Investigation of microscale fracture mechanisms in glass–ceramics using peridynamics simulations
Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in obtaining superior properties compared to those of the precursor glass. Controlled crystallization enables creation of a microstructure with mu...
Saved in:
| Published in: | Journal of the American Ceramic Society Vol. 105; no. 6; pp. 4304 - 4320 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Columbus
Wiley Subscription Services, Inc
01.06.2022
|
| Subjects: | |
| ISSN: | 0002-7820, 1551-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in obtaining superior properties compared to those of the precursor glass. Controlled crystallization enables creation of a microstructure with multiple phases which impacts macroscale properties in interesting ways. The present work develops microstructure‐scale computational models using the theory of peridynamics to investigate the increase in fracture toughness of GCs compared to traditional glass. Computational modeling is a promising tool to probe microstructural mechanics, but such studies in the literature are scarce. In this work, the theory of peridynamics, a non‐local theory of continuum mechanics, is applied to simulate crack propagation through microstructural realizations of a model lithium‐disilicate glass–ceramic. The crystalline and glassy phases within the microstructure are explicitly considered, with the size and shape of crystals inspired by experimental data. Multiple toughening mechanisms are revealed, which are functions of crystallinity and morphology, and the impact on fracture toughness is demonstrated. Crack path tortuosity is studied, and it is found that an optimum level of crack path tortuosity can be obtained in the range of 0.6–0.8 crystallinity. Numerical results are shown to agree well with previously published experimental and modeling results. |
|---|---|
| AbstractList | Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in obtaining superior properties compared to those of the precursor glass. Controlled crystallization enables creation of a microstructure with multiple phases which impacts macroscale properties in interesting ways. The present work develops microstructure‐scale computational models using the theory of peridynamics to investigate the increase in fracture toughness of GCs compared to traditional glass. Computational modeling is a promising tool to probe microstructural mechanics, but such studies in the literature are scarce. In this work, the theory of peridynamics, a non‐local theory of continuum mechanics, is applied to simulate crack propagation through microstructural realizations of a model lithium‐disilicate glass–ceramic. The crystalline and glassy phases within the microstructure are explicitly considered, with the size and shape of crystals inspired by experimental data. Multiple toughening mechanisms are revealed, which are functions of crystallinity and morphology, and the impact on fracture toughness is demonstrated. Crack path tortuosity is studied, and it is found that an optimum level of crack path tortuosity can be obtained in the range of 0.6–0.8 crystallinity. Numerical results are shown to agree well with previously published experimental and modeling results. |
| Author | Prakash, Naveen Deng, Binghui Stewart, Ross J. Harris, Jason T. Smith, Charlene M. |
| Author_xml | – sequence: 1 givenname: Naveen orcidid: 0000-0002-5372-3988 surname: Prakash fullname: Prakash, Naveen email: PrakashN2@corning.com organization: Corning Incorporated – sequence: 2 givenname: Binghui surname: Deng fullname: Deng, Binghui organization: Corning Incorporated – sequence: 3 givenname: Ross J. surname: Stewart fullname: Stewart, Ross J. organization: Corning Incorporated – sequence: 4 givenname: Charlene M. surname: Smith fullname: Smith, Charlene M. organization: Corning Research and Development Corporation – sequence: 5 givenname: Jason T. surname: Harris fullname: Harris, Jason T. organization: Corning Incorporated |
| BookMark | eNp9kMFKAzEURYNUsK1u_IKAO2FqkkmmmWUpVSsFN7oe0sxLTZnJ1GRG6c5_8A_9EtOOKxHfJrxw7n3cO0ID1zhA6JKSCY1zs1UaJlSmgpygIRWCJiyn2QANCSEsmUpGztAohG1caS75EK2X7g1CazeqtY3DjcG11b4JWlWAjVe67TzgGvSLcjbUAVuHN5UK4evjU4NXkQ64C9Zt8A68Lfeu_wq27qqjZzhHp0ZVAS5-3jF6vl08ze-T1ePdcj5bJTollCSG5HkJhKtSigxkSQnNeFYaWAslU2NImUrG1nTKOWXTqcglzbUgwFJIeZmZdIyuet-db167GKrYNp138WTBolMmieA8Utc9dUgZPJhi522t_L6gpDh0WBw6LI4dRpj8grVtj6lar2z1t4T2kndbwf4f8-JhNl_0mm9VjIhC |
| CitedBy_id | crossref_primary_10_1111_jace_18904 crossref_primary_10_1016_j_engfracmech_2023_109422 crossref_primary_10_1002_adem_202200350 crossref_primary_10_1063_5_0135015 crossref_primary_10_1016_j_jmps_2022_105189 crossref_primary_10_1007_s42102_023_00099_4 crossref_primary_10_2140_jomms_2024_19_235 crossref_primary_10_1016_j_jnoncrysol_2025_123559 crossref_primary_10_1016_j_carbon_2022_10_092 crossref_primary_10_1111_jace_19091 crossref_primary_10_32604_cmes_2024_047566 crossref_primary_10_1016_j_ijengsci_2024_104136 crossref_primary_10_1111_jace_70096 |
| Cites_doi | 10.1007/s10704-010-9442-4 10.1201/9781315373331 10.1111/jace.17183 10.1016/j.commatsci.2020.110211 10.1098/rspa.2015.0231 10.1016/j.compstruc.2004.11.026 10.1016/j.actamat.2021.116715 10.1016/j.ceramint.2018.03.240 10.1016/j.mechmat.2021.103849 10.1016/j.cma.2018.11.028 10.1016/j.cma.2014.04.002 10.1111/jace.16794 10.1088/1742-6596/125/1/012078 10.1016/j.msea.2016.05.068 10.1017/jmech.2019.61 10.3389/fmats.2016.00037 10.1016/j.compstruct.2021.113673 10.1111/j.1151-2916.1990.tb06493.x 10.1111/ffe.12618 10.1088/1361-651X/aa938e 10.1016/j.ijplas.2021.102991 10.1016/j.matdes.2010.02.013 10.1016/j.scriptamat.2018.11.034 10.1016/j.tafmec.2021.102999 10.1016/j.actamat.2014.12.007 10.1111/jace.16664 10.1007/s10704-009-9355-2 10.1016/S0022-5096(99)00029-0 10.1002/9781119423737 10.1016/j.ijsolstr.2014.05.027 10.1016/j.engfracmech.2017.04.003 10.1111/j.1151-2916.1975.tb19004.x 10.2109/jcersj.112.259 10.1111/j.1151-2916.1989.tb06079.x 10.1016/j.jnoncrysol.2012.01.040 10.1557/mrs.2017.31 10.1109/ECTC.2010.5490851 10.1016/j.jnoncrysol.2018.01.033 10.1016/j.commatsci.2015.11.008 10.1016/j.compstruct.2020.112613 10.1016/j.compscitech.2019.107770 10.1061/(ASCE)EM.1943-7889.0001176 10.1007/s42102-020-00041-y 10.1016/j.jeurceramsoc.2006.04.101 10.1088/1361-651X/abbfb9 10.1016/j.compstruct.2016.10.010 10.1016/j.jmbbm.2018.02.032 10.1016/j.cma.2012.01.016 10.1016/j.jmps.2012.09.013 10.1007/s10704-011-9628-4 10.1016/j.jmps.2012.09.011 |
| ContentType | Journal Article |
| Copyright | 2022 The American Ceramic Society |
| Copyright_xml | – notice: 2022 The American Ceramic Society |
| DBID | AAYXX CITATION 7QQ 7SR 8FD JG9 |
| DOI | 10.1111/jace.18350 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts Engineering |
| EISSN | 1551-2916 |
| EndPage | 4320 |
| ExternalDocumentID | 10_1111_jace_18350 JACE18350 |
| Genre | article |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS ADXHL AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7QQ 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c3010-f099de04ad856e8d101646dfeb5a83ff0d3822b1744127759819c50e23e34d6f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0002-7820 |
| IngestDate | Fri Jul 25 19:21:59 EDT 2025 Sat Nov 29 06:58:55 EST 2025 Tue Nov 18 22:32:59 EST 2025 Wed Jan 22 16:26:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3010-f099de04ad856e8d101646dfeb5a83ff0d3822b1744127759819c50e23e34d6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5372-3988 |
| PQID | 2646680544 |
| PQPubID | 41752 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2646680544 crossref_primary_10_1111_jace_18350 crossref_citationtrail_10_1111_jace_18350 wiley_primary_10_1111_jace_18350_JACE18350 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Columbus |
| PublicationPlace_xml | – name: Columbus |
| PublicationTitle | Journal of the American Ceramic Society |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 40 2021; 208 2017; 42 2000; 48 2016; 669 2013; 61 2009; 156 1975; 58 2018; 82 2019; 162 2018; 44 1989; 72 2020; 250 2021; 158 2021; 114 2015; 86 2016; 113 2017; 160 2014; 51 2012; 217 2007; 27 1990; 73 2010; 31 2021; 3 2017; 26 2018; 501 2010 2015; 94 2019; 346 2008 2020; 36 2021; 263 2021; 142 2010; 162 2021; 188 2020; 103 2005; 83 2017; 177 2014; 276 2019; 182 2011; 171 2010; 89 2004; 112 2015; 471 2012; 2 2016; 3 2021 2020; 28 2019 2016 2017; 143 2012; 358 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Zanotto ED (e_1_2_6_6_1) 2010; 89 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Bobaru F (e_1_2_6_27_1) 2012; 2 e_1_2_6_43_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Montazerian M (e_1_2_6_8_1) 2015; 94 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 Nguyen HA (e_1_2_6_55_1) 2021 e_1_2_6_40_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 Deng B (e_1_2_6_20_1) 2021 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
| References_xml | – volume: 471 issue: 2183 year: 2015 article-title: Peridynamic simulations of brittle structures with thermal residual deformation: Strengthening and structural reactivity of glasses under impacts publication-title: Proc R Soc A. – volume: 40 start-page: 1214 issue: 8 year: 2017 end-page: 26 article-title: Peridynamics for predicting damage and its growth in composites publication-title: Fatigue Fract Eng Mater Struct – volume: 162 start-page: 229 issue: 1 year: 2010 end-page: 44 article-title: Studies of dynamic crack propagation and crack branching with peridynamics publication-title: Int J Fract – volume: 113 start-page: 154 year: 2016 end-page: 70 article-title: Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites publication-title: Comput Mater Sci – volume: 86 start-page: 216 year: 2015 end-page: 28 article-title: Crystallization toughening of a model glass–ceramic publication-title: Acta Mater – volume: 143 issue: 4 year: 2017 article-title: Meshfree methods: Progress made after 20 years publication-title: J Eng Mech – volume: 501 start-page: 3 year: 2018 end-page: 10 article-title: Updated definition of glass–ceramics publication-title: J Non‐Cryst Solids – volume: 142 year: 2021 article-title: Three‐dimensional crystal plasticity simulations using peridynamics theory and experimental comparison publication-title: Int J Plast – start-page: 1 year: 2021 end-page: 27 article-title: An in‐depth investigation of bimaterial interface modeling using ordinary state‐based peridynamics publication-title: J Peridyn Nonlocal Model – volume: 82 start-page: 355 year: 2018 end-page: 70 article-title: Effect of microstructure on the mechanical properties of lithium disilicate glass–ceramics publication-title: J Mech Behav Biomed Mater – volume: 114 year: 2021 article-title: A peridynamic model for fracture analysis of polycrystalline BCC‐Fe associated with molecular dynamics simulation publication-title: Theor Appl Fract Mech – volume: 156 start-page: 165 issue: 2 year: 2009 end-page: 77 article-title: Prediction of crack paths in a quenched glass plate by using peridynamic theory publication-title: Int J Fract – volume: 217 start-page: 247 year: 2012 end-page: 61 article-title: Peridynamic model for dynamic fracture in unidirectional fiber‐reinforced composites publication-title: Comput Meth Appl Mech Eng – volume: 61 start-page: 489 issue: 2 year: 2013 end-page: 503 article-title: Prediction of fracture toughness of ceramic composites as function of microstructure: II. Analytical model publication-title: J Mech Phys Solids – volume: 44 start-page: 11650 issue: 10 year: 2018 end-page: 7 article-title: Strengthening of a lithium disilicate glass–ceramic by rapid cooling publication-title: Ceram Int – volume: 27 start-page: 1521 year: 2007 end-page: 6 article-title: Principles and phenomena of bioengineering with glass–ceramics for dental restoration publication-title: J Eur Ceram Soc – year: 2008 – volume: 263 year: 2021 article-title: A rate‐dependent peridynamic model for predicting the dynamic response of particle reinforced metal matrix composites publication-title: Compos Struct – volume: 3 start-page: 113 issue: 2 year: 2021 end-page: 47 article-title: A multi‐threaded method to assemble a sparse stiffness matrix for quasi‐static solutions of linearized bond‐based peridynamics publication-title: J Peridyn Nonlocal Model – volume: 182 year: 2019 article-title: A stochastically homogenized peridynamic model for intraply fracture in fiber‐reinforced composites publication-title: Compos Sci Technol – year: 2019 – volume: 48 start-page: 175 issue: 1 year: 2000 end-page: 209 article-title: Reformulation of elasticity theory for discontinuities and long‐range forces publication-title: J Mech Phys Solids – volume: 358 start-page: 975 year: 2012 end-page: 84 article-title: Internal residual stresses in glass–ceramics: A review publication-title: J Non‐Cryst Solids – volume: 3 year: 2016 article-title: Dr. S. Donald (Don) Stookey (1915–2014): Pioneering researcher and adventurer publication-title: Front Mater – volume: 51 start-page: 3350 year: 2014 end-page: 60 article-title: A peridynamic implementation of crystal plasticity publication-title: Int J Solids Struct – volume: 103 start-page: 965 issue: 2 year: 2020 end-page: 72 article-title: Toughening of Li O–2SiO glass–ceramics induced by intriguing deformation behavior of lithium disilicate nanocrystal publication-title: J Am Ceram Soc – volume: 26 issue: 1 year: 2017 article-title: Effects of microscale damage evolution on piezoresistive sensing in nanocomposite bonded explosives under dynamic loading via electromechanical peridynamics publication-title: Modell Simul Mater Sci Eng – volume: 31 start-page: 3270 issue: 7 year: 2010 end-page: 4 article-title: Flexural strength and translucent characteristics of lithium disilicate glass–ceramics with different P O content publication-title: Mater Design – volume: 89 start-page: 19 issue: 8 year: 2010 end-page: 27 article-title: Bright future for glass–ceramics publication-title: Am Ceram Soc Bull – volume: 177 start-page: 180 year: 2017 end-page: 202 article-title: Computational electromechanical peridynamics modeling of strain and damage sensing in nanocomposite bonded explosive materials (NCBX) publication-title: Eng Fract Mech – year: 2016 – volume: 346 start-page: 126 year: 2019 end-page: 51 article-title: Static solution of crack propagation problems in peridynamics publication-title: Comput Meth Appl Mech Eng – volume: 669 start-page: 332 year: 2016 end-page: 9 article-title: Effects of crystal size on the mechanical properties of a lithium disilicate glass–ceramic publication-title: Mater Sci Eng A – volume: 103 start-page: 465 issue: 1 year: 2020 end-page: 79 article-title: Residual stress effect on the fracture toughness of lithium disilicate glass–ceramics publication-title: J Am Ceram Soc – volume: 42 start-page: 220 issue: 3 year: 2017 end-page: 5 article-title: Nature‐inspired design of strong, tough glass–ceramics publication-title: MRS Bull – year: 2010 – volume: 158 year: 2021 article-title: A constitutive model for glass–ceramic materials publication-title: Mech Mater – volume: 73 start-page: 187 issue: 2 year: 1990 end-page: 206 article-title: Perspective on the development of high‐toughness ceramics publication-title: J Am Ceram Soc – volume: 72 start-page: 2300 issue: 12 year: 1989 end-page: 3 article-title: Interface debonding and fiber cracking in brittle matrix composites publication-title: J Am Ceram Soc – volume: 171 issue: 1 year: 2011 article-title: Predicting crack propagation with peridynamics: A comparative study publication-title: Int J Fract – volume: 28 issue: 8 year: 2020 article-title: Mesoscale strain and damage sensing in nanocomposite bonded energetic materials under low velocity impact with frictional heating via peridynamics publication-title: Modell Simul Mater Sci Eng – volume: 208 year: 2021 article-title: Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li O–2SiO glass–ceramics publication-title: Acta Mater – volume: 162 start-page: 277 year: 2019 end-page: 80 article-title: Molecular dynamics simulations on fracture toughness of Al O –SiO glass–ceramics publication-title: Scr Mater – volume: 94 start-page: 30 issue: 4 year: 2015 end-page: 5 article-title: An analysis of glass–ceramic research and commercialization publication-title: Am Ceram Soc Bull – volume: 250 year: 2020 article-title: An approach of peridynamic modeling associated with molecular dynamics for fracture simulation of particle reinforced metal matrix composites publication-title: Compos Struct – volume: 36 start-page: 223 issue: 2 year: 2020 end-page: 34 article-title: Peridynamic modelling of fracture in polycrystalline ice publication-title: J Mech – volume: 61 start-page: 472 issue: 2 year: 2013 end-page: 88 article-title: Prediction of fracture toughness of ceramic composites as function of microstructure: I. Numerical simulations publication-title: J Mech Phys Solids – volume: 188 year: 2021 article-title: Piezoresistive detection of simulated hotspots and the effects of low velocity impact at the mesoscale in nanocomposite bonded energetic materials via multiphysics peridynamics modeling publication-title: Comput Mater Sci – volume: 103 start-page: 4304 issue: 8 year: 2020 end-page: 12 article-title: Atomic picture of crack propagation in Li O–2SiO glass–ceramics revealed by molecular dynamics simulations publication-title: J Am Ceram Soc – volume: 160 start-page: 169 year: 2017 end-page: 84 article-title: Peridynamics for fatigue life and residual strength prediction of composite laminates publication-title: Compos Struct – volume: 2 start-page: 551 issue: 4 year: 2012 end-page: 61 article-title: Damage progression from impact in layered glass modeled with peridynamics publication-title: Cen Eur J Eng – start-page: 208: year: 2021 article-title: Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li O–2SiO glass–ceramics publication-title: Acta Mater – volume: 58 start-page: 385 year: 1975 end-page: 91 article-title: Strength and microstructure in lithium disilicate glass–ceramics publication-title: J Am Ceram Soc – volume: 276 start-page: 431 year: 2014 end-page: 52 article-title: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media publication-title: Comput Meth Appl Mech Eng – volume: 83 start-page: 1526 year: 2005 end-page: 35 article-title: A meshfree method based on the peridynamic model of solid mechanics publication-title: Comput Struct – volume: 112 start-page: 259 issue: 1305 year: 2004 end-page: 62 article-title: Strength of Li O–SiO ‐system transparent glass–ceramics publication-title: J Ceram Soc Jpn – ident: e_1_2_6_28_1 doi: 10.1007/s10704-010-9442-4 – ident: e_1_2_6_51_1 doi: 10.1201/9781315373331 – ident: e_1_2_6_19_1 doi: 10.1111/jace.17183 – ident: e_1_2_6_42_1 doi: 10.1016/j.commatsci.2020.110211 – volume: 89 start-page: 19 issue: 8 year: 2010 ident: e_1_2_6_6_1 article-title: Bright future for glass–ceramics publication-title: Am Ceram Soc Bull – ident: e_1_2_6_29_1 doi: 10.1098/rspa.2015.0231 – ident: e_1_2_6_53_1 doi: 10.1016/j.compstruc.2004.11.026 – ident: e_1_2_6_54_1 doi: 10.1016/j.actamat.2021.116715 – ident: e_1_2_6_11_1 doi: 10.1016/j.ceramint.2018.03.240 – start-page: 208: year: 2021 ident: e_1_2_6_20_1 article-title: Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li2O–2SiO2 glass–ceramics publication-title: Acta Mater – ident: e_1_2_6_5_1 doi: 10.1016/j.mechmat.2021.103849 – ident: e_1_2_6_56_1 doi: 10.1016/j.cma.2018.11.028 – ident: e_1_2_6_32_1 doi: 10.1016/j.cma.2014.04.002 – volume: 2 start-page: 551 issue: 4 year: 2012 ident: e_1_2_6_27_1 article-title: Damage progression from impact in layered glass modeled with peridynamics publication-title: Cen Eur J Eng – ident: e_1_2_6_21_1 doi: 10.1111/jace.16794 – ident: e_1_2_6_31_1 doi: 10.1088/1742-6596/125/1/012078 – ident: e_1_2_6_12_1 doi: 10.1016/j.msea.2016.05.068 – ident: e_1_2_6_33_1 doi: 10.1017/jmech.2019.61 – ident: e_1_2_6_7_1 doi: 10.3389/fmats.2016.00037 – ident: e_1_2_6_45_1 doi: 10.1016/j.compstruct.2021.113673 – ident: e_1_2_6_25_1 doi: 10.1111/j.1151-2916.1990.tb06493.x – volume: 94 start-page: 30 issue: 4 year: 2015 ident: e_1_2_6_8_1 article-title: An analysis of glass–ceramic research and commercialization publication-title: Am Ceram Soc Bull – ident: e_1_2_6_36_1 doi: 10.1111/ffe.12618 – ident: e_1_2_6_39_1 doi: 10.1088/1361-651X/aa938e – ident: e_1_2_6_46_1 doi: 10.1016/j.ijplas.2021.102991 – ident: e_1_2_6_16_1 doi: 10.1016/j.matdes.2010.02.013 – ident: e_1_2_6_14_1 doi: 10.1016/j.scriptamat.2018.11.034 – ident: e_1_2_6_34_1 doi: 10.1016/j.tafmec.2021.102999 – ident: e_1_2_6_3_1 doi: 10.1016/j.actamat.2014.12.007 – ident: e_1_2_6_23_1 doi: 10.1111/jace.16664 – ident: e_1_2_6_30_1 doi: 10.1007/s10704-009-9355-2 – ident: e_1_2_6_26_1 doi: 10.1016/S0022-5096(99)00029-0 – ident: e_1_2_6_2_1 doi: 10.1002/9781119423737 – ident: e_1_2_6_47_1 doi: 10.1016/j.ijsolstr.2014.05.027 – ident: e_1_2_6_41_1 doi: 10.1016/j.engfracmech.2017.04.003 – ident: e_1_2_6_15_1 doi: 10.1111/j.1151-2916.1975.tb19004.x – ident: e_1_2_6_17_1 doi: 10.2109/jcersj.112.259 – ident: e_1_2_6_58_1 doi: 10.1111/j.1151-2916.1989.tb06079.x – ident: e_1_2_6_22_1 doi: 10.1016/j.jnoncrysol.2012.01.040 – ident: e_1_2_6_9_1 doi: 10.1557/mrs.2017.31 – ident: e_1_2_6_49_1 doi: 10.1109/ECTC.2010.5490851 – start-page: 1 year: 2021 ident: e_1_2_6_55_1 article-title: An in‐depth investigation of bimaterial interface modeling using ordinary state‐based peridynamics publication-title: J Peridyn Nonlocal Model – ident: e_1_2_6_4_1 doi: 10.1016/j.jnoncrysol.2018.01.033 – ident: e_1_2_6_40_1 doi: 10.1016/j.commatsci.2015.11.008 – ident: e_1_2_6_44_1 doi: 10.1016/j.compstruct.2020.112613 – ident: e_1_2_6_37_1 doi: 10.1016/j.compscitech.2019.107770 – ident: e_1_2_6_50_1 doi: 10.1061/(ASCE)EM.1943-7889.0001176 – ident: e_1_2_6_52_1 doi: 10.1007/s42102-020-00041-y – ident: e_1_2_6_18_1 doi: 10.1016/j.jeurceramsoc.2006.04.101 – ident: e_1_2_6_43_1 doi: 10.1088/1361-651X/abbfb9 – ident: e_1_2_6_35_1 doi: 10.1016/j.compstruct.2016.10.010 – ident: e_1_2_6_13_1 doi: 10.1016/j.jmbbm.2018.02.032 – ident: e_1_2_6_38_1 doi: 10.1016/j.cma.2012.01.016 – ident: e_1_2_6_10_1 doi: 10.1016/j.actamat.2014.12.007 – ident: e_1_2_6_24_1 doi: 10.1016/j.jmps.2012.09.013 – ident: e_1_2_6_48_1 doi: 10.1007/s10704-011-9628-4 – ident: e_1_2_6_57_1 doi: 10.1016/j.jmps.2012.09.011 |
| SSID | ssj0001984 |
| Score | 2.4571517 |
| Snippet | Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4304 |
| SubjectTerms | Continuum mechanics Crack propagation Crystal structure Crystallinity Crystallization Fracture mechanics fracture mechanics/toughness Fracture toughness Glass ceramics Impact strength Lithium Microstructure modeling/model Precursors Tortuosity |
| Title | Investigation of microscale fracture mechanisms in glass–ceramics using peridynamics simulations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.18350 https://www.proquest.com/docview/2646680544 |
| Volume | 105 |
| WOSCitedRecordID | wos000752095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1551-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001984 issn: 0002-7820 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL2MzQd98FucTgnoi0JlTb_BlzE3RMYQcWNvJW0SKdhOms1n_4P_0F9ikna1ggjiWwu3peSem5yb3pwLcO6ZOCI4sA2T80AlKDLmeGQZBDPepdThnpZjmI688difzYL7BlyvzsIU-hDVhpuKDD1fqwAnkagHOYnZlQSkSthbWALXaULr5mE4GVUzsUyo7RX9VbpwpTypruSpnv6-IH2xzDpX1YvNcOt_n7kNmyXJRL0CFTvQYNkubNSkB-XdNBHLwkbsQVST25hnaM5Rqgr1hHQgQ1wdpFrmDKVMHRNORCpQkiHNuz_e3mOWq572AqkS-ieklJNp0eZeIJGkZXswsQ-T4eCxf2uU3ReM2FJ_yLnkjpR1bUJ9x2U-NbUUGeUscohvcelJS5KLSGY0tok9zwkkt4idLsMWs2zqcusAmtk8Y4eAfOJgCYhAq_W5ESdY0UJKYs83rcjz2nCxckEYl9LkqkPGc1ilKHIUQz2KbTirbF8KQY4frTorT4ZlUIpQcj_X9SVHtdtwqX32yxvCu15_oK-O_mJ8DOtYAV7v03SguciX7ATW4tdFIvLTEqCfErvqWg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA3iBPXBb3E6NaAvCpP1M-3jmBtT6xDZxt5K2yRSsJ00m8_-B_-hv8TctKsVRBDfWrgtJffc5Nz05lyEzommh4Humk2NcxcSFBlzPDSagc54i1KLEyXHMPbIYOBMJu5DUZsDZ2FyfYhyww0iQ83XEOCwIV2N8iBiVxKRkLHXTIkjCfDa9WNv5JVTscyozQX_BWG4Qp9UlfKUT39fkb5oZpWsqtWmt_nP79xCGwXNxO0cF9toiaU7aL0iPijvxrGY5zZiF4UVwY1piqccJ1CqJ6QLGeZwlGqeMZwwOCgci0TgOMWKeX-8vUcsg672AkMR_RMG7WSaN7oXWMRJ0SBM7KFRrzvs9JtF_4VmZMA_ci7ZI2UtM6COZTOHakqMjHIWWoFjcOlLQ9KLUOY0pqYTYrmSXURWi-kGM0xqc2MfLafTlB0g7ASWLiHhKr0-O-SBDsSQBhFxNCMkpI4uFj7wo0KcHHpkPPtlkiJH0VejWEdnpe1LLsnxo1Vj4Uq_CEvhS_Zn245kqWYdXSqn_fIG_7bd6aqrw78Yn6LV_vDe872bwd0RWtMB_mrXpoGWZ9mcHaOV6HUWi-ykQOsnGpTuSg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB2kFdEH72K16oK-KFSae_JY2gYvpRSxxbeQZHclYNPSbX32H_xDv8SdTRojiCC-JTAJYWdm98xm9hyAC0fTo1D3zIbGuYcFisw5HhmNUGe8SanFHUXHMOo5_b779OQN8t4cPAuT8UMUG26YGWq-xgRnU8rLWR7G7FpGJFbsVRNVZCpQ7Tz4w14xFcuK2lziXySGy_lJVStP8fT3FekLZpbBqlpt_K1_fuc2bOYwk7SyuNiBFZbuwkaJfFDejRKxyGzEHkQlwo1JSiacjLFVT0gXMsLxKNVixsiY4UHhRIwFSVKikPfH23vMZqhqLwg20T8T5E6mmdC9ICIZ5wJhYh-GfvexfdPI9RcasYH_yLlEj5Q1zZC6ls1cqikyMspZZIWuwaUvDQkvIlnTmJruOJYn0UVsNZluMMOkNjcOoJJOUnYIxA0tXYaEp_j67IiHOgJDGsaOqxmR49TgcumDIM7JyVEj4yUoihQ5ioEaxRqcF7bTjJLjR6v60pVBnpYikOjPtl2JUs0aXCmn_fKG4K7V7qqro78Yn8HaoOMHvdv-_TGs6xj9atOmDpX5bMFOYDV-nSdidpoH6yfAJ-3F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+microscale+fracture+mechanisms+in+glass%E2%80%93ceramics+using+peridynamics+simulations&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Prakash%2C+Naveen&rft.au=Deng%2C+Binghui&rft.au=Stewart%2C+Ross+J.&rft.au=Smith%2C+Charlene+M.&rft.date=2022-06-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=105&rft.issue=6&rft.spage=4304&rft.epage=4320&rft_id=info:doi/10.1111%2Fjace.18350&rft.externalDBID=10.1111%252Fjace.18350&rft.externalDocID=JACE18350 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |