A high‐performance cellular automata model for urban expansion simulation based on convolution and graphic processing unit

Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA simulation, the computational intensity of CA models has increased. Additionally, due to the continuous development of CA modeling research, many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions in GIS Jg. 28; H. 4; S. 947 - 968
Hauptverfasser: Zeng, Haoran, Wang, Haijun, Zhang, Bin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.06.2024
Schlagworte:
ISSN:1361-1682, 1467-9671
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA simulation, the computational intensity of CA models has increased. Additionally, due to the continuous development of CA modeling research, many scholars have made improvements to the models to enhance their simulation accuracy, resulting in an increasing computational complexity of the model. Consequently, the simulation task based on CA requires vast computing time and memory space. In recent years, deep learning (DL) has experienced rapid development. Many open‐source DL frameworks support graphic processing unit (GPU) parallel computing and provide efficient application programming interfaces (APIs) that can be easily called to handle tasks of interest. In this study, a high‐performance CA model was constructed based on the similarity between the neighborhood effect calculation process of the CA model and the convolutional process in a convolutional neural network (CNN). The convolution function in the DL library is used to calculate the neighborhood effect of the CA model to reduce the time and memory consumption of CA‐based simulation. The experimental results show that compared with the conventional CA model, the execution time of the GPU‐convolution‐CA model proposed in this study has been reduced by more than 98%.
AbstractList Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA simulation, the computational intensity of CA models has increased. Additionally, due to the continuous development of CA modeling research, many scholars have made improvements to the models to enhance their simulation accuracy, resulting in an increasing computational complexity of the model. Consequently, the simulation task based on CA requires vast computing time and memory space. In recent years, deep learning (DL) has experienced rapid development. Many open‐source DL frameworks support graphic processing unit (GPU) parallel computing and provide efficient application programming interfaces (APIs) that can be easily called to handle tasks of interest. In this study, a high‐performance CA model was constructed based on the similarity between the neighborhood effect calculation process of the CA model and the convolutional process in a convolutional neural network (CNN). The convolution function in the DL library is used to calculate the neighborhood effect of the CA model to reduce the time and memory consumption of CA‐based simulation. The experimental results show that compared with the conventional CA model, the execution time of the GPU‐convolution‐CA model proposed in this study has been reduced by more than 98%.
Author Wang, Haijun
Zeng, Haoran
Zhang, Bin
Author_xml – sequence: 1
  givenname: Haoran
  orcidid: 0000-0002-9973-4228
  surname: Zeng
  fullname: Zeng, Haoran
  organization: Wuhan University
– sequence: 2
  givenname: Haijun
  surname: Wang
  fullname: Wang, Haijun
  email: landgiswhj@whu.edu.cn
  organization: Ministry of Natural Resources
– sequence: 3
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
  organization: China University of Geosciences
BookMark eNp9kM1KxDAUhYOM4Iy68QkC7oSOuU1t2uUgOgqCC3Vd0vS2E2mTmrT-gAsfwWf0SczMuBLxbu7h8p174MzIxFiDhBwBm0OY06HRfg4cUr5DppCkIspTAZOgeQoRpFm8R2bePzLGkiQXU_K-oCvdrL4-Pnt0tXWdNAqpwrYdW-moHAfbyUHSzlbY0gDQ0ZXSUHztpfHaGup1F9BhLUvpsaJBKGuebTtujtJUtHGyX2lFe2cVeq9NQ0ejhwOyW8vW4-HP3icPlxf351fRze3y-nxxEynOgEeiivOSYZbFgGcCGE-qHLHmIPNMyBIFQJlxpkRdsYojqrMkAaVKnqrAScH3yfH2b8h_GtEPxaMdnQmRBWdpGse5gCxQJ1tKOeu9w7rone6keyuAFet2i3W7xabdALNfsNLDpoXBSd3-bYGt5UW3-PbP8-J-eX239XwDzKaTRA
CitedBy_id crossref_primary_10_1007_s10489_024_05747_w
crossref_primary_10_1061_JUPDDM_UPENG_5804
Cites_doi 10.1080/13658816.2021.19312
10.1109/ispass.2019.00016
10.1016/j.apgeog.2019.02.011
10.1016/0377‐2217(87)90080‐4
10.1080/13658816.2019.1687898
10.1016/j.ecolmodel.2023.110394
10.1016/j.landurbplan.2010.03.001
10.1080/15481603.2021.2016240
10.1068/b240247
10.1177/0309132519895305
10.1007/s10586‐017‐0850‐3
10.1016/j.jag.2023.103265
10.1016/S0198‐9715(99)00015‐0
10.1007/s12524‐021‐01420‐8
10.1080/13658816.2015.1039538
10.1111/tgis.12881
10.1080/13658810902984228
10.1109/TMI.2016.2528162
10.1080/13658816.2019.1648813
10.1016/j.jag.2011.12.014
10.14358/PERS.69.9.1043
10.1080/13658816.2014.883079
10.1177/23998083221149018
10.1007/s11434‐016‐1111‐1
10.1080/13658816.2012.762454
10.1016/j.compenvurbsys.2014.11.003
10.1145/1356052.1356053
10.1109/GEOINFORMATICS.2009.5293544
10.1109/IISWC53511.2021.00029
10.1080/13658816.2013.831868
10.1007/BF02837545
10.1016/j.apgeog.2014.06.016
10.1007/s11227‐013‐0913‐z
10.1007/s11434‐012‐5085‐3
10.5194/essd‐2023‐87
10.1002/spe.626
10.1080/13658816.2018.1480783
10.1016/j.habitatint.2009.09.008
10.1080/13658816.2013.869820
10.1109/cvpr.2015.7298594
10.1068/a251175
10.1080/15481603.2021.1883946
10.1109/IPDPS47924.2020.00032
10.1007/s11442‐014‐1082‐6
10.1080/13658816.2017.1390118
10.1007/s11442‐010‐0483‐4
10.1080/13658816.2023.2186412
10.1080/15481603.2020.1829376
10.1080/13658810903107464
10.1016/j.landurbplan.2022.104604
10.2307/143141
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright © 2024 John Wiley & Sons Ltd
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: Copyright © 2024 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1111/tgis.13163
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Computer and Information Systems Abstracts – Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1467-9671
EndPage 968
ExternalDocumentID 10_1111_tgis_13163
TGIS13163
Genre researchArticle
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: 42171411
– fundername: the Ministry of education of Humanities and Social Science project
  funderid: 23YJC630223
– fundername: the Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources
  funderid: 2023NGCM01
– fundername: the Natural Science Foundation of Hubei Province
  funderid: 2023AFB022
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A04
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFS
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AHBTC
AHQJS
AIDQK
AIDYY
AIQQE
AIURR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EAD
EAP
EAYBP
EBA
EBO
EBR
EBS
EBU
EDH
EJD
EMK
ESX
F00
F01
FEDTE
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM-
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WII
WMRSR
WOHZO
WQZ
WSUWO
WXSBR
XG1
ZY4
ZZTAW
~IA
~WP
AAYXX
BANNL
CITATION
O8X
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3013-7d29b0e8821e571034d9eef31a987abe711b830c7fd0d3eec5441ccb36c9eea73
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-1682
IngestDate Sun Nov 09 08:25:10 EST 2025
Sat Nov 29 05:20:09 EST 2025
Tue Nov 18 22:20:48 EST 2025
Sun Sep 21 06:14:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3013-7d29b0e8821e571034d9eef31a987abe711b830c7fd0d3eec5441ccb36c9eea73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9973-4228
PQID 3066229718
PQPubID 45950
PageCount 22
ParticipantIDs proquest_journals_3066229718
crossref_primary_10_1111_tgis_13163
crossref_citationtrail_10_1111_tgis_13163
wiley_primary_10_1111_tgis_13163_TGIS13163
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transactions in GIS
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 34
1993; 25
2021; 49
2017; 20
2021; 45
1987; 30
2013; 27
2013; 21
2013; 65
2023; 482
2023; 15
2023; 37
2015; 50
2002; 12
1997; 24
2009
2019; 105
1999; 23
2008; 34
2016; 30
2006
2014; 24
2022; 26
2020; 57
2020; 34
2023; 229
2014; 28
2012; 57
2016; 35
2021; 58
2010; 20
2020; 2020
2010; 24
2021
2019
2003; 69
2022; 36
2022; 59
2016; 61
2015
2023; 118
2018; 32
2010; 96
2023; 50
2005; 35
2014; 53
1970; 46
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Chellapilla K. (e_1_2_10_7_1) 2006
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 30
  start-page: 494
  issue: 3
  year: 2016
  end-page: 514
  article-title: A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU heterogeneous architectures
  publication-title: International Journal of Geographical Information Science
– volume: 30
  start-page: 344
  issue: 3
  year: 1987
  end-page: 346
  article-title: Cellular dynamics: How individual decisions lead to global urban change
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 71
  year: 2022
  end-page: 95
  article-title: Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: A comparative study of four methods
  publication-title: GIScience & Remote Sensing
– start-page: 79
  year: 2019
  end-page: 92
  article-title: Modeling deep learning accelerator enabled GPUs
  publication-title: IEEE International Symposium on Performance Analysis of Systems and Software
– volume: 34
  start-page: 236
  issue: 2
  year: 2010
  end-page: 243
  article-title: Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing
  publication-title: Habitat Internaltional
– volume: 26
  start-page: 755
  year: 2022
  end-page: 778
  article-title: Tensor‐CA: A high‐performance cellular automata model for land‐use simulation based on vectorization and GPU
  publication-title: Transactions in GIS
– volume: 53
  start-page: 160
  year: 2014
  end-page: 171
  article-title: Land‐use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross‐border region scale
  publication-title: Applied Geography
– volume: 46
  start-page: 234
  issue: 2
  year: 1970
  end-page: 240
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Economic Geography
– volume: 32
  start-page: 399
  issue: 2
  year: 2018
  end-page: 424
  article-title: A high‐performance cellular automata model for urban simulation based on vectorization and parallel computing technology
  publication-title: International Journal of Geographical Information Science
– volume: 35
  start-page: 101
  issue: 2
  year: 2005
  end-page: 121
  article-title: Minimizing development and maintenance costs in supporting persistently optimized BLAS
  publication-title: Software: Practice and Experience
– volume: 105
  start-page: 15
  year: 2019
  end-page: 24
  article-title: Simulating the urban growth of a predominantly informal Ghanaian city‐region with a cellular automata model: Implications for urban planning and policy
  publication-title: Applied Geography
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  end-page: 1298
  article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Transactions on Medical Imaging
– volume: 57
  start-page: 924
  issue: 7
  year: 2020
  end-page: 942
  article-title: A cellular automata approach of urban sprawl simulation with Bayesian spatially‐varying transformation rules
  publication-title: GIScience & Remote Sensing
– start-page: 1
  year: 2015
  end-page: 9
  article-title: Going deeper with convolutions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 12
  start-page: 275
  issue: 3
  year: 2002
  end-page: 282
  article-title: The land‐use and land cover change database and its relative studies in China
  publication-title: Journal of Geographical Sciences
– volume: 20
  start-page: 483
  issue: 4
  year: 2010
  end-page: 494
  article-title: Spatial patterns and driving forces of land‐use change in China during the early 21st century
  publication-title: Journal of Geographical Sciences
– volume: 28
  start-page: 720
  issue: 3–4
  year: 2014
  end-page: 738
  article-title: A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence
  publication-title: International Journal of Geographical Information Science
– volume: 28
  start-page: 1317
  issue: 7
  year: 2014
  end-page: 1335
  article-title: A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules
  publication-title: International Journal of Geographical Information Science
– volume: 49
  start-page: 2721
  issue: 11
  year: 2021
  end-page: 2740
  article-title: Urban sprawl assessment in eight mid‐sized Indian cities using RS and GIS
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 57
  start-page: 2442
  issue: 19
  year: 2012
  end-page: 2452
  article-title: GPU‐CA model for large‐scale land‐use change simulation
  publication-title: Chinese Science Bulletin
– volume: 25
  start-page: 1175
  issue: 8
  year: 1993
  end-page: 1199
  article-title: Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land‐use patterns
  publication-title: Environment and Planning A: Economy and Space
– volume: 58
  start-page: 386
  issue: 3
  year: 2021
  end-page: 404
  article-title: A new type of dual‐scale neighborhood based on vectorization for cellular automata models
  publication-title: GIScience & Remote Sensing
– volume: 34
  start-page: 1
  issue: 3
  year: 2008
  end-page: 25
  article-title: Anatomy of high‐performance matrix multiplication
  publication-title: ACM Transactions on Mathematical Software
– volume: 20
  start-page: 2763
  issue: 3
  year: 2017
  end-page: 2777
  article-title: Performance analysis and comparison of cellular automata GPU implementations
  publication-title: Cluster Computing
– volume: 23
  start-page: 205
  issue: 3
  year: 1999
  end-page: 233
  article-title: Modeling urban dynamics through GIS‐based cellular automata
  publication-title: Computers, Environment and Urban Systems
– volume: 15
  start-page: 4749
  year: 2023
  end-page: 4780
  article-title: SinoLC‐1: The first 1‐meter resolution national‐scale land‐cover map of China created with the deep learning framework and open‐access data
  publication-title: Earth System Science Data
– volume: 28
  start-page: 234
  issue: 2
  year: 2014
  end-page: 255
  article-title: Modeling urban land‐use dynamics in a fast developing city using the modified logistic cellular automaton with a patch‐based simulation strategy
  publication-title: International Journal of Geographical Information Science
– volume: 118
  year: 2023
  article-title: Cross‐resolution national‐scale land‐cover mapping based on noisy label learning: A case study of China
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 69
  start-page: 1043
  issue: 9
  year: 2003
  end-page: 1052
  article-title: Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 34
  start-page: 74
  year: 2020
  end-page: 97
  article-title: A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods
  publication-title: International Journal of Geographical Information Science
– volume: 24
  start-page: 803
  issue: 6
  year: 2010
  end-page: 820
  article-title: Parallel cellular automata for large‐scale urban simulation using load‐balancing techniques
  publication-title: International Journal of Geographical Information Science
– volume: 24
  start-page: 695
  issue: 5
  year: 2010
  end-page: 722
  article-title: A general‐purpose parallel raster processing programming library test application using a geographic cellular automata model
  publication-title: International Journal of Geographical Information Science
– volume: 37
  start-page: 1236
  year: 2023
  end-page: 1263
  article-title: A methodology to quantify the neighborhood decay effect of urban cellular automata models
  publication-title: International Journal of Geographical Information Science
– volume: 50
  start-page: 1898
  year: 2023
  end-page: 1915
  article-title: A hybrid modeling approach considering spatial heterogeneity and nonlinearity to discover the transition rules of urban cellular automata models
  publication-title: Environment and Planning B: Urban Analytics and City Science
– volume: 36
  start-page: 158
  issue: 1
  year: 2022
  end-page: 187
  article-title: The effects of sample size and sample prevalence on cellular automata simulation of urban growth
  publication-title: International Journal of Geographical Information Science
– start-page: 214
  year: 2021
  end-page: 225
– volume: 24
  start-page: 247
  issue: 2
  year: 1997
  end-page: 261
  article-title: A self‐modifying cellular automaton model of historical urbanization in the San Francisco Bay area
  publication-title: Environment and Planning B: Planning & Design
– volume: 65
  start-page: 614
  issue: 2
  year: 2013
  end-page: 629
  article-title: Cellular automata simulation of urban dynamics through GPGPU
  publication-title: Journal of Suppercomputing
– volume: 32
  start-page: 2076
  issue: 10
  year: 2018
  end-page: 2097
  article-title: Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques
  publication-title: International Journal of Geographical Information Science
– volume: 27
  start-page: 1593
  issue: 8
  year: 2013
  end-page: 1611
  article-title: Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain
  publication-title: International Journal of Geographical Information Science
– volume: 34
  start-page: 924
  year: 2020
  end-page: 946
  article-title: Using a maximum entropy model to optimize the stochastic component of urban cellular automata models
  publication-title: International Journal of Geographical Information Science
– start-page: 350
  year: 2009
  end-page: 353
  article-title: Urban expansion simulation based on constrained artificial neural network cellular automata model
  publication-title: IEEE
– volume: 229
  year: 2023
  article-title: A size‐adaptive strategy to characterize spatially heterogeneous neighborhood effects in cellular automata simulation of urban growth
  publication-title: Landscape and Urban Planning
– year: 2006
– volume: 2020
  start-page: 222
  year: 2020
  end-page: 233
  article-title: Harnessing deep learning via a single building block
  publication-title: IEEE International Parallel and Distributed Processing Symposium
– volume: 61
  start-page: 1637
  issue: 21
  year: 2016
  end-page: 1650
  article-title: Urban growth models: Progress and perspective
  publication-title: Science Bulletin
– volume: 24
  start-page: 195
  issue: 2
  year: 2014
  end-page: 210
  article-title: Spatiotemporal characteristics, patterns, and causes of land‐use changes in China since the late 1980s
  publication-title: Journal of Geographical Sciences
– volume: 50
  start-page: 53
  year: 2015
  end-page: 65
  article-title: Enhancing the calibration of an urban growth model using a memetic algorithm
  publication-title: Computers, Environment and Urban Systems
– volume: 482
  year: 2023
  article-title: A novel spatio‐temporal cellular automata model coupling partitioning with CNN‐LSTM to urban land change simulation
  publication-title: Ecological Modelling
– volume: 21
  start-page: 265
  year: 2013
  end-page: 278
  article-title: Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 45
  start-page: 3
  issue: 1
  year: 2021
  end-page: 24
  article-title: Modelling urban change with cellular automata: Contemporary issues and future research directions
  publication-title: Progress in Human Geography
– volume: 96
  start-page: 108
  issue: 2
  year: 2010
  end-page: 122
  article-title: Cellular automata models for the simulation of real‐world urban processes: A review and analysis
  publication-title: Landscape and Urban Planning
– ident: e_1_2_10_49_1
  doi: 10.1080/13658816.2021.19312
– ident: e_1_2_10_33_1
  doi: 10.1109/ispass.2019.00016
– ident: e_1_2_10_2_1
  doi: 10.1016/j.apgeog.2019.02.011
– ident: e_1_2_10_12_1
  doi: 10.1016/0377‐2217(87)90080‐4
– ident: e_1_2_10_39_1
  doi: 10.1080/13658816.2019.1687898
– ident: e_1_2_10_51_1
  doi: 10.1016/j.ecolmodel.2023.110394
– ident: e_1_2_10_34_1
  doi: 10.1016/j.landurbplan.2010.03.001
– ident: e_1_2_10_48_1
  doi: 10.1080/15481603.2021.2016240
– ident: e_1_2_10_11_1
  doi: 10.1068/b240247
– ident: e_1_2_10_30_1
  doi: 10.1177/0309132519895305
– ident: e_1_2_10_32_1
  doi: 10.1007/s10586‐017‐0850‐3
– ident: e_1_2_10_31_1
  doi: 10.1016/j.jag.2023.103265
– ident: e_1_2_10_5_1
  doi: 10.1016/S0198‐9715(99)00015‐0
– ident: e_1_2_10_10_1
  doi: 10.1007/s12524‐021‐01420‐8
– ident: e_1_2_10_18_1
  doi: 10.1080/13658816.2015.1039538
– ident: e_1_2_10_53_1
  doi: 10.1111/tgis.12881
– ident: e_1_2_10_17_1
  doi: 10.1080/13658810902984228
– ident: e_1_2_10_35_1
  doi: 10.1109/TMI.2016.2528162
– ident: e_1_2_10_13_1
  doi: 10.1080/13658816.2019.1648813
– ident: e_1_2_10_3_1
  doi: 10.1016/j.jag.2011.12.014
– ident: e_1_2_10_43_1
  doi: 10.14358/PERS.69.9.1043
– ident: e_1_2_10_25_1
  doi: 10.1080/13658816.2014.883079
– ident: e_1_2_10_45_1
  doi: 10.1177/23998083221149018
– ident: e_1_2_10_24_1
  doi: 10.1007/s11434‐016‐1111‐1
– ident: e_1_2_10_14_1
  doi: 10.1080/13658816.2012.762454
– ident: e_1_2_10_38_1
  doi: 10.1016/j.compenvurbsys.2014.11.003
– ident: e_1_2_10_16_1
  doi: 10.1145/1356052.1356053
– ident: e_1_2_10_20_1
  doi: 10.1109/GEOINFORMATICS.2009.5293544
– ident: e_1_2_10_52_1
  doi: 10.1109/IISWC53511.2021.00029
– ident: e_1_2_10_9_1
  doi: 10.1080/13658816.2013.831868
– ident: e_1_2_10_21_1
  doi: 10.1007/BF02837545
– ident: e_1_2_10_4_1
  doi: 10.1016/j.apgeog.2014.06.016
– ident: e_1_2_10_6_1
  doi: 10.1007/s11227‐013‐0913‐z
– ident: e_1_2_10_22_1
  doi: 10.1007/s11434‐012‐5085‐3
– ident: e_1_2_10_26_1
  doi: 10.5194/essd‐2023‐87
– ident: e_1_2_10_40_1
  doi: 10.1002/spe.626
– ident: e_1_2_10_19_1
  doi: 10.1080/13658816.2018.1480783
– ident: e_1_2_10_50_1
  doi: 10.1016/j.habitatint.2009.09.008
– ident: e_1_2_10_27_1
  doi: 10.1080/13658816.2013.869820
– ident: e_1_2_10_36_1
  doi: 10.1109/cvpr.2015.7298594
– ident: e_1_2_10_41_1
  doi: 10.1068/a251175
– ident: e_1_2_10_47_1
  doi: 10.1080/15481603.2021.1883946
– ident: e_1_2_10_15_1
  doi: 10.1109/IPDPS47924.2020.00032
– volume-title: Tenth International Workshop on Frontiers in Handwriting Recognition
  year: 2006
  ident: e_1_2_10_7_1
– ident: e_1_2_10_28_1
  doi: 10.1007/s11442‐014‐1082‐6
– ident: e_1_2_10_42_1
  doi: 10.1080/13658816.2017.1390118
– ident: e_1_2_10_29_1
  doi: 10.1007/s11442‐010‐0483‐4
– ident: e_1_2_10_44_1
  doi: 10.1080/13658816.2023.2186412
– ident: e_1_2_10_8_1
  doi: 10.1080/15481603.2020.1829376
– ident: e_1_2_10_23_1
  doi: 10.1080/13658810903107464
– ident: e_1_2_10_46_1
  doi: 10.1016/j.landurbplan.2022.104604
– ident: e_1_2_10_37_1
  doi: 10.2307/143141
SSID ssj0004497
Score 2.3673055
Snippet Cellular automata (CA) models are effective tools for simulating future urban expansion. With the widespread use of high‐resolution geospatial data for CA...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 947
SubjectTerms Application programming interface
Artificial neural networks
Cellular automata
Computer applications
Computing time
Deep learning
Graphics processing units
Interfaces
Machine learning
Neighborhoods
Neural networks
Simulation
Spatial data
Urban development
Urban sprawl
Title A high‐performance cellular automata model for urban expansion simulation based on convolution and graphic processing unit
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.13163
https://www.proquest.com/docview/3066229718
Volume 28
WOSCitedRecordID wos001208275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004497
  issn: 1361-1682
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CnrxLVarLOhFIZJk06YBL0WtCiLiA7yFfQULmpY2FQUP_gR_o7_EmWTbKIgg3vYweZCd2fl2M_N9ADvEmZ4oHjm-72kn8Ix2pBdqR_PQbWBKiaTKVUvOw4uL5t1ddDkBB6NemIIfYnzgRpGRr9cU4EIOvgR5hhv7fY8jnpiEKeqqQp-eOrpq356XfZFBIa7CGySG3PQtPSlV8pRXf09IJcr8ilXzZNOe_99rLsCcBZmsVXjFIkyYdAlmrN75_csyvLYY8RR_vL33ysYBRof4VJXKxDDrIpIVLNfJYWjAhn0pUmaecfGg8zU26Dxa4S9GiVAzHFAFu_VkJlLN8qd1FOsVzQiYJNkQV5AVuG0f3xyeOlaHwVGcxB9C7UfSNYjFPVNHRMIDHRmTcE9EzVBIE3qebHJXhYl2NTdGka6ZUpI3FNqJkK9CJe2mZg2YrkvEDJIjLIyCeiBlkChFfwJdgRu_JKjC7mgyYmVJykkr4yEebVboe8b596zC9ti2V1Bz_GhVG81pbMNzEHPivfcjzMtV2Mtn75c7xDcnZ9f5aP0vxhsw6yMAKsrKalDJ-kOzCdPqKesM-lvWVT8BUWHwjg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CnrxLVarLuhFIZJk06Y5FrVarEW0Qm8h-wgWNC19iIIHf4K_0V_iTLJ9CCKItz1MHuzO7Hw7OzMfwCH1TI8lDyzXdZTlOVpZwvGVpbhvl9ClBEKmrCV1v9Eot1rBjcnNoVqYrD_EOOBGlpHu12TgFJCesvIBnuxPHI6AYhbmPNQjOwdzZ7fV-_qkMNLL2FV4idiQy67pT0qpPJOnv3ukCcycBqupt6ku__M_V2DJwExWyfRiFWZ0sgYLhvH84XUd3iqMOhV_vn90J6UDjML4lJfKouGgg1g2YilTDkMBNuyJKGH6BbcPirCxfvvJUH8xcoWK4YBy2I0usyhRLP1aW7JuVo6AbpINcQ_ZgPvqefP00jJMDJbkRP_gKzcQtkY07ugiYhLuqUDrmDtRUPYjoX3HEWVuSz9WtuJaS2I2k1LwkkS5yOebkEs6id4CpooCUYPgCAwDr-gJ4cVS0l2gHeHRL_bycDRajVCaNuXElvEYjo4rNJ9hOp95OBjLdrPmHD9KFUaLGhoD7YecOt-7AXrmPByny_fLG8LmRe0uHW3_RXgfFi6b1_WwXmtc7cCii3AoSzIrQG7QG-pdmJfPg3a_t2f09guUkvR1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inrxLdbngl4UIkk2bZKjqFWxlKIWegvZR7CgsbSpKHjwJ_gb_SXOJNtWQQTxtofJg92dnW93Z74PYJ840xPJQ8t1HWV5jlaWcHxlKe7bVQwpoZC5akndbzSCdjtsmtwcqoUp-CFGB27kGfl6TQ6uuyr54uUZ7uyPHI6AYhKmvAoC_RJMnV7XWvVxYaRXqKvwKqkhB67hJ6VUnvHT3yPSGGZ-Bat5tKkt_PM_F2HewEx2XMyLJZjQ6TLMGsXzu5cVeD1mxFT88fbeHZcOMDrGp7xUFg-yR8SyMcuVchgasEFPxCnTz7h80Akb63cejPQXo1CoGDYoh93MZRaniuVf60jWLcoRMEyyAa4hq9Cqnd2eXFhGicGSnOQffOWGwtaIxh1dQUzCPRVqnXAnDgM_Ftp3HBFwW_qJshXXWpKymZSCVyXaxT5fg1L6mOp1YKoiEDUIjsAw9CqeEF4iJd0F2jFu_RKvDAfD0YikoSkntYz7aLhdof6M8v4sw97ItluQc_xotTUc1Mg4aD_ixHzvhhiZy3CYD98vb4huzy9v8tbGX4x3YaZ5Wovql42rTZhzEQ0VOWZbUMp6A70N0_Ip6_R7O2bafgJLMPP5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high%E2%80%90performance+cellular+automata+model+for+urban+expansion+simulation+based+on+convolution+and+graphic+processing+unit&rft.jtitle=Transactions+in+GIS&rft.au=Zeng%2C+Haoran&rft.au=Wang%2C+Haijun&rft.au=Zhang%2C+Bin&rft.date=2024-06-01&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=28&rft.issue=4&rft.spage=947&rft.epage=968&rft_id=info:doi/10.1111%2Ftgis.13163&rft.externalDBID=10.1111%252Ftgis.13163&rft.externalDocID=TGIS13163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon