803 issue: 6 year: 2010 end-page: 820 article-title: Parallel cellular automata for large‐scale urban simulation using load‐balancing techniques publication-title: International Journal of Geographical Information Science – volume: 24 start-page: 695 issue: 5 year: 2010 end-page: 722 article-title: A general‐purpose parallel raster processing programming library test application using a geographic cellular automata model publication-title: International Journal of Geographical Information Science – volume: 37 start-page: 1236 year: 2023 end-page: 1263 article-title: A methodology to quantify the neighborhood decay effect of urban cellular automata models publication-title: International Journal of Geographical Information Science – volume: 50 start-page: 1898 year: 2023 end-page: 1915 article-title: A hybrid modeling approach considering spatial heterogeneity and nonlinearity to discover the transition rules of urban cellular automata models publication-title: Environment and Planning B: Urban Analytics and City Science – volume: 36 start-page: 158 issue: 1 year: 2022 end-page: 187 article-title: The effects of sample size and sample prevalence on cellular automata simulation of urban growth publication-title: International Journal of Geographical Information Science – start-page: 214 year: 2021 end-page: 225 – volume: 24 start-page: 247 issue: 2 year: 1997 end-page: 261 article-title: A self‐modifying cellular automaton model of historical urbanization in the San Francisco Bay area publication-title: Environment and Planning B: Planning & Design – volume: 65 start-page: 614 issue: 2 year: 2013 end-page: 629 article-title: Cellular automata simulation of urban dynamics through GPGPU publication-title: Journal of Suppercomputing – volume: 32 start-page: 2076 issue: 10 year: 2018 end-page: 2097 article-title: Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques publication-title: International Journal of Geographical Information Science – volume: 27 start-page: 1593 issue: 8 year: 2013 end-page: 1611 article-title: Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain publication-title: International Journal of Geographical Information Science – volume: 34 start-page: 924 year: 2020 end-page: 946 article-title: Using a maximum entropy model to optimize the stochastic component of urban cellular automata models publication-title: International Journal of Geographical Information Science – start-page: 350 year: 2009 end-page: 353 article-title: Urban expansion simulation based on constrained artificial neural network cellular automata model publication-title: IEEE – volume: 229 year: 2023 article-title: A size‐adaptive strategy to characterize spatially heterogeneous neighborhood effects in cellular automata simulation of urban growth publication-title: Landscape and Urban Planning – year: 2006 – volume: 2020 start-page: 222 year: 2020 end-page: 233 article-title: Harnessing deep learning via a single building block publication-title: IEEE International Parallel and Distributed Processing Symposium – volume: 61 start-page: 1637 issue: 21 year: 2016 end-page: 1650 article-title: Urban growth models: Progress and perspective publication-title: Science Bulletin – volume: 24 start-page: 195 issue: 2 year: 2014 end-page: 210 article-title: Spatiotemporal characteristics, patterns, and causes of land‐use changes in China since the late 1980s publication-title: Journal of Geographical Sciences – volume: 50 start-page: 53 year: 2015 end-page: 65 article-title: Enhancing the calibration of an urban growth model using a memetic algorithm publication-title: Computers, Environment and Urban Systems – volume: 482 year: 2023 article-title: A novel spatio‐temporal cellular automata model coupling partitioning with CNN‐LSTM to urban land change simulation publication-title: Ecological Modelling – volume: 21 start-page: 265 year: 2013 end-page: 278 article-title: Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 45 start-page: 3 issue: 1 year: 2021 end-page: 24 article-title: Modelling urban change with cellular automata: Contemporary issues and future research directions publication-title: Progress in Human Geography – volume: 96 start-page: 108 issue: 2 year: 2010 end-page: 122 article-title: Cellular automata models for the simulation of real‐world urban processes: A review and analysis publication-title: Landscape and Urban Planning – ident: e_1_2_10_49_1 doi: 10.1080/13658816.2021.19312 – ident: e_1_2_10_33_1 doi: 10.1109/ispass.2019.00016 – ident: e_1_2_10_2_1 doi: 10.1016/j.apgeog.2019.02.011 – ident: e_1_2_10_12_1 doi: 10.1016/0377‐2217(87)90080‐4 – ident: e_1_2_10_39_1 doi: 10.1080/13658816.2019.1687898 – ident: e_1_2_10_51_1 doi: 10.1016/j.ecolmodel.2023.110394 – ident: e_1_2_10_34_1 doi: 10.1016/j.landurbplan.2010.03.001 – ident: e_1_2_10_48_1 doi: 10.1080/15481603.2021.2016240 – ident: e_1_2_10_11_1 doi: 10.1068/b240247 – ident: e_1_2_10_30_1 doi: 10.1177/0309132519895305 – ident: e_1_2_10_32_1 doi: 10.1007/s10586‐017‐0850‐3 – ident: e_1_2_10_31_1 doi: 10.1016/j.jag.2023.103265 – ident: e_1_2_10_5_1 doi: 10.1016/S0198‐9715(99)00015‐0 – ident: e_1_2_10_10_1 doi: 10.1007/s12524‐021‐01420‐8 – ident: e_1_2_10_18_1 doi: 10.1080/13658816.2015.1039538 – ident: e_1_2_10_53_1 doi: 10.1111/tgis.12881 – ident: e_1_2_10_17_1 doi: 10.1080/13658810902984228 – ident: e_1_2_10_35_1 doi: 10.1109/TMI.2016.2528162 – ident: e_1_2_10_13_1 doi: 10.1080/13658816.2019.1648813 – ident: e_1_2_10_3_1 doi: 10.1016/j.jag.2011.12.014 – ident: e_1_2_10_43_1 doi: 10.14358/PERS.69.9.1043 – ident: e_1_2_10_25_1 doi: 10.1080/13658816.2014.883079 – ident: e_1_2_10_45_1 doi: 10.1177/23998083221149018 – ident: e_1_2_10_24_1 doi: 10.1007/s11434‐016‐1111‐1 – ident: e_1_2_10_14_1 doi: 10.1080/13658816.2012.762454 – ident: e_1_2_10_38_1 doi: 10.1016/j.compenvurbsys.2014.11.003 – ident: e_1_2_10_16_1 doi: 10.1145/1356052.1356053 – ident: e_1_2_10_20_1 doi: 10.1109/GEOINFORMATICS.2009.5293544 – ident: e_1_2_10_52_1 doi: 10.1109/IISWC53511.2021.00029 – ident: e_1_2_10_9_1 doi: 10.1080/13658816.2013.831868 – ident: e_1_2_10_21_1 doi: 10.1007/BF02837545 – ident: e_1_2_10_4_1 doi: 10.1016/j.apgeog.2014.06.016 – ident: e_1_2_10_6_1 doi: 10.1007/s11227‐013‐0913‐z – ident: e_1_2_10_22_1 doi: 10.1007/s11434‐012‐5085‐3 – ident: e_1_2_10_26_1 doi: 10.5194/essd‐2023‐87 – ident: e_1_2_10_40_1 doi: 10.1002/spe.626 – ident: e_1_2_10_19_1 doi: 10.1080/13658816.2018.1480783 – ident: e_1_2_10_50_1 doi: 10.1016/j.habitatint.2009.09.008 – ident: e_1_2_10_27_1 doi: 10.1080/13658816.2013.869820 – ident: e_1_2_10_36_1 doi: 10.1109/cvpr.2015.7298594 – ident: e_1_2_10_41_1 doi: 10.1068/a251175 – ident: e_1_2_10_47_1 doi: 10.1080/15481603.2021.1883946 – ident: e_1_2_10_15_1 doi: 10.1109/IPDPS47924.2020.00032 – volume-title: Tenth International Workshop on Frontiers in Handwriting Recognition year: 2006 ident: e_1_2_10_7_1 – ident: e_1_2_10_28_1 doi: 10.1007/s11442‐014‐1082‐6 – ident: e_1_2_10_42_1 doi: 10.1080/13658816.2017.1390118 – ident: e_1_2_10_29_1 doi: 10.1007/s11442‐010‐0483‐4 – ident: e_1_2_10_44_1 doi: 10.1080/13658816.2023.2186412 – ident: e_1_2_10_8_1 doi: 10.1080/15481603.2020.1829376 – ident: e_1_2_10_23_1 doi: 10.1080/13658810903107464 – ident: e_1_2_10_46_1 doi: 10.1016/j.landurbplan.2022.104604 – ident: e_1_2_10_37_1 doi: 10.2307/143141 |
| SSID | ssj0004497 |
| Score | 2.3673055 |
| Snippet | Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 947 |
| SubjectTerms | Application programming interface Artificial neural networks Cellular automata Computer applications Computing time Deep learning Graphics processing units Interfaces Machine learning Neighborhoods Neural networks Simulation Spatial data Urban development Urban sprawl |
| Title | A high‐performance cellular automata model for urban expansion simulation based on convolution and graphic processing unit |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.13163 https://www.proquest.com/docview/3066229718 |
| Volume | 28 |
| WOSCitedRecordID | wos001208275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-9671 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004497 issn: 1361-1682 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CnrxLVarLOhFIZJk06YBL0WtCiLiA7yFfQULmpY2FQUP_gR_o7_EmWTbKIgg3vYweZCd2fl2M_N9ADvEmZ4oHjm-72kn8Ix2pBdqR_PQbWBKiaTKVUvOw4uL5t1ddDkBB6NemIIfYnzgRpGRr9cU4EIOvgR5hhv7fY8jnpiEKeqqQp-eOrpq356XfZFBIa7CGySG3PQtPSlV8pRXf09IJcr8ilXzZNOe_99rLsCcBZmsVXjFIkyYdAlmrN75_csyvLYY8RR_vL33ysYBRof4VJXKxDDrIpIVLNfJYWjAhn0pUmaecfGg8zU26Dxa4S9GiVAzHFAFu_VkJlLN8qd1FOsVzQiYJNkQV5AVuG0f3xyeOlaHwVGcxB9C7UfSNYjFPVNHRMIDHRmTcE9EzVBIE3qebHJXhYl2NTdGka6ZUpI3FNqJkK9CJe2mZg2YrkvEDJIjLIyCeiBlkChFfwJdgRu_JKjC7mgyYmVJykkr4yEebVboe8b596zC9ti2V1Bz_GhVG81pbMNzEHPivfcjzMtV2Mtn75c7xDcnZ9f5aP0vxhsw6yMAKsrKalDJ-kOzCdPqKesM-lvWVT8BUWHwjg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CnrxLVarLuhFIZJk06Y5FrVarEW0Qm8h-wgWNC19iIIHf4K_0V_iTLJ9CCKItz1MHuzO7Hw7OzMfwCH1TI8lDyzXdZTlOVpZwvGVpbhvl9ClBEKmrCV1v9Eot1rBjcnNoVqYrD_EOOBGlpHu12TgFJCesvIBnuxPHI6AYhbmPNQjOwdzZ7fV-_qkMNLL2FV4idiQy67pT0qpPJOnv3ukCcycBqupt6ku__M_V2DJwExWyfRiFWZ0sgYLhvH84XUd3iqMOhV_vn90J6UDjML4lJfKouGgg1g2YilTDkMBNuyJKGH6BbcPirCxfvvJUH8xcoWK4YBy2I0usyhRLP1aW7JuVo6AbpINcQ_ZgPvqefP00jJMDJbkRP_gKzcQtkY07ugiYhLuqUDrmDtRUPYjoX3HEWVuSz9WtuJaS2I2k1LwkkS5yOebkEs6id4CpooCUYPgCAwDr-gJ4cVS0l2gHeHRL_bycDRajVCaNuXElvEYjo4rNJ9hOp95OBjLdrPmHD9KFUaLGhoD7YecOt-7AXrmPByny_fLG8LmRe0uHW3_RXgfFi6b1_WwXmtc7cCii3AoSzIrQG7QG-pdmJfPg3a_t2f09guUkvR1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inrxLdbngl4UIkk2bZKjqFWxlKIWegvZR7CgsbSpKHjwJ_gb_SXOJNtWQQTxtofJg92dnW93Z74PYJ840xPJQ8t1HWV5jlaWcHxlKe7bVQwpoZC5akndbzSCdjtsmtwcqoUp-CFGB27kGfl6TQ6uuyr54uUZ7uyPHI6AYhKmvAoC_RJMnV7XWvVxYaRXqKvwKqkhB67hJ6VUnvHT3yPSGGZ-Bat5tKkt_PM_F2HewEx2XMyLJZjQ6TLMGsXzu5cVeD1mxFT88fbeHZcOMDrGp7xUFg-yR8SyMcuVchgasEFPxCnTz7h80Akb63cejPQXo1CoGDYoh93MZRaniuVf60jWLcoRMEyyAa4hq9Cqnd2eXFhGicGSnOQffOWGwtaIxh1dQUzCPRVqnXAnDgM_Ftp3HBFwW_qJshXXWpKymZSCVyXaxT5fg1L6mOp1YKoiEDUIjsAw9CqeEF4iJd0F2jFu_RKvDAfD0YikoSkntYz7aLhdof6M8v4sw97ItluQc_xotTUc1Mg4aD_ixHzvhhiZy3CYD98vb4huzy9v8tbGX4x3YaZ5Wovql42rTZhzEQ0VOWZbUMp6A70N0_Ip6_R7O2bafgJLMPP5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high%E2%80%90performance+cellular+automata+model+for+urban+expansion+simulation+based+on+convolution+and+graphic+processing+unit&rft.jtitle=Transactions+in+GIS&rft.au=Zeng%2C+Haoran&rft.au=Wang%2C+Haijun&rft.au=Zhang%2C+Bin&rft.date=2024-06-01&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=28&rft.issue=4&rft.spage=947&rft.epage=968&rft_id=info:doi/10.1111%2Ftgis.13163&rft.externalDBID=10.1111%252Ftgis.13163&rft.externalDocID=TGIS13163 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon |