Drainage Pattern Recognition Method Using Graph Convolutional Networks Combined With Three‐Dimensional Elevation Features

ABSTRACT Drainage pattern recognition plays a crucial role in flood management, hydraulic engineering site selection, and biodiversity maintenance. Although deep learning methods have been widely employed in drainage pattern recognition in recent years, most research has focused on two‐dimensional f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Transactions in GIS Ročník 29; číslo 1
Hlavní autori: Qiang, Bo, Liu, Tao, Du, Ping, Li, Pengpeng, Wang, Wenning, Xu, Shenglu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.02.2025
Predmet:
ISSN:1361-1682, 1467-9671
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT Drainage pattern recognition plays a crucial role in flood management, hydraulic engineering site selection, and biodiversity maintenance. Although deep learning methods have been widely employed in drainage pattern recognition in recent years, most research has focused on two‐dimensional features, with limited attention given to the impact of three‐dimensional elevation features. This study, therefore, introduces a graph convolutional network (GCN) approach that incorporates three‐dimensional elevation features. This method integrates three‐dimensional elevation features into the feature system of deep learning‐based drainage pattern recognition for the first time, combining two‐dimensional geometric and topological features to comprehensively capture variations in both vertical and planar morphology of drainage patterns. Specifically, this study extracts representative drainage pattern samples (e.g., dendritic, skeleton, parallel, and fan) from OSM and HydroSHEDS river vector data. Six features are designed based on the micro‐to‐macro processes involved in drainage pattern development, and a novel drainage pattern feature description index is proposed. A GCN model architecture based on the first‐order Chebyshev polynomial is then developed to extract both global and local information of drainage patterns under three‐dimensional elevation features. Experimental results demonstrate that the recognition accuracy of this method achieves 90% on the test dataset, with precision, recall, and F1 scores improving by at least 3% compared to methods such as support vector machines (SVM) and GraphSAGE. This suggests that the feature description index incorporating three‐dimensional elevation features more comprehensively reflects the development process of drainage patterns, thereby improving recognition accuracy and offering new methods and perspectives for drainage pattern research.
AbstractList Drainage pattern recognition plays a crucial role in flood management, hydraulic engineering site selection, and biodiversity maintenance. Although deep learning methods have been widely employed in drainage pattern recognition in recent years, most research has focused on two‐dimensional features, with limited attention given to the impact of three‐dimensional elevation features. This study, therefore, introduces a graph convolutional network (GCN) approach that incorporates three‐dimensional elevation features. This method integrates three‐dimensional elevation features into the feature system of deep learning‐based drainage pattern recognition for the first time, combining two‐dimensional geometric and topological features to comprehensively capture variations in both vertical and planar morphology of drainage patterns. Specifically, this study extracts representative drainage pattern samples (e.g., dendritic, skeleton, parallel, and fan) from OSM and HydroSHEDS river vector data. Six features are designed based on the micro‐to‐macro processes involved in drainage pattern development, and a novel drainage pattern feature description index is proposed. A GCN model architecture based on the first‐order Chebyshev polynomial is then developed to extract both global and local information of drainage patterns under three‐dimensional elevation features. Experimental results demonstrate that the recognition accuracy of this method achieves 90% on the test dataset, with precision, recall, and F1 scores improving by at least 3% compared to methods such as support vector machines (SVM) and GraphSAGE. This suggests that the feature description index incorporating three‐dimensional elevation features more comprehensively reflects the development process of drainage patterns, thereby improving recognition accuracy and offering new methods and perspectives for drainage pattern research.
ABSTRACT Drainage pattern recognition plays a crucial role in flood management, hydraulic engineering site selection, and biodiversity maintenance. Although deep learning methods have been widely employed in drainage pattern recognition in recent years, most research has focused on two‐dimensional features, with limited attention given to the impact of three‐dimensional elevation features. This study, therefore, introduces a graph convolutional network (GCN) approach that incorporates three‐dimensional elevation features. This method integrates three‐dimensional elevation features into the feature system of deep learning‐based drainage pattern recognition for the first time, combining two‐dimensional geometric and topological features to comprehensively capture variations in both vertical and planar morphology of drainage patterns. Specifically, this study extracts representative drainage pattern samples (e.g., dendritic, skeleton, parallel, and fan) from OSM and HydroSHEDS river vector data. Six features are designed based on the micro‐to‐macro processes involved in drainage pattern development, and a novel drainage pattern feature description index is proposed. A GCN model architecture based on the first‐order Chebyshev polynomial is then developed to extract both global and local information of drainage patterns under three‐dimensional elevation features. Experimental results demonstrate that the recognition accuracy of this method achieves 90% on the test dataset, with precision, recall, and F1 scores improving by at least 3% compared to methods such as support vector machines (SVM) and GraphSAGE. This suggests that the feature description index incorporating three‐dimensional elevation features more comprehensively reflects the development process of drainage patterns, thereby improving recognition accuracy and offering new methods and perspectives for drainage pattern research.
Author Du, Ping
Liu, Tao
Li, Pengpeng
Qiang, Bo
Wang, Wenning
Xu, Shenglu
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0009-0007-6733-2455
  surname: Qiang
  fullname: Qiang, Bo
  organization: Key Laboratory of Science and Technology in Surveying & Mapping
– sequence: 2
  givenname: Tao
  orcidid: 0000-0003-0202-0032
  surname: Liu
  fullname: Liu, Tao
  email: liutao@lzjtu.edu.cn
  organization: Key Laboratory of Science and Technology in Surveying & Mapping
– sequence: 3
  givenname: Ping
  surname: Du
  fullname: Du, Ping
  organization: Key Laboratory of Science and Technology in Surveying & Mapping
– sequence: 4
  givenname: Pengpeng
  surname: Li
  fullname: Li, Pengpeng
  organization: Key Laboratory of Science and Technology in Surveying & Mapping
– sequence: 5
  givenname: Wenning
  surname: Wang
  fullname: Wang, Wenning
  organization: Gansu Agricultural University
– sequence: 6
  givenname: Shenglu
  surname: Xu
  fullname: Xu, Shenglu
  organization: Key Laboratory of Science and Technology in Surveying & Mapping
BookMark eNp9kM9Kw0AQxhdRUKsXn2DBm5C6m6S7yVFqWwv-Qysew2YzSVfT3bq7qYgXH8Fn9ElMG08iDgwzzPy-Yfj20bY2GhA6oqRP2zj1lXJ9TggJt9AejRkPUsbpdttHjAaUJeEu2nfuqSXiOOV76P3cCqVFBfhWeA9W4zuQptLKK6PxFfi5KfCDU7rCEyuWczw0emXqZr0WNb4G_2rss2vHi1xpKPCj8nM8m1uAr4_Pc7UA7Tp0VMNKbK6OQfjGgjtAO6WoHRz-1B56GI9mw4vg8mYyHZ5dBjIiNAx4lLOE00EyKDiJRJyUlBchI6UcpJKknIs0j5MwIRIoE4QzSVhehInkvORFPoh66Li7u7TmpQHnsyfT2PYnl0WU0zhcZ0uRjpLWOGehzKTym4d9a1GdUZKtLc7WFmcbi1vJyS_J0qqFsG9_w7SDX1UNb_-Q2Wwyve803-eNkNY
CitedBy_id crossref_primary_10_1016_j_jag_2025_104742
Cites_doi 10.1007/s41651‐024‐00181‐5
10.11947/j.AGCS.2024.20230305
10.1080/13658816.2021.2024195
10.1017/S002211200100427X
10.1016/j.eswa.2022.118639
10.1080/13658816.2016.1205193
10.1016/j.aiopen.2021.01.001
10.1016/j.iswcr.2016.03.001
10.4324/9780203070123
10.4324/9780203371084
10.5194/isprsarchives‐XXXIX‐B2‐29‐2012
10.1016/S0309‐1708(02)00164‐1
10.1029/2022WR033681
10.1111/j.1466‐8238.2009.00486.x
10.1016/j.isprsjprs.2019.02.010
10.1306/5D25C26D‐16C1‐11D7‐8645000102C1865D
10.1016/j.jenvp.2007.07.001
10.1007/s41651‐024‐00172‐6
10.1016/j.patcog.2019.06.012
10.1080/17538947.2023.2172224
10.1029/98WR00983
10.1029/2008WR007124
10.1016/j.jag.2022.102696
10.1038/s43247‐022‐00663‐8
10.1029/2007JF000781
10.1007/s41651‐024‐00174‐4
10.1016/j.jag.2004.06.003
10.1080/10106049.2024.2370322
10.1103/PhysRevE.63.016117
10.1080/10095020.2023.2264337
10.1111/tgis.13041
10.1080/13658816.2013.802794
10.1016/j.geomorph.2020.107045
10.1029/93WR02279
10.1016/j.jhydrol.2019.02.041
10.1016/S0169‐555X(01)00036‐8
10.1130/0091‐7613(1987)15<813:EORSOD>2.0.CO;2
10.1016/j.geomorph.2011.05.014
10.1109/CVPR.2017.649
10.1130/G45608.1
10.1038/s41598‐021‐85254‐x
10.1016/j.acha.2010.04.005
10.13203/j.whugis20200022
10.1186/s40649‐019‐0069‐y
10.1029/RS023i003p00471
10.1080/17445647.2020.1838353
10.1016/j.earscirev.2022.104191
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1111/tgis.70002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Computer and Information Systems Abstracts – Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1467-9671
EndPage n/a
ExternalDocumentID 10_1111_tgis_70002
TGIS70002
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42261076
– fundername: Key Research and Development Project of Lanzhou JiaoTong University
  funderid: LZJTU‐ZDYF2301
– fundername: Major Technology Project of Gansu Province
  funderid: 22ZD6GA010
– fundername: Gansu Youth Science and Technology Fund
  funderid: 24JRRA275
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A04
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFS
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AHBTC
AHQJS
AIDQK
AIDYY
AIURR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EAD
EAP
EAYBP
EBA
EBO
EBR
EBS
EBU
EDH
EJD
EMK
ESX
F00
F01
FEDTE
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM-
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WII
WMRSR
WOHZO
WQZ
WSUWO
WXSBR
XG1
ZY4
ZZTAW
~IA
~WP
AAYXX
AIQQE
BANNL
CITATION
O8X
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3012-73b6871585d703a48f17d260fc59c0977a9b48280ce16a076c06bd28c77f7db53
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409513000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-1682
IngestDate Sat Aug 23 12:35:34 EDT 2025
Sat Nov 29 07:42:42 EST 2025
Tue Nov 18 20:49:26 EST 2025
Wed Aug 20 07:26:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3012-73b6871585d703a48f17d260fc59c0977a9b48280ce16a076c06bd28c77f7db53
Notes Funding
This work was supported by National Natural Science Foundation of China: 42261076, Key Research and Development Project of Lanzhou JiaoTong University: LZJTU‐ZDYF2301, Major Technology Project of Gansu Province: 22ZD6GA010 and Gansu Youth Science and Technology Fund: 24JRRA275.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0202-0032
0009-0007-6733-2455
PQID 3171427142
PQPubID 45950
PageCount 20
ParticipantIDs proquest_journals_3171427142
crossref_citationtrail_10_1111_tgis_70002
crossref_primary_10_1111_tgis_70002
wiley_primary_10_1111_tgis_70002_TGIS70002
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transactions in GIS
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 45
2022; 233
2019; 95
2019; 6
2013; 27
2023; 4
2010; 19
2023; 59
2023; 16
2000; 63
1988; 54
2011; 30
2020; 16
2007
2004; 6
2024; 53
2012; XXXIX‐B2
2024; 39
2001; 40
2011; 132
1987; 15
2016; 4
2017; 31
2021; 11
2020; 1
2024; 8
2023; 27
2023; 211
1967; 51
2019; 47
2003; 26
2022; 36
2017
2016
2020; 354
2020; 45
2008; 113
2013
2001; 438
2024; 27
2019; 150
2022; 107
1994; 30
1998; 34
2019; 572
2007; 27
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 34
  start-page: 1809
  issue: 7
  year: 1998
  end-page: 1818
  article-title: Energy Dissipation Theories and Optimal Channel Characteristics of River Networks
  publication-title: Water Resources Research
– volume: 95
  start-page: 308
  year: 2019
  end-page: 318
  article-title: Learning Graph Structure via Graph Convolutional Networks
  publication-title: Pattern Recognition
– volume: 150
  start-page: 259
  year: 2019
  end-page: 273
  article-title: A Graph Convolutional Neural Network for Classification of Building Patterns Using Spatial Vector Data
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 15
  start-page: 813
  issue: 9
  year: 1987
  end-page: 816
  article-title: Effect of Regional Slope on Drainage Networks
  publication-title: Geology
– volume: XXXIX‐B2
  start-page: 29
  year: 2012
  end-page: 34
  article-title: A Study of Variables Characterizing Drainage Patterns in River Networks
  publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 30
  start-page: 161
  issue: 2
  year: 1994
  end-page: 174
  article-title: A Numerical Approach to the Analysis and Classification of Channel Network Patterns
  publication-title: Water Resources Research
– volume: 27
  start-page: 293
  issue: 4
  year: 2007
  end-page: 309
  article-title: Place Experience, Gestalt, and the Human–Nature Relationship
  publication-title: Journal of Environmental Psychology
– volume: 27
  start-page: 752
  issue: 3
  year: 2023
  end-page: 776
  article-title: Identification of Drainage Patterns Using a Graph Convolutional Neural Network
  publication-title: Transactions in GIS
– year: 2007
– volume: 19
  start-page: 27
  issue: 1
  year: 2010
  end-page: 39
  article-title: Land Use and Climatic Factors Structure Regional Patterns in Soil Microbial Communities
  publication-title: Global Ecology and Biogeography
– volume: 354
  year: 2020
  article-title: Deep Learning‐Based Approach for Landform Classification From Integrated Data Sources of Digital Elevation Model and Imagery
  publication-title: Geomorphology
– volume: 59
  start-page: e2022W
  issue: 7
  year: 2023
  end-page: e33681W
  article-title: Hydrological Object‐Based Flow Direction Model for Constructing a Lake‐Stream Topological System
  publication-title: Water Resources Research
– volume: 233
  year: 2022
  article-title: Geomorphometry and Terrain Analysis: Data, Methods, Platforms and Applications
  publication-title: Earth‐Science Reviews
– volume: 31
  start-page: 387
  issue: 2
  year: 2017
  end-page: 404
  article-title: A Peak‐Cluster Assessment Method for the Identification of Upland Planation Surfaces
  publication-title: International Journal of Geographical Information Science
– volume: 438
  start-page: 183
  issue: 13
  year: 2001
  end-page: 211
  article-title: Downstream and Upstream Influence in River Meandering. Part 1. General Theory and Application to Overdeepening
  publication-title: Journal of Fluid Mechanics
– volume: 40
  start-page: 37
  issue: 1–2
  year: 2001
  end-page: 55
  article-title: Impacts of Surface Elevation on the Growth and Scaling Properties of Simulated River Networks
  publication-title: Geomorphology
– volume: 211
  year: 2023
  article-title: Automatic Segmentation of Parallel Drainage Patterns Supported by a Graph Convolution Neural Network
  publication-title: Expert Systems With Applications
– year: 2016
– volume: 4
  start-page: 108
  issue: 2
  year: 2016
  end-page: 120
  article-title: Identification of Suitable Sites for Rainwater Harvesting Structures in Arid and Semi‐Arid Regions: A Review
  publication-title: International Soil and Water Conservation Research
– volume: 4
  start-page: 4
  issue: 1
  year: 2023
  article-title: Past Rainfall‐Driven Erosion on the Chinese Loess Plateau Inferred From Archaeological Evidence From Wucheng City, Shanxi
  publication-title: Communications Earth & Environment
– volume: 16
  start-page: 593
  issue: 1
  year: 2023
  end-page: 619
  article-title: Drainage Pattern Recognition Method Considering Local Basin Shape Based on Graph Neural Network
  publication-title: International Journal of Digital Earth
– volume: 107
  year: 2022
  article-title: A Recognition Method for Drainage Patterns Using a Graph Convolutional Network
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 27
  start-page: 1622
  issue: 5
  year: 2024
  end-page: 1637
  article-title: Classification of Urban Interchange Patterns Using a Model Combining Shape Context Descriptor and Graph Convolutional Neural Network
  publication-title: Geo‐Spatial Information Science
– volume: 113
  issue: F2
  year: 2008
  article-title: Identification and Characterization of Dendritic, Parallel, Pinnate, Rectangular, and Trellis Networks Based on Deviations From Planform Self‐Similarity
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 47
  start-page: 263
  issue: 3
  year: 2019
  end-page: 266
  article-title: High Curvatures Drive River Meandering
  publication-title: Geology
– volume: 26
  start-page: 295
  issue: 3
  year: 2003
  end-page: 309
  article-title: The Relative Roles of Climate, Soil, Vegetation and Topography in Determining Seasonal and Long‐Term Catchment Dynamics
  publication-title: Advances in Water Resources
– volume: 132
  start-page: 260
  issue: 3–4
  year: 2011
  end-page: 271
  article-title: Under What Conditions Do Parallel River Networks Occur?
  publication-title: Geomorphology
– volume: 45
  issue: 1
  year: 2009
  article-title: River Networks as Ecological Corridors: A Complex Systems Perspective for Integrating Hydrologic, Geomorphologic, and Ecologic Dynamics
  publication-title: Water Resources Research
– volume: 63
  issue: 1
  year: 2000
  article-title: Geometry of River Networks. III. Characterization of Component Connectivity
  publication-title: Physical Review E
– volume: 27
  start-page: 2319
  issue: 12
  year: 2013
  end-page: 2342
  article-title: Automatic Drainage Pattern Recognition in River Networks
  publication-title: International Journal of Geographical Information Science
– volume: 16
  start-page: 834
  issue: 2
  year: 2020
  end-page: 846
  article-title: Diverse Supraglacial Drainage Patterns on the Devon Ice Cap, Arctic Canada
  publication-title: Journal of Maps
– volume: 8
  start-page: 10
  issue: 1
  year: 2024
  article-title: Impacts of Land Use/Land Cover Changes on the Hydrology of the Fafan Catchment Ethiopia
  publication-title: Journal of Geovisualization and Spatial Analysis
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  article-title: Graph Neural Networks: A Review of Methods and Applications
  publication-title: AI Open
– volume: 53
  start-page: 435
  issue: 3
  year: 2024
  end-page: 449
  article-title: An InSAR Phase Unwrapping Method Based on R2AU‐Net
  publication-title: Acta Geodaetica et Cartographica Sinica
– volume: 6
  start-page: 1
  issue: 1
  year: 2004
  end-page: 16
  article-title: Drainage Morphometry and Its Influence on Landform Characteristics in a Basaltic Terrain, Central India–a Remote Sensing and GIS Approach
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 45
  start-page: 1960
  issue: 12
  year: 2020
  end-page: 1969
  article-title: Grid Pattern Recognition in Road Networks Based on Graph Convolution Network Model
  publication-title: Geomatics and Information Science of Wuhan University
– volume: 36
  start-page: 1119
  issue: 6
  year: 2022
  end-page: 1139
  article-title: Detecting Interchanges in Road Networks Using a Graph Convolutional Network Approach
  publication-title: International Journal of Geographical Information Science
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 23
  article-title: Graph Convolutional Networks: A Comprehensive Review
  publication-title: Computational Social Networks
– volume: 572
  start-page: 66
  year: 2019
  end-page: 74
  article-title: A New Approach for River Network Classification Based on the Beta Distribution of Tributary Junction Angles
  publication-title: Journal of Hydrology
– volume: 39
  start-page: 28
  issue: 1
  year: 2024
  article-title: Regularizing Building Outlines Extracted From Remote Sensing Images by Integrating Multiple Algorithms
  publication-title: Geocarto International
– volume: 8
  start-page: 11
  issue: 1
  year: 2024
  article-title: Automated Map Generalization: Emerging Techniques and New Trends
  publication-title: Journal of Geovisualization and Spatial Analysis
– volume: 51
  start-page: 2246
  issue: 11
  year: 1967
  end-page: 2259
  article-title: Drainage Analysis in Geologic Interpretation: A Summation
  publication-title: AAPG Bulletin
– year: 2017
– volume: 54
  start-page: 505
  issue: 4
  year: 1988
  end-page: 509
  article-title: Quantitative Description and Classification of Drainage Patterns
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 11
  start-page: 5875
  issue: 1
  year: 2021
  article-title: A Novel Approach to the Classification of Terrestrial Drainage Networks Based on Deep Learning and Preliminary Results on Solar System Bodies
  publication-title: Scientific Reports
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  end-page: 150
  article-title: Wavelets on Graphs via Spectral Graph Theory
  publication-title: Applied and Computational Harmonic Analysis
– volume: 8
  start-page: 19
  issue: 1
  year: 2024
  article-title: Enhancing Flood Risk Analysis in Harris County: Integrating Flood Susceptibility and Social Vulnerability Mapping
  publication-title: Journal of Geovisualization and Spatial Analysis
– year: 2013
– ident: e_1_2_10_6_1
  doi: 10.1007/s41651‐024‐00181‐5
– ident: e_1_2_10_11_1
  doi: 10.11947/j.AGCS.2024.20230305
– ident: e_1_2_10_38_1
  doi: 10.1080/13658816.2021.2024195
– ident: e_1_2_10_49_1
  doi: 10.1017/S002211200100427X
– ident: e_1_2_10_40_1
  doi: 10.1016/j.eswa.2022.118639
– ident: e_1_2_10_35_1
  doi: 10.1080/13658816.2016.1205193
– ident: e_1_2_10_48_1
  doi: 10.1016/j.aiopen.2021.01.001
– ident: e_1_2_10_3_1
  doi: 10.1016/j.iswcr.2016.03.001
– ident: e_1_2_10_27_1
  doi: 10.4324/9780203070123
– ident: e_1_2_10_5_1
  doi: 10.4324/9780203371084
– ident: e_1_2_10_42_1
  doi: 10.5194/isprsarchives‐XXXIX‐B2‐29‐2012
– ident: e_1_2_10_32_1
  doi: 10.1016/S0309‐1708(02)00164‐1
– ident: e_1_2_10_47_1
  doi: 10.1029/2022WR033681
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1466‐8238.2009.00486.x
– ident: e_1_2_10_36_1
  doi: 10.1016/j.isprsjprs.2019.02.010
– ident: e_1_2_10_12_1
  doi: 10.1306/5D25C26D‐16C1‐11D7‐8645000102C1865D
– ident: e_1_2_10_26_1
  doi: 10.1016/j.jenvp.2007.07.001
– ident: e_1_2_10_2_1
  doi: 10.1007/s41651‐024‐00172‐6
– ident: e_1_2_10_44_1
  doi: 10.1016/j.patcog.2019.06.012
– ident: e_1_2_10_31_1
  doi: 10.1080/17538947.2023.2172224
– ident: e_1_2_10_21_1
  doi: 10.1029/98WR00983
– ident: e_1_2_10_25_1
  doi: 10.1029/2008WR007124
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jag.2022.102696
– ident: e_1_2_10_16_1
– ident: e_1_2_10_33_1
  doi: 10.1038/s43247‐022‐00663‐8
– ident: e_1_2_10_20_1
  doi: 10.1029/2007JF000781
– ident: e_1_2_10_46_1
  doi: 10.1007/s41651‐024‐00174‐4
– ident: e_1_2_10_24_1
  doi: 10.1016/j.jag.2004.06.003
– ident: e_1_2_10_39_1
  doi: 10.1080/10106049.2024.2370322
– ident: e_1_2_10_7_1
  doi: 10.1103/PhysRevE.63.016117
– ident: e_1_2_10_37_1
  doi: 10.1080/10095020.2023.2264337
– ident: e_1_2_10_18_1
  doi: 10.1111/tgis.13041
– ident: e_1_2_10_43_1
  doi: 10.1080/13658816.2013.802794
– ident: e_1_2_10_17_1
  doi: 10.1016/j.geomorph.2020.107045
– ident: e_1_2_10_13_1
  doi: 10.1029/93WR02279
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jhydrol.2019.02.041
– ident: e_1_2_10_22_1
  doi: 10.1016/S0169‐555X(01)00036‐8
– ident: e_1_2_10_23_1
  doi: 10.1130/0091‐7613(1987)15<813:EORSOD>2.0.CO;2
– ident: e_1_2_10_14_1
  doi: 10.1016/j.geomorph.2011.05.014
– ident: e_1_2_10_29_1
  doi: 10.1109/CVPR.2017.649
– ident: e_1_2_10_28_1
  doi: 10.1130/G45608.1
– ident: e_1_2_10_8_1
  doi: 10.1038/s41598‐021‐85254‐x
– ident: e_1_2_10_10_1
  doi: 10.1016/j.acha.2010.04.005
– ident: e_1_2_10_30_1
  doi: 10.13203/j.whugis20200022
– ident: e_1_2_10_45_1
  doi: 10.1186/s40649‐019‐0069‐y
– ident: e_1_2_10_4_1
  doi: 10.1029/RS023i003p00471
– ident: e_1_2_10_19_1
  doi: 10.1080/17445647.2020.1838353
– ident: e_1_2_10_34_1
  doi: 10.1016/j.earscirev.2022.104191
SSID ssj0004497
Score 2.389308
Snippet ABSTRACT Drainage pattern recognition plays a crucial role in flood management, hydraulic engineering site selection, and biodiversity maintenance. Although...
Drainage pattern recognition plays a crucial role in flood management, hydraulic engineering site selection, and biodiversity maintenance. Although deep...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Artificial neural networks
Biodiversity
Chebyshev approximation
Deep learning
Drainage
Drainage patterns
Flood control
Flood management
Geographic information systems
graph convolutional network
Hydraulic engineering
Machine learning
Mathematical morphology
Pattern recognition
Polynomials
river
Site selection
Support vector machines
three‐dimensional elevation
Title Drainage Pattern Recognition Method Using Graph Convolutional Networks Combined With Three‐Dimensional Elevation Features
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.70002
https://www.proquest.com/docview/3171427142
Volume 29
WOSCitedRecordID wos001409513000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004497
  issn: 1361-1682
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSgMxEA2lFfTFu1itEtAXhZVt9xrwRXpT0FJqi31bNpfSQt1KbyC--Al-o1_iTHa3rSCC-LCwLElYkplkTpg5h5Bzhqe4pRyDOdIxbMYtg2MVCEYXTPRC5flSi014jYbf7bJmhlyntTAxP8Tiwg09Q-_X6OAhn6w4-RSA_ZVnaibJHFZVAfTKVVq1zv2yLtKOxVUsF8WQ_VJCT4qZPMve3w-kZZS5Gqvqw6a29b_f3CabSZBJb2Kr2CEZFe2S9UTvvP-6R94qqAwBWwltan7NiLbSRKJRRB-0qjTV2QS0jl1oeRTNEyOFgRtx7vgEPj8DslaSPg2mfdoGu1Cf7x8VVAyI2T5odajiS1-KweYMwP0-6dSq7fKtkcgwGAK8H-Jvi7sAqwBXSNgeQtvvFT0JMKgnHCZMiB9Dxm0AbqZQRTc0PVeYLpclX3hez5PcsQ5INhpF6pBQFA8UtiXhZHZtYUlf-ZLZXCLJmS8Yz5OLdC0CkXCUo1TGMEixCk5noKczT84WbV9iZo4fWxXSJQ0S75wEFqq-l_DJk0u9eL-MELTrd4_67egvjY_JRgmlgnWCd4Fkp-OZOiFrYj4dTManiaV-AThc7oM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB2kCvXit1g_A3pRWNk2u5vkKNZasS2lttjb0k1SFHQrtgrixZ_gb_SXmMmmtoII4mFhWZKwJDOZeWHyHsCBwChOdeiJUIVeIBLqJXgLBLMLIfs9zbiyYhOs0eDdrmi62hy8C5PxQ3wduKFn2P0aHRwPpKe8fGSQ_THzLZXkbBBRxnMwW25VOrXJxcggU1ehEaoh85LjJ8VSnknv7xFpkmZOJ6s22lQW__mfS7Dg0kxyktnFMszodAXyTvH85mUVXsuoDWE2E9K0DJspaY1LiQYpqVtdaWLrCcg5diGng_TZmakZuJFVjw_N53uDrbUi17ejG9I2lqE_3t7LqBmQ8X2QszudHfsSTDefDLxfg07lrH1a9ZwQgyeN_5sMnCaRAVYGWSizQfQC3i8yZYBQX4ZC-iaD7IkkMNDNl7oY9XwWST9KVIlLxvpMJSFdh1w6SPUGEJQPlAFVJjZHgaSKa65EkCikOeNSJAU4HC9GLB1LOYpl3MVjtILTGdvpLMD-V9uHjJvjx1bb4zWNnX8OY4q67yV8CnBkV--XEeL2-cWVfdv8S-M9yFfb9Vpcu2hcbsF8CYWDbbn3NuRGj096B-bk8-h2-LjrzPYTepXycw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IFPXFuzivAX1RqHRtesmj7KaoY8yJeytrkrLB7MY2BfHFn-Bv9JeYk2ZuggjiQ6GUJJTknJzzhZPvAzhhGMVd6VnME55FWexaMd4CweyC8aQtg1BosYmgVgtbLVY3tTl4Fybjh_g6cEPP0Ps1OrgciGTGy8cK2Z8HtqaSnKce82gO5kuNyv3N9GIkzdRVXB_VkEPH8JNiKc-09_eINE0zZ5NVHW0qq__8zzVYMWkmucjsYh3mZLoBS0bxvPOyCa8l1IZQmwmpa4bNlDQmpUT9lNxqXWmi6wlIFbuQYj99NmaqBq5l1eMj9flRYWspyEN33CFNZRny4-29hJoBGd8HKfdkduxLMN18UvB-C-4r5Wbx0jJCDBZX_q8ycDf2FbBSyEKoDaJNw6QQCAWEEu4xbqsMss1iqqCbzWXBb9uBz20_Fk7IgyAJROy525BL-6ncAYLygZy6QsVmn3JXhDIUjMYCac5CzuI8nE4WI-KGpRzFMnrRBK3gdEZ6OvNw_NV2kHFz_Nhqf7KmkfHPUeSi7ruDTx7O9Or9MkLUrF7d6bfdvzQ-gsV6qRLdXNWu92DZQd1gXe29D7nx8EkewAJ_HndHw0NjtZ8anPHu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drainage+Pattern+Recognition+Method+Using+Graph+Convolutional+Networks+Combined+With+Three%E2%80%90Dimensional+Elevation+Features&rft.jtitle=Transactions+in+GIS&rft.au=Qiang%2C+Bo&rft.au=Liu%2C+Tao&rft.au=Du%2C+Ping&rft.au=Li%2C+Pengpeng&rft.date=2025-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1111%2Ftgis.70002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon