Improved K‐means algorithm for clustering non‐spherical data

As one of the commonly used data mining algorithms, K‐means has the advantage of fast clustering speed, but the disadvantage is that it is less effective for clustering non‐spherical data. An improved K‐means algorithm (IK‐means) is proposed to enhance clustering efficiency for non‐spherical data. T...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems Vol. 39; no. 9
Main Authors: He, Honglei, He, Yuxuan, Wang, Fang, Zhu, Wenming
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.11.2022
Subjects:
ISSN:0266-4720, 1468-0394
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As one of the commonly used data mining algorithms, K‐means has the advantage of fast clustering speed, but the disadvantage is that it is less effective for clustering non‐spherical data. An improved K‐means algorithm (IK‐means) is proposed to enhance clustering efficiency for non‐spherical data. The original dataset is clustered into a relatively larger number of high‐density sub‐clusters, and the final result is obtained by merging connected sub‐clusters respectively. The connectivity among sub‐clusters is evaluated by the sub‐clusters density and the nearest distance class between sub‐clusters. By testing on University of California, Irvine(UCI) datasets and several other artificial simulation datasets, the comparison of proposed IK‐means algorithm against DBSCAN, KGFCM shows its clustering capability for data of arbitrary shape. The clustering Adjusted Rand Index (ARI) value for 72,000 sizes data is 24% higher than DBSCAN, and 95.2% higher than KGFCM. For larger datasets, the IK‐means algorithm is faster than DBSCAN and KGFCM.
AbstractList As one of the commonly used data mining algorithms, K‐means has the advantage of fast clustering speed, but the disadvantage is that it is less effective for clustering non‐spherical data. An improved K‐means algorithm (IK‐means) is proposed to enhance clustering efficiency for non‐spherical data. The original dataset is clustered into a relatively larger number of high‐density sub‐clusters, and the final result is obtained by merging connected sub‐clusters respectively. The connectivity among sub‐clusters is evaluated by the sub‐clusters density and the nearest distance class between sub‐clusters. By testing on University of California, Irvine(UCI) datasets and several other artificial simulation datasets, the comparison of proposed IK‐means algorithm against DBSCAN, KGFCM shows its clustering capability for data of arbitrary shape. The clustering Adjusted Rand Index (ARI) value for 72,000 sizes data is 24% higher than DBSCAN, and 95.2% higher than KGFCM. For larger datasets, the IK‐means algorithm is faster than DBSCAN and KGFCM.
Author He, Honglei
Wang, Fang
Zhu, Wenming
He, Yuxuan
Author_xml – sequence: 1
  givenname: Honglei
  orcidid: 0000-0001-7310-3586
  surname: He
  fullname: He, Honglei
  organization: Lianyungang Technical College
– sequence: 2
  givenname: Yuxuan
  orcidid: 0000-0003-3113-7184
  surname: He
  fullname: He, Yuxuan
  organization: Xuzhou University of Technology
– sequence: 3
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  organization: Lianyungang TCM Branch of Jiangsu Union Technical Institute
– sequence: 4
  givenname: Wenming
  orcidid: 0000-0002-8127-4251
  surname: Zhu
  fullname: Zhu, Wenming
  email: rayman_zhu@163.com
  organization: Shenzhen Institute of Information Technology
BookMark eNp9kEtOwzAQhi1UJNrChhNEYoeUMn7ETnagqkBFJRaABCvLSZzWVR7FToHsOAJn5CS4hBVCzGYe-v6Z0T9Cg7qpNULHGCbYx5l-c90EU-BkDw0x43EINGEDNATCecgEgQM0cm4NAFgIPkTn82pjmxedBzef7x-VVrULVLlsrGlXVVA0NsjKrWu1NfUy8Mc85DYr32aqDHLVqkO0X6jS6aOfPEYPl7P76XW4uL2aTy8WYUYBkzDiWcoTrVLqP0kZSWJK0lwIFaWKEUaLBIpYAeMRzrDwJfVjziMQMcuTFNMxOun3-neft9q1ct1sbe1PSiIIpYQAZ56Cnsps45zVhcxMq1rT1K1VppQY5M4nufNJfvvkJae_JBtrKmW7v2Hcw6-m1N0_pJw93j31mi8ZCHv4
CitedBy_id crossref_primary_10_3390_su142013328
crossref_primary_10_1016_j_jafr_2025_101895
crossref_primary_10_1109_ACCESS_2024_3494044
crossref_primary_10_1088_2631_8695_adf59a
crossref_primary_10_1111_exsy_70042
crossref_primary_10_1145_3627816
crossref_primary_10_1016_j_patcog_2024_110639
crossref_primary_10_1016_j_asoc_2024_111419
Cites_doi 10.3390/s21051892
10.1142/S0218001419500125
10.1109/ICAICA50127.2020.9182394
10.1109/CloudCom.2013.89
10.1109/ACCESS.2020.3025193
10.1109/TCE.2009.5373781
10.1007/s11704-013-3158-3
10.1109/ICDMW.2017.12
10.1109/TCYB.2017.270234.w
10.1016/j.physa.2018.09.002
10.1109/IS3C.2012.166
10.1109/CLUSTER.2019.8891020
10.1109/IMSNA.2013.6743470
10.1109/2.781637
10.1109/TNN.2002.1000150
10.1109/ICCKE.2016.7802150
10.1109/TWC.2015.2467394
10.1109/ACCESS.2020.2988796
10.1109/TIP.2018.2796860
10.1145/3007748.3007773
10.2174/2213275912666190716121431
10.1109/LGRS.2016.2550666
10.3724/SP.J.1001.2008.01683
10.1109/NGCT.2015.7375201
10.1109/ISRITI.2018.8864459
10.1109/ICCECE51280.2021.9342102
10.1007/s00357-010-9049-5
10.1109/ICMSS.2009.5305409
10.1016/j.patcog.2016.03.008
10.1109/ICSESS49938.2020.9237746
10.1007/s10115-009-0216-0
10.1109/TKDE.2007.44
10.26599/TST.2019.9010078
10.1109/ICAPR.2017.8593078
10.1109/TCYB.2018.2868742
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.13062
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_13062
EXSY13062
Genre article
GrantInformation_xml – fundername: Shenzhen Edu Science Project Plan (Project No: DWZZ19002)
– fundername: Guangdong Edu Science Project Plan (Project No: 2021GXJK513)
– fundername: Lianyungang High‐tech Zone Science and Technology Project Plan (Project No: ZD201915)
– fundername: Lianyungang Technical College Project Plan(Project No: XZD202001)
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3012-56cb69eab3026b429832bd77a5ba4243f90f8a04651c17f8a3a426650784d9b13
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000828649100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Sun Nov 30 04:01:40 EST 2025
Sat Nov 29 03:32:46 EST 2025
Tue Nov 18 22:18:30 EST 2025
Wed Jan 22 16:23:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3012-56cb69eab3026b429832bd77a5ba4243f90f8a04651c17f8a3a426650784d9b13
Notes Funding information
Guangdong Edu Science Project Plan (Project No: 2021GXJK513); Lianyungang High‐tech Zone Science and Technology Project Plan (Project No: ZD201915); Lianyungang Technical College Project Plan(Project No: XZD202001); Shenzhen Edu Science Project Plan (Project No: DWZZ19002)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3113-7184
0000-0001-7310-3586
0000-0002-8127-4251
PQID 2723322064
PQPubID 32130
PageCount 23
ParticipantIDs proquest_journals_2723322064
crossref_citationtrail_10_1111_exsy_13062
crossref_primary_10_1111_exsy_13062
wiley_primary_10_1111_exsy_13062_EXSY13062
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 19
2021; 26
2021; 21
2009; 21
2017; 48
2020; 42
2012
2019; 33
2013; 24
2002; 13
2008; 19
2009
2020; 13
2016; 15
2018; 27
2016; 58
2016; 13
2020; 8
2009; 55
2010; 27
2021
2018; 514
2020; 50
2020
2019
2018
2017
1999; 32
2016
2015
2013
2014; 8
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_20_1
Liu X. (e_1_2_10_22_1) 2020; 42
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Ma R. N. (e_1_2_10_24_1) 2013; 24
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – year: 2009
– volume: 13
  start-page: 234
  issue: 2
  year: 2020
  end-page: 239
  article-title: The kernel rough K‐means algorithm
  publication-title: Recent Advances in Computer Science and Communications
– volume: 55
  start-page: 2145
  issue: 4
  year: 2009
  end-page: 2153
  article-title: Adaptive fuzzy moving K‐means clustering algorithm for image segmentation
  publication-title: IEEE Transactions on Consumer Electronics
– volume: 19
  start-page: 345
  issue: 3
  year: 2007
  end-page: 354
  article-title: K‐means+ID3: A novel method for supervised anomaly detection by cascading K‐means clustering and ID3 decision tree learning methods
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 514
  start-page: 25
  year: 2018
  end-page: 35
  article-title: DPC‐LG: Density peaks clustering based on logistic distribution and gravitation
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 21
  start-page: 1892
  issue: 5
  year: 2021
  article-title: Kernel probabilistic K‐means clustering
  publication-title: Sensors
– volume: 13
  start-page: 780
  issue: 3
  year: 2002
  end-page: 784
  article-title: Mercer kernel‐based clustering in feature space
  publication-title: IEEE Transactions on Neural Networks
– volume: 8
  start-page: 83
  issue: 1
  year: 2014
  end-page: 99
  article-title: MR‐DBSCAN: A scalable MapReduce‐based DBSCAN algorithm for heavily skewed data
  publication-title: Frontiers of Computer Science
– volume: 50
  start-page: 247
  issue: 1
  year: 2020
  end-page: 258
  article-title: Spectral clustering by joint spectral embedding and spectral rotation
  publication-title: IEEE Transactions on Cybernetics
– start-page: 124
  year: 2020
  end-page: 127
– volume: 27
  start-page: 3
  issue: 1
  year: 2010
  end-page: 40
  article-title: Intelligent choice of the number of clusters in K‐means clustering: An experimental study with different cluster spreads
  publication-title: Journal of Classification
– start-page: 33
  year: 2017
  end-page: 42
– start-page: 476
  year: 2021
  end-page: 479
– volume: 58
  start-page: 39
  year: 2016
  end-page: 48
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognition
– volume: 13
  start-page: 856
  issue: 6
  year: 2016
  end-page: 860
  article-title: SAR image change detection based on multiple kernel K‐means clustering with local‐neighborhood information
  publication-title: IEEE Geoscience and Remote Sensing Letters
– year: 2016
– volume: 15
  start-page: 103
  issue: 1
  year: 2016
  end-page: 115
  article-title: Coding‐aided K‐means clustering blind transceiver for space shift keying MIMO systems
  publication-title: IEEE Transactions on Wireless Communications
– volume: 8
  start-page: 171129
  year: 2020
  end-page: 171139
  article-title: Image object extraction based on semantic detection and improved K‐means algorithm
  publication-title: IEEE Access
– year: 2018
– start-page: 201
  year: 2020
  end-page: 207
– volume: 42
  start-page: 1191
  issue: 5
  year: 2020
  end-page: 1204
  article-title: Multiple kernel k‐means with incomplete kernels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1
  year: 2019
  end-page: 11
– volume: 26
  start-page: 185
  issue: 2
  year: 2021
  end-page: 198
  article-title: TW‐co‐MFC: Two‐level weighted collaborative fuzzy clustering based on maximum entropy for multi‐view data
  publication-title: Tsinghua Science and Technology
– year: 2012
– volume: 24
  issue: 3
  year: 2013
  article-title: Multilevel core‐sets based aggregation clustering algorithm
  publication-title: Journal of Software
– volume: 21
  start-page: 201
  issue: 2
  year: 2009
  end-page: 229
  article-title: PARCL: An effective and efficient algorithm for mining arbitrary shape‐based clusters
  publication-title: Knowledge and Information Systems
– volume: 8
  start-page: 80716
  year: 2020
  end-page: 80727
  article-title: Unsupervised K‐means clustering algorithm
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 6
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  end-page: 75
  article-title: Chameleon: Hierarchical clustering using dynamic modeling
  publication-title: IEEE Computer
– volume: 19
  start-page: 1683
  year: 2008
  end-page: 1692
  article-title: An efficient clustering algorithm based on K‐means local optimality
  publication-title: Journal of Software
– volume: 48
  start-page: 1460
  issue: 5
  year: 2017
  end-page: 1473
  article-title: Locally weighted ensemble clustering
  publication-title: IEEE Transactions on Cybernetics
– start-page: 17
  year: 2013
  end-page: 24
– year: 2017
– volume: 33
  start-page: 19
  year: 2019
  article-title: HaloDPC: An improved recognition method on halo node for density peak clustering algorithm
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– year: 2015
– volume: 27
  start-page: 2108
  issue: 5
  year: 2018
  end-page: 2120
  article-title: Kernel K‐means sampling for Nyström approximation
  publication-title: IEEE Transactions on Image Processing
– start-page: 1088
  year: 2013
  end-page: 1092
– ident: e_1_2_10_21_1
  doi: 10.3390/s21051892
– ident: e_1_2_10_16_1
  doi: 10.1142/S0218001419500125
– ident: e_1_2_10_31_1
  doi: 10.1109/ICAICA50127.2020.9182394
– ident: e_1_2_10_6_1
  doi: 10.1109/CloudCom.2013.89
– ident: e_1_2_10_30_1
  doi: 10.1109/ACCESS.2020.3025193
– ident: e_1_2_10_26_1
  doi: 10.1109/TCE.2009.5373781
– ident: e_1_2_10_11_1
  doi: 10.1007/s11704-013-3158-3
– ident: e_1_2_10_27_1
  doi: 10.1109/ICDMW.2017.12
– ident: e_1_2_10_13_1
  doi: 10.1109/TCYB.2017.270234.w
– ident: e_1_2_10_15_1
  doi: 10.1016/j.physa.2018.09.002
– volume: 24
  start-page: 490506
  issue: 3
  year: 2013
  ident: e_1_2_10_24_1
  article-title: Multilevel core‐sets based aggregation clustering algorithm
  publication-title: Journal of Software
– ident: e_1_2_10_35_1
  doi: 10.1109/IS3C.2012.166
– ident: e_1_2_10_32_1
  doi: 10.1109/CLUSTER.2019.8891020
– ident: e_1_2_10_4_1
  doi: 10.1109/IMSNA.2013.6743470
– ident: e_1_2_10_17_1
  doi: 10.1109/2.781637
– ident: e_1_2_10_8_1
  doi: 10.1109/TNN.2002.1000150
– ident: e_1_2_10_23_1
  doi: 10.1109/ICCKE.2016.7802150
– ident: e_1_2_10_20_1
  doi: 10.1109/TWC.2015.2467394
– ident: e_1_2_10_34_1
  doi: 10.1109/ACCESS.2020.2988796
– ident: e_1_2_10_10_1
  doi: 10.1109/TIP.2018.2796860
– ident: e_1_2_10_18_1
  doi: 10.1145/3007748.3007773
– volume: 42
  start-page: 1191
  issue: 5
  year: 2020
  ident: e_1_2_10_22_1
  article-title: Multiple kernel k‐means with incomplete kernels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: e_1_2_10_37_1
  doi: 10.2174/2213275912666190716121431
– ident: e_1_2_10_14_1
  doi: 10.1109/LGRS.2016.2550666
– ident: e_1_2_10_19_1
  doi: 10.3724/SP.J.1001.2008.01683
– ident: e_1_2_10_28_1
  doi: 10.1109/NGCT.2015.7375201
– ident: e_1_2_10_36_1
  doi: 10.1109/ISRITI.2018.8864459
– ident: e_1_2_10_38_1
  doi: 10.1109/ICCECE51280.2021.9342102
– ident: e_1_2_10_5_1
  doi: 10.1007/s00357-010-9049-5
– ident: e_1_2_10_33_1
  doi: 10.1109/ICMSS.2009.5305409
– ident: e_1_2_10_25_1
  doi: 10.1016/j.patcog.2016.03.008
– ident: e_1_2_10_39_1
  doi: 10.1109/ICSESS49938.2020.9237746
– ident: e_1_2_10_2_1
  doi: 10.1007/s10115-009-0216-0
– ident: e_1_2_10_7_1
  doi: 10.1109/TKDE.2007.44
– ident: e_1_2_10_12_1
  doi: 10.26599/TST.2019.9010078
– ident: e_1_2_10_3_1
– ident: e_1_2_10_9_1
  doi: 10.1109/ICAPR.2017.8593078
– ident: e_1_2_10_29_1
  doi: 10.1109/TCYB.2018.2868742
SSID ssj0001776
Score 2.33091
Snippet As one of the commonly used data mining algorithms, K‐means has the advantage of fast clustering speed, but the disadvantage is that it is less effective for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
arbitrary shape
Clustering
Data mining
Datasets
Density
improved algorithm
K‐means
non‐spherical
Title Improved K‐means algorithm for clustering non‐spherical data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13062
https://www.proquest.com/docview/2723322064
Volume 39
WOSCitedRecordID wos000828649100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5K68GL9YnVKgG9KCx0s-lmFzwo2iJYiqiVelqS7K4W-pBuK3rzJ_gb_SVOsrttBRHEWw6zDybzzXwJyTcAh44R2WOxFbuCWchvXUs6iMe60jrVQjBhdAruW7zd9rpd_7oAJ_ldmFQfYrbhppFh8rUGuJDJAsij1-RN9zLWCbhEMXDrRShd3DQ7rVkmtrlpLofLDNdinNYyeVJ9kmf-9PeCNGeZi1zVFJtm-X-_uQorGckkZ2lUrEEhGq5DOW_gQDI8b8BpuqUQheTq8_1jEGHZIqL_OBr3Jk8DgnSWqP5UKylgfSPD0RCNEi1DoCeW6LOlm9BpNu7OL62spYKlEMm47HSVdP1ISAedIrEWIaBlyLmoS8Eoc2K_FnuiphukK5vj0BG6hCNp9FjoS9vZgiJ-LtoGEts0VrbCSLRDRrkrPD_0bSG14BnzaVyBo9yvgcr0xnXbi36Qrzu0awLjmgoczGyfU5WNH62q-fQEGdKSgHLqYFJCZlWBYzMRv7whaHRvH8xo5y_Gu7BM9a0HcwWxCsXJeBrtwZJ6mfSS8X4WdV-7Ctwr
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7ECnqxPrFadUEvCoEm2WaTm6ItlcYi2ko9hd1NooU-pA_Rmz_B3-gvcWaTtBVEEG97mDyYnW_m22X3G0KObS2yx2IjdgQzgN86hrQBj2WFOtVCMKF1Cu593mi47bZ3k57NwbswiT7EdMMNkaHzNQIcN6TnUB69jt6wmTFm4ByDOIIAz13eVlv-NBWbXHeXg3WGYzBulVJ9UjzKM3v6e0Wa0cx5sqqrTTX_z_9cI6spzaTnSVysk4Wov0HyWQsHmiJ6k5wlmwpRSOuf7x-9CAoXFd3HwbAzfupRILRUdSeopQAVjvYHfTAaoRABTi3F06VbpFWtNC9qRtpUwVCAZVh4Oko6XiSkDV6RUI0A0jLkXJSlYBazY68Uu6KELdKVyWFoCyziQBtdFnrStLfJInwu2iE0Nq1YmQpi0QyZxR3heqFnComSZ8yz4gI5yRwbqFRxHBtfdINs5YGuCbRrCuRoavuc6Gz8aFXM5idIsTYKLG7ZkJaAWxXIqZ6JX94QVNp3D3q0-xfjQ7Jca177gX_VqO-RFQvvQOgLiUWyOB5Oon2ypF7GndHwIA3BL-uv4Bs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kFfFifWK16oJeFAJNsk2am2IbFEspaqWewmaTaKEvmlb05k_wN_pLnNkkbQURxNseJg9m9puZXXa_D-DEVCR7PNIiS3AN-1tL803EY0UST7UQXCiegoeG3WxWOx2nlZ7NobswCT_EbMONkKHyNQE8HAXRAsrD1_iNxIwpA-c5qcjkIF-7dduNWSrWbaUuh-sMS-O2UU75Sekoz_zp7xVp3mYuNquq2riFf_7nOqylbSa7SObFBiyFg00oZBIOLEX0FpwnmwphwG4-3z_6IRYuJnpPw3F38txn2NAy2ZsSlwJWODYYDtAoJiICCi2j06Xb0Hbr95dXWiqqoEnEMi48LelbTih8E73iYzVCSPuBbYuKL7jBzcgpR1VRJol0qds4NAUVcWwbqzxwfN3cgRx-LtwFFulGJHWJc1EPuGFbouoEji58ojzjjhEV4TRzrCdTxnESvuh52cqDXOMp1xTheGY7Sng2frQqZfHxUqzFnmEbJqYl7K2KcKYi8csbvHrn7lGN9v5ifAQrrZrrNa6bN_uwatAVCHUfsQS5yXgaHsCyfJl04_FhOgO_AKZf35Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+K%E2%80%90means+algorithm+for+clustering+non%E2%80%90spherical+data&rft.jtitle=Expert+systems&rft.au=He%2C+Honglei&rft.au=He%2C+Yuxuan&rft.au=Wang%2C+Fang&rft.au=Zhu%2C+Wenming&rft.date=2022-11-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.13062&rft.externalDBID=10.1111%252Fexsy.13062&rft.externalDocID=EXSY13062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon