Impact of loss functions on semantic segmentation in far‐field monitoring

Although previous research laid the foundation for vision‐based monitoring systems using convolutional neural networks (CNNs), too little attention has been paid to the challenges associated with data imbalance and varying object sizes in far‐field monitoring. To fill the knowledge gap, this paper i...

Full description

Saved in:
Bibliographic Details
Published in:Computer-aided civil and infrastructure engineering Vol. 38; no. 3; pp. 372 - 390
Main Authors: Chern, Wei‐Chih, Nguyen, Tam V., Asari, Vijayan K., Kim, Hongjo
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.02.2023
Subjects:
ISSN:1093-9687, 1467-8667
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although previous research laid the foundation for vision‐based monitoring systems using convolutional neural networks (CNNs), too little attention has been paid to the challenges associated with data imbalance and varying object sizes in far‐field monitoring. To fill the knowledge gap, this paper investigates various loss functions to design a customized loss function to address the challenges. Scaffold installation operations recorded by camcorders were selected as the subject of analysis in a far‐field surveillance setting. It was confirmed that the data imbalance between the workers, hardhats, harnesses, straps, and hooks caused poor performances especially for small size objects. This problem was mitigated by employing a region‐based loss and Focal loss terms in the loss function of segmentation models. The findings illustrate the importance of the loss function design in improving performance of CNN models for far‐field construction site monitoring.
AbstractList Although previous research laid the foundation for vision‐based monitoring systems using convolutional neural networks (CNNs), too little attention has been paid to the challenges associated with data imbalance and varying object sizes in far‐field monitoring. To fill the knowledge gap, this paper investigates various loss functions to design a customized loss function to address the challenges. Scaffold installation operations recorded by camcorders were selected as the subject of analysis in a far‐field surveillance setting. It was confirmed that the data imbalance between the workers, hardhats, harnesses, straps, and hooks caused poor performances especially for small size objects. This problem was mitigated by employing a region‐based loss and Focal loss terms in the loss function of segmentation models. The findings illustrate the importance of the loss function design in improving performance of CNN models for far‐field construction site monitoring.
Author Chern, Wei‐Chih
Nguyen, Tam V.
Kim, Hongjo
Asari, Vijayan K.
Author_xml – sequence: 1
  givenname: Wei‐Chih
  surname: Chern
  fullname: Chern, Wei‐Chih
  organization: University of Dayton
– sequence: 2
  givenname: Tam V.
  surname: Nguyen
  fullname: Nguyen, Tam V.
  organization: University of Dayton
– sequence: 3
  givenname: Vijayan K.
  surname: Asari
  fullname: Asari, Vijayan K.
  organization: University of Dayton
– sequence: 4
  givenname: Hongjo
  surname: Kim
  fullname: Kim, Hongjo
  email: hongjo@yonsei.ac.kr
  organization: Yonsei University
BookMark eNp9kMFKAzEQhoNUsK1efIKAN2FrssluNkcptRYrXvQcstmkpOwmNdkivfkIPqNPYup6EnEuM8N8_wzzT8DIeacBuMRohlPcdFbpGc4rkp-AMaYly6qyZKNUI04yXlbsDExi3KIUlJIxeFh1O6l66A1sfYzQ7J3qrXcRegej7qTrrUrFptOul8cJtA4aGT7fP4zVbQM772zvg3Wbc3BqZBv1xU-egpe7xfP8Pls_LVfz23WmCMJ5VnDDG6QqSRpaUyqVklzr1OeKpYZVBUKFajjXBtW44LSpOeHY1KqoKJeKTMHVsHcX_Otex15s_T64dFLkjBGGUTIgUWigVEiPBW2EssMHfZC2FRiJo2XiaJn4tixJrn9JdsF2Mhz-hvEAv9lWH_4hxeNqvhg0X787gI0
CitedBy_id crossref_primary_10_1111_mice_13343
crossref_primary_10_1016_j_autcon_2024_105277
crossref_primary_10_1111_mice_13396
crossref_primary_10_1111_mice_13153
crossref_primary_10_1109_TGRS_2024_3516501
crossref_primary_10_3390_electronics14112244
crossref_primary_10_1016_j_autcon_2024_105604
crossref_primary_10_1016_j_autcon_2025_106099
crossref_primary_10_1111_mice_13422
crossref_primary_10_1111_mice_13443
Cites_doi 10.1007/s11263-014-0733-5
10.1111/mice.12458
10.1016/j.autcon.2020.103085
10.1111/mice.12701
10.1016/j.compmedimag.2022.102112
10.1061/(ASCE)CP.1943-5487.0000923
10.1016/j.autcon.2021.103721
10.1088/0964-1726/24/6/065034
10.5220/0010211600700079
10.1109/ICAIIC51459.2021.9415217
10.1016/j.autcon.2021.103817
10.1111/exsy.12647
10.1016/j.compbiomed.2021.104815
10.14359/51689560
10.1007/s00170-022-08721-3
10.1111/mice.12632
10.1111/mice.12667
10.1049/iet-ipr.2019.1527
10.1016/j.autcon.2020.103356
10.1016/j.neunet.2018.07.011
10.1016/j.autcon.2019.02.006
10.1111/mice.12741
10.1109/TKDE.2009.191
10.1061/(ASCE)CO.1943-7862.0001570
10.1016/j.autcon.2021.103670
10.1109/TKDE.2008.239
10.1109/ICCV.2017.324
10.1007/978-3-030-00931-1_70
10.1016/j.autcon.2020.103198
10.1007/978-3-319-24574-4_28
10.1109/IJCNN.2016.7727770
10.1016/j.autcon.2021.103620
10.48550/arXiv.2108.03235
10.1016/j.autcon.2021.103606
10.1016/j.compmedimag.2019.02.001
10.1061/(ASCE)CO.1943-7862.0001047
10.1016/j.patrec.2008.04.005
10.1109/3DV.2016.79
10.1016/j.jobe.2021.102913
10.1016/j.autcon.2021.103785
10.1111/mice.12419
10.1109/VCIP.2017.8305148
10.1109/MIPR49039.2020.00066
10.1002/mp.13300
10.3233/ICA-210649
10.1016/j.asoc.2017.05.029
10.1016/j.autcon.2021.103572
10.1111/mice.12505
10.1016/j.autcon.2018.04.002
10.1016/j.aei.2020.101100
10.1002/tal.1312
10.1016/j.autcon.2019.103013
10.1109/CVPR.2017.106
10.1016/j.engstruct.2018.10.065
ContentType Journal Article
Copyright 2022  .
2023 Computer‐Aided Civil and Infrastructure Engineering.
Copyright_xml – notice: 2022  .
– notice: 2023 Computer‐Aided Civil and Infrastructure Engineering.
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12832
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 390
ExternalDocumentID 10_1111_mice_12832
MICE12832
Genre article
GrantInformation_xml – fundername: Korea Agency for Infrastructure Technology Advancement under the Ministry of Land
– fundername: Infrastructure and Transport, and managed by the Korea Expressway Corporation
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3012-59f9d0c8a3d4b44acca9eec8a2c7acc785005cd99ef0b1594db9391fbc5849ac3
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762839800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Sun Nov 09 05:45:09 EST 2025
Sat Nov 29 05:42:09 EST 2025
Tue Nov 18 21:43:07 EST 2025
Wed Jan 22 16:18:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3012-59f9d0c8a3d4b44acca9eec8a2c7acc785005cd99ef0b1594db9391fbc5849ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2773710283
PQPubID 2045171
PageCount 19
ParticipantIDs proquest_journals_2773710283
crossref_citationtrail_10_1111_mice_12832
crossref_primary_10_1111_mice_12832
wiley_primary_10_1111_mice_12832_MICE12832
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1901; 37
2021; 124
2019; 97
2021; 126
2020; 120
2021; 125
2021; 128
2021; 28
2021; 127
2021; 129
2020; 14
2008; 30
2017; 114
2016; 142
2018; 46
2021; 36
2010; 22
2021; 37
2020; 45
1948
2018; 144
2021; 43
2009; 21
2019; 73
2021; 2
2018; 106
2017; 26
2011
2019; 34
2009
2019; 102
2020; 37
2020; 35
2020; 34
2018; 25
2015; 24
2017; 58
2021
2020
2020; 110
2015; 111
2020; 115
2018; 92
2019
2018
2017
2016
2020; 112
2015
2014
2019; 178
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Li B. (e_1_2_8_28_1) 2018
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
Tan M. (e_1_2_8_57_1) 2019; 97
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Kisantal M. (e_1_2_8_27_1) 2019
Lin T. (e_1_2_8_32_1) 2014
e_1_2_8_29_1
Pang J. (e_1_2_8_48_1) 2019
Amezquita‐Sanchez J. P. (e_1_2_8_3_1) 2018; 25
e_1_2_8_25_1
Olga R. (e_1_2_8_46_1) 2014
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
Wu Y. (e_1_2_8_63_1) 2021; 2
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
Jaccard P. (e_1_2_8_23_1) 1901; 37
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Martins G. B. (e_1_2_8_38_1) 2020; 37
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 28
  start-page: 221
  issue: 3
  year: 2021
  end-page: 235
  article-title: An ensemble deep learning method with optimized weights for drone‐based water rescue and surveillance
  publication-title: Integrated Computer‐Aided Engineering
– year: 2011
  article-title: SMOTE: Synthetic minority over‐sampling technique
  publication-title: CoRR
– year: 2009
– volume: 34
  start-page: 333
  issue: 4
  year: 2019
  end-page: 351
  article-title: Capturing and understanding workers activities in far‐field surveillance videos with deep action recognition and Bayesian nonparametric learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 102
  start-page: 135
  year: 2019
  end-page: 147
  article-title: Vision‐based nonintrusive context documentation for earthmoving productivity simulation
  publication-title: Automation in Construction
– volume: 126
  year: 2021
  article-title: Integrated worker detection and tracking for the safe operation of construction machinery
  publication-title: Automation in Construction
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  article-title: The Pascal visual object classes challenge: A retrospective
  publication-title: International Journal of Computer Vision
– volume: 128
  year: 2021
  article-title: A deep learning approach for fast detection and classification of concrete damage
  publication-title: Automation in Construction
– volume: 45
  year: 2020
  article-title: Real‐time smart video surveillance to manage safety: A case study of a transport mega‐project
  publication-title: Advanced Engineering Informatics
– year: 2021
– volume: 178
  start-page: 603
  year: 2019
  end-page: 615
  article-title: Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings
  publication-title: Engineering Structures
– volume: 14
  start-page: 2682
  year: 2020
  end-page: 2689
  article-title: Denseunet: Densely connected unet for electron microscopy image segmentation
  publication-title: IET Image Processing
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  end-page: 1284
  article-title: Learning from imbalanced data
  publication-title: IEEE Transactions on Knowledge and Data Engineering, Knowledge and Data Engineering
– volume: 36
  start-page: 302
  issue: 3
  year: 2021
  end-page: 317
  article-title: Semi‐supervised learning based on convolutional neural network and uncertainty filter for façade defects classification
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 58
  start-page: 576
  year: 2017
  end-page: 585
  article-title: Evolutionary learning based sustainable strain sensing model for structural health monitoring of high‐rise buildings
  publication-title: Applied Soft Computing Journal
– year: 2019
  article-title: Libra R‐CNN: Towards balanced learning for object detection
  publication-title: Computer Vision and Pattern Recognition (CVPR)
– year: 2018
– volume: 34
  start-page: 755
  issue: 9
  year: 2019
  end-page: 773
  article-title: Deep leaf‐bootstrapping generative adversarial network for structural image data augmentation
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 70
  year: 2021
  end-page: 79
– volume: 36
  start-page: 620
  issue: 5
  year: 2021
  end-page: 637
  article-title: Pixel‐level multicategory detection of visible seismic damage of reinforced concrete components
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  end-page: 244
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– volume: 115
  year: 2020
  article-title: Image augmentation to improve construction resource detection using generative adversarial networks, cut‐and‐paste, and image transformation techniques
  publication-title: Automation in Construction
– volume: 144
  issue: 12
  year: 2018
  article-title: Novel machine‐learning model for estimating construction costs considering economic variables and indexes
  publication-title: Journal of Construction Engineering and Management
– start-page: 1
  year: 2017
  end-page: 4
– start-page: 181
  year: 2021
  end-page: 186
– volume: 73
  start-page: 60
  year: 2019
  end-page: 72
  article-title: 3D convolutional neural networks for tumor segmentation using long‐range 2D context
  publication-title: Computerized Medical Imaging and Graphics
– volume: 37
  start-page: 1
  issue: 6
  year: 2020
  end-page: 21
  article-title: Deep learning techniques for recommender systems based on collaborative filtering
  publication-title: Expert Systems: International Journal of Knowledge Engineering and Neural Networks
– year: 2014
  article-title: Imagenet large scale visual recognition challenge
  publication-title: arXiv
– volume: 25
  start-page: 2913
  issue: 6
  year: 2018
  end-page: 2925
  article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure
  publication-title: Scientia Iranica
– year: 2018
  article-title: Gradient harmonized single‐stage detector
  publication-title: arXiv
– volume: 26
  issue: 3
  year: 2017
  article-title: New method for modal identification of super high‐rise building structures using discretized synchrosqueezed wavelet and Hilbert transforms
  publication-title: Structural Design of Tall & Special Buildings
– volume: 124
  year: 2021
  article-title: Temporal image analytics for abnormal construction activity identification
  publication-title: Automation in Construction
– year: 2021
  article-title: Simple copy‐paste is a strong data augmentation method for instance segmentation
  publication-title: Computer Vision and Pattern Recognition (CVPR)
– year: 2015
– volume: 142
  issue: 2
  year: 2016
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: Journal of Construction Engineering and Management
– volume: 35
  start-page: 465
  issue: 5
  year: 2020
  end-page: 482
  article-title: Vision‐based automated bridge component recognition with high‐level scene consistency
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  issue: 6
  year: 2020
  article-title: Video‐based motion trajectory forecasting method for proactive construction safety monitoring systems
  publication-title: Journal of Computing in Civil Engineering
– volume: 127
  year: 2021
  article-title: A vision‐based method for automatic tracking of construction machines at nighttime based on deep learning illumination enhancement
  publication-title: Automation in Construction
– volume: 110
  year: 2020
  article-title: Computer vision applications in construction safety assurance
  publication-title: Automation in Construction
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  end-page: 1359
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 125
  year: 2021
  article-title: Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning
  publication-title: Automation in Construction
– volume: 46
  start-page: 576
  issue: 2
  year: 2018
  end-page: 589
  article-title: Anatomynet: Deep learning for fast and fully automated whole‐volume segmentation of head and neck anatomy
  publication-title: Medical Physics
– volume: 36
  start-page: 1094
  year: 2021
  end-page: 1113
  article-title: Balanced semisupervised generative adversarial network for damage assessment from low‐data imbalanced‐class regime
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 1948
– volume: 37
  start-page: 547
  year: 1901
  end-page: 579
  article-title: Étude comparative de la distribution florale dans une portion des alpes et des jura
  publication-title: Bulletin del la Société Vaudoise des Sciences Naturelles
– year: 2016
– volume: 92
  start-page: 188
  year: 2018
  end-page: 198
  article-title: Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation
  publication-title: Automation in Construction
– volume: 24
  issue: 6
  year: 2015
  article-title: Synchrosqueezed wavelet transform‐fractality model for locating, detecting, and quantifying damage in smart highrise building structures
  publication-title: Smart Materials and Structures
– start-page: 612
  year: 2018
  end-page: 619
– volume: 129
  year: 2021
  article-title: Vision‐based method of automatically detecting construction video highlights by integrating machine tracking and CNN feature extraction
  publication-title: Automation in Construction
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  end-page: 1284
  article-title: Learning from imbalanced data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 97
  start-page: 6105
  year: 2019
  end-page: 6114
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– volume: 37
  start-page: 145
  issue: 2
  year: 2021
  end-page: 162
  article-title: Deep semantic segmentation for visual understanding on construction sites
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Networks
– year: 2014
  article-title: Microsoft COCO: Common objects in context
  publication-title: CoRR
– volume: 125
  year: 2021
  article-title: A vision‐based approach for automatic progress tracking of floor paneling in offsite construction facilities
  publication-title: Automation in Construction
– year: 2020
– volume: 30
  start-page: 88
  issue: 2
  year: 2008
  end-page: 97
  article-title: Semantic object classes in video: A high‐definition ground truth database
  publication-title: Pattern Recognition Letters
– year: 2019
  article-title: Augmentation for small object detection
  publication-title: ArXiv
– year: 2017
  article-title: Feature pyramid networks for object detection
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 2
  start-page: 227
  year: 2021
  end-page: 244
  article-title: Hybrid deep learning architecture for rail surface segmentation and surface defect detection
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 43
  year: 2021
  article-title: Automated crack segmentation in close‐range building facade inspection images using deep learning techniques
  publication-title: Journal of Building Engineering
– volume: 120
  year: 2020
  article-title: Human‐object interaction recognition for automatic construction site safety inspection
  publication-title: Automation in Construction
– volume: 112
  year: 2020
  article-title: Deep learning for site safety: Real‐time detection of personal protective equipment
  publication-title: Automation in Construction
– ident: e_1_2_8_13_1
  doi: 10.1007/s11263-014-0733-5
– ident: e_1_2_8_15_1
  doi: 10.1111/mice.12458
– ident: e_1_2_8_44_1
  doi: 10.1016/j.autcon.2020.103085
– ident: e_1_2_8_61_1
  doi: 10.1111/mice.12701
– ident: e_1_2_8_20_1
  doi: 10.1016/j.compmedimag.2022.102112
– year: 2019
  ident: e_1_2_8_48_1
  article-title: Libra R‐CNN: Towards balanced learning for object detection
  publication-title: Computer Vision and Pattern Recognition (CVPR)
– ident: e_1_2_8_58_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000923
– ident: e_1_2_8_64_1
  doi: 10.1016/j.autcon.2021.103721
– ident: e_1_2_8_2_1
  doi: 10.1088/0964-1726/24/6/065034
– ident: e_1_2_8_54_1
  doi: 10.5220/0010211600700079
– ident: e_1_2_8_30_1
  doi: 10.1109/ICAIIC51459.2021.9415217
– volume: 25
  start-page: 2913
  issue: 6
  year: 2018
  ident: e_1_2_8_3_1
  article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure
  publication-title: Scientia Iranica
– ident: e_1_2_8_65_1
  doi: 10.1016/j.autcon.2021.103817
– volume: 37
  start-page: 1
  issue: 6
  year: 2020
  ident: e_1_2_8_38_1
  article-title: Deep learning techniques for recommender systems based on collaborative filtering
  publication-title: Expert Systems: International Journal of Knowledge Engineering and Neural Networks
  doi: 10.1111/exsy.12647
– ident: e_1_2_8_66_1
  doi: 10.1016/j.compbiomed.2021.104815
– ident: e_1_2_8_52_1
  doi: 10.14359/51689560
– ident: e_1_2_8_18_1
  doi: 10.1007/s00170-022-08721-3
– ident: e_1_2_8_19_1
  doi: 10.1111/mice.12632
– ident: e_1_2_8_39_1
  doi: 10.1111/mice.12667
– ident: e_1_2_8_8_1
  doi: 10.1049/iet-ipr.2019.1527
– ident: e_1_2_8_59_1
  doi: 10.1016/j.autcon.2020.103356
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neunet.2018.07.011
– ident: e_1_2_8_26_1
  doi: 10.1016/j.autcon.2019.02.006
– ident: e_1_2_8_16_1
  doi: 10.1111/mice.12741
– ident: e_1_2_8_47_1
  doi: 10.1109/TKDE.2009.191
– ident: e_1_2_8_51_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001570
– ident: e_1_2_8_55_1
  doi: 10.1016/j.autcon.2021.103670
– ident: e_1_2_8_21_1
  doi: 10.1109/TKDE.2008.239
– ident: e_1_2_8_33_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_8_62_1
  doi: 10.1007/978-3-030-00931-1_70
– ident: e_1_2_8_42_1
– ident: e_1_2_8_4_1
  doi: 10.1016/j.autcon.2020.103198
– ident: e_1_2_8_53_1
  doi: 10.1007/978-3-319-24574-4_28
– volume: 2
  start-page: 227
  year: 2021
  ident: e_1_2_8_63_1
  article-title: Hybrid deep learning architecture for rail surface segmentation and surface defect detection
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– ident: e_1_2_8_60_1
  doi: 10.1109/IJCNN.2016.7727770
– ident: e_1_2_8_37_1
  doi: 10.1016/j.autcon.2021.103620
– volume: 37
  start-page: 547
  year: 1901
  ident: e_1_2_8_23_1
  article-title: Étude comparative de la distribution florale dans une portion des alpes et des jura
  publication-title: Bulletin del la Société Vaudoise des Sciences Naturelles
– ident: e_1_2_8_5_1
  doi: 10.48550/arXiv.2108.03235
– ident: e_1_2_8_56_1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.autcon.2021.103606
– ident: e_1_2_8_41_1
  doi: 10.1016/j.compmedimag.2019.02.001
– ident: e_1_2_8_50_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– ident: e_1_2_8_6_1
  doi: 10.1016/j.patrec.2008.04.005
– ident: e_1_2_8_40_1
  doi: 10.1109/3DV.2016.79
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jobe.2021.102913
– ident: e_1_2_8_24_1
  doi: 10.1016/j.autcon.2021.103785
– ident: e_1_2_8_36_1
  doi: 10.1111/mice.12419
– year: 2014
  ident: e_1_2_8_46_1
  article-title: Imagenet large scale visual recognition challenge
  publication-title: arXiv
– ident: e_1_2_8_9_1
  doi: 10.1109/VCIP.2017.8305148
– ident: e_1_2_8_10_1
  doi: 10.1109/MIPR49039.2020.00066
– ident: e_1_2_8_67_1
  doi: 10.1002/mp.13300
– ident: e_1_2_8_17_1
  doi: 10.3233/ICA-210649
– volume: 97
  start-page: 6105
  year: 2019
  ident: e_1_2_8_57_1
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– ident: e_1_2_8_45_1
  doi: 10.1016/j.asoc.2017.05.029
– ident: e_1_2_8_34_1
  doi: 10.1016/j.autcon.2021.103572
– year: 2014
  ident: e_1_2_8_32_1
  article-title: Microsoft COCO: Common objects in context
  publication-title: CoRR
– ident: e_1_2_8_43_1
  doi: 10.1111/mice.12505
– ident: e_1_2_8_25_1
  doi: 10.1016/j.autcon.2018.04.002
– year: 2018
  ident: e_1_2_8_28_1
  article-title: Gradient harmonized single‐stage detector
  publication-title: arXiv
– ident: e_1_2_8_22_1
  doi: 10.1109/TKDE.2008.239
– ident: e_1_2_8_35_1
  doi: 10.1016/j.aei.2020.101100
– ident: e_1_2_8_29_1
  doi: 10.1002/tal.1312
– ident: e_1_2_8_14_1
  doi: 10.1016/j.autcon.2019.103013
– year: 2019
  ident: e_1_2_8_27_1
  article-title: Augmentation for small object detection
  publication-title: ArXiv
– ident: e_1_2_8_31_1
  doi: 10.1109/CVPR.2017.106
– ident: e_1_2_8_49_1
  doi: 10.1016/j.engstruct.2018.10.065
SSID ssj0000443
Score 2.440182
Snippet Although previous research laid the foundation for vision‐based monitoring systems using convolutional neural networks (CNNs), too little attention has been...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 372
SubjectTerms Artificial neural networks
Construction sites
Harnesses
Hooks
Monitoring
Semantic segmentation
Straps
Title Impact of loss functions on semantic segmentation in far‐field monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12832
https://www.proquest.com/docview/2773710283
Volume 38
WOSCitedRecordID wos000762839800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFD7M6YVeOH9xOiWgNwoV16RrD3gjuqEoIqKyu5KmiQy2TtbptY_gM_okJmm6TRBBvEvCaQg550u-lPMDcEADyZSN_OWIHmtR30PZkl6i0ihFHgllvXyfbsLb26jbxbsKnJaxMEV-iMkPN4MMe14bgPMknwG5qdZ-3DSVduZg3teGG1Rh_uK-83gzPYmZc7BH6mErCl16UuPJM_36-4U0ZZmzXNVeNp3a_5a5AsuOZJKzwipWoSKzNag5wkkcnHM9VNZ0KMfWYGkmQeE6XF_ZIEoyVKSvF0_MLWgNlQwzksuBVktP6MbzwIUwZaSXEcVHn-8f1jeODOyZYWbbgMdO--H80nPlFzyhUa-fqKgwPRERpylLGONa1yil7vsi1J0wCjSCRYoo1UmiWRFLE6TYVInQpAa5oJtQzYaZ3AJCA85Fqi2B0pC1BGISGa7Bff2uDxKFdTgsdRALl5vclMjox-UbxWxjbLexDvsT2ZciI8ePUo1SlbFDZR77YUgLRlWHI6u0X2aINQzatrX9F-EdWDQV6QvH7gZUx6NXuQsL4m3cy0d7zkK_ABcx61k
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEB60CurBf7FaNaAXhRXbbLs7R9EWpbWIVPG2ZLOJFOxW2urZR_AZfRIn2WxbQQTxloRsNmTmS76E-QE44lXla-v5KxA9v8YrHqqa8mKdhAmKUGpr5fvQCtrt8PERb51tjvGFyeJDjB_cDDLsfm0Abh6kp1Bu0rWflk2qnVmYo7-EpOBzl3eN-9ZkK_adhT1yD2th4OKTGlOeydffT6QJzZwmq_a0aaz8c56rsOxoJjvP9GINZlS6DiuOcjIH6CE15Vkd8rZ1WJoKUbgBzWvrRsn6mj3T7Jk5B62qsn7KhqpHgulKKjz1nBNTyrop02Lw-f5hreNYz-4aZrRNuG_UOxdXnkvA4EnCPV1SUWNyJkPBEz_2fUHSRqWoXpEBVYKwShiWCaLSZzHxIj-JkWNZx5JoDQrJt6CQ9lO1DYxXhZAJSYnzwK9JxDg0bENU6GZfjTUW4TgXQiRddHKTJOM5ym8pZhkju4xFOBz3fclicvzYq5TLMnK4HEaVIOAZpyrCiZXaLyNEBIS6Le38pfMBLFx1blpR67rd3IVFk58-M_MuQWE0eFV7MC_fRt3hYN-p6xcsh-9J
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJqIPXqbivAb0RaEym6zteRR1ODbGEJW9lTRNZLB1sqnP_gR_o7_EJE3dBBHEtySchpBzvuRLOReAY1qXTNnIX47osYD6HspAeolKoxR5JJT18n1oh51O1Oth1_nmmFiYPD_E1w83gwx7XhuAy6dUzaDclGs_OzelduahzEwVmRKUr24b9-3pUcychz1SD4ModPlJjSvP9OvvN9KUZs6SVXvbNFb_uc41WHE0k1zkdrEOczKrwKqjnMQBeqKHiqoOxVgFlmdSFG5Aq2nDKMlIkYFePTH3oDVVMsrIRA61YvpCNx6HLogpI_2MKD7-eHu33nFkaE8NM9sm3Deu7y5vPFeAwRMa9_qRigrTmog4TVnCGNfaRil13xeh7oRRXWNYpIhS1RLNi1iaIMVzlQhNa5ALugWlbJTJbSC0zrlItS1QGrJAICaRYRvc1y_7eqKwCieFEmLhspObIhmDuHilmG2M7TZW4ehL9inPyfGj1F6hy9jhchL7YUhzTlWFU6u1X2aINRCubWvnL8KHsNi9asTtZqe1C0umPH3u5b0Hpefxi9yHBfH63J-MD5y1fgLQ7-7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+loss+functions+on+semantic+segmentation+in+far%E2%80%90field+monitoring&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Wei%E2%80%90Chih+Chern&rft.au=Nguyen%2C+Tam+V&rft.au=Asari%2C+Vijayan+K&rft.au=Kim%2C+Hongjo&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=38&rft.issue=3&rft.spage=372&rft.epage=390&rft_id=info:doi/10.1111%2Fmice.12832&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon