Investigation of microscale fracture mechanisms in glass–ceramics using peridynamics simulations

Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in obtaining superior properties compared to those of the precursor glass. Controlled crystallization enables creation of a microstructure with mu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society Vol. 105; no. 6; pp. 4304 - 4320
Main Authors: Prakash, Naveen, Deng, Binghui, Stewart, Ross J., Smith, Charlene M., Harris, Jason T.
Format: Journal Article
Language:English
Published: Columbus Wiley Subscription Services, Inc 01.06.2022
Subjects:
ISSN:0002-7820, 1551-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in obtaining superior properties compared to those of the precursor glass. Controlled crystallization enables creation of a microstructure with multiple phases which impacts macroscale properties in interesting ways. The present work develops microstructure‐scale computational models using the theory of peridynamics to investigate the increase in fracture toughness of GCs compared to traditional glass. Computational modeling is a promising tool to probe microstructural mechanics, but such studies in the literature are scarce. In this work, the theory of peridynamics, a non‐local theory of continuum mechanics, is applied to simulate crack propagation through microstructural realizations of a model lithium‐disilicate glass–ceramic. The crystalline and glassy phases within the microstructure are explicitly considered, with the size and shape of crystals inspired by experimental data. Multiple toughening mechanisms are revealed, which are functions of crystallinity and morphology, and the impact on fracture toughness is demonstrated. Crack path tortuosity is studied, and it is found that an optimum level of crack path tortuosity can be obtained in the range of 0.6–0.8 crystallinity. Numerical results are shown to agree well with previously published experimental and modeling results.
AbstractList Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in obtaining superior properties compared to those of the precursor glass. Controlled crystallization enables creation of a microstructure with multiple phases which impacts macroscale properties in interesting ways. The present work develops microstructure‐scale computational models using the theory of peridynamics to investigate the increase in fracture toughness of GCs compared to traditional glass. Computational modeling is a promising tool to probe microstructural mechanics, but such studies in the literature are scarce. In this work, the theory of peridynamics, a non‐local theory of continuum mechanics, is applied to simulate crack propagation through microstructural realizations of a model lithium‐disilicate glass–ceramic. The crystalline and glassy phases within the microstructure are explicitly considered, with the size and shape of crystals inspired by experimental data. Multiple toughening mechanisms are revealed, which are functions of crystallinity and morphology, and the impact on fracture toughness is demonstrated. Crack path tortuosity is studied, and it is found that an optimum level of crack path tortuosity can be obtained in the range of 0.6–0.8 crystallinity. Numerical results are shown to agree well with previously published experimental and modeling results.
Author Prakash, Naveen
Deng, Binghui
Stewart, Ross J.
Harris, Jason T.
Smith, Charlene M.
Author_xml – sequence: 1
  givenname: Naveen
  orcidid: 0000-0002-5372-3988
  surname: Prakash
  fullname: Prakash, Naveen
  email: PrakashN2@corning.com
  organization: Corning Incorporated
– sequence: 2
  givenname: Binghui
  surname: Deng
  fullname: Deng, Binghui
  organization: Corning Incorporated
– sequence: 3
  givenname: Ross J.
  surname: Stewart
  fullname: Stewart, Ross J.
  organization: Corning Incorporated
– sequence: 4
  givenname: Charlene M.
  surname: Smith
  fullname: Smith, Charlene M.
  organization: Corning Research and Development Corporation
– sequence: 5
  givenname: Jason T.
  surname: Harris
  fullname: Harris, Jason T.
  organization: Corning Incorporated
BookMark eNp9kMFKAzEURYNUsK1u_IKAO2FqkkmmmWUpVSsFN7oe0sxLTZnJ1GRG6c5_8A_9EtOOKxHfJrxw7n3cO0ID1zhA6JKSCY1zs1UaJlSmgpygIRWCJiyn2QANCSEsmUpGztAohG1caS75EK2X7g1CazeqtY3DjcG11b4JWlWAjVe67TzgGvSLcjbUAVuHN5UK4evjU4NXkQ64C9Zt8A68Lfeu_wq27qqjZzhHp0ZVAS5-3jF6vl08ze-T1ePdcj5bJTollCSG5HkJhKtSigxkSQnNeFYaWAslU2NImUrG1nTKOWXTqcglzbUgwFJIeZmZdIyuet-db167GKrYNp138WTBolMmieA8Utc9dUgZPJhi522t_L6gpDh0WBw6LI4dRpj8grVtj6lar2z1t4T2kndbwf4f8-JhNl_0mm9VjIhC
CitedBy_id crossref_primary_10_1111_jace_18904
crossref_primary_10_1016_j_engfracmech_2023_109422
crossref_primary_10_1002_adem_202200350
crossref_primary_10_1063_5_0135015
crossref_primary_10_1016_j_jmps_2022_105189
crossref_primary_10_1007_s42102_023_00099_4
crossref_primary_10_2140_jomms_2024_19_235
crossref_primary_10_1016_j_jnoncrysol_2025_123559
crossref_primary_10_1016_j_carbon_2022_10_092
crossref_primary_10_1111_jace_19091
crossref_primary_10_32604_cmes_2024_047566
crossref_primary_10_1016_j_ijengsci_2024_104136
crossref_primary_10_1111_jace_70096
Cites_doi 10.1007/s10704-010-9442-4
10.1201/9781315373331
10.1111/jace.17183
10.1016/j.commatsci.2020.110211
10.1098/rspa.2015.0231
10.1016/j.compstruc.2004.11.026
10.1016/j.actamat.2021.116715
10.1016/j.ceramint.2018.03.240
10.1016/j.mechmat.2021.103849
10.1016/j.cma.2018.11.028
10.1016/j.cma.2014.04.002
10.1111/jace.16794
10.1088/1742-6596/125/1/012078
10.1016/j.msea.2016.05.068
10.1017/jmech.2019.61
10.3389/fmats.2016.00037
10.1016/j.compstruct.2021.113673
10.1111/j.1151-2916.1990.tb06493.x
10.1111/ffe.12618
10.1088/1361-651X/aa938e
10.1016/j.ijplas.2021.102991
10.1016/j.matdes.2010.02.013
10.1016/j.scriptamat.2018.11.034
10.1016/j.tafmec.2021.102999
10.1016/j.actamat.2014.12.007
10.1111/jace.16664
10.1007/s10704-009-9355-2
10.1016/S0022-5096(99)00029-0
10.1002/9781119423737
10.1016/j.ijsolstr.2014.05.027
10.1016/j.engfracmech.2017.04.003
10.1111/j.1151-2916.1975.tb19004.x
10.2109/jcersj.112.259
10.1111/j.1151-2916.1989.tb06079.x
10.1016/j.jnoncrysol.2012.01.040
10.1557/mrs.2017.31
10.1109/ECTC.2010.5490851
10.1016/j.jnoncrysol.2018.01.033
10.1016/j.commatsci.2015.11.008
10.1016/j.compstruct.2020.112613
10.1016/j.compscitech.2019.107770
10.1061/(ASCE)EM.1943-7889.0001176
10.1007/s42102-020-00041-y
10.1016/j.jeurceramsoc.2006.04.101
10.1088/1361-651X/abbfb9
10.1016/j.compstruct.2016.10.010
10.1016/j.jmbbm.2018.02.032
10.1016/j.cma.2012.01.016
10.1016/j.jmps.2012.09.013
10.1007/s10704-011-9628-4
10.1016/j.jmps.2012.09.011
ContentType Journal Article
Copyright 2022 The American Ceramic Society
Copyright_xml – notice: 2022 The American Ceramic Society
DBID AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.18350
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage 4320
ExternalDocumentID 10_1111_jace_18350
JACE18350
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
ADXHL
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c3010-f099de04ad856e8d101646dfeb5a83ff0d3822b1744127759819c50e23e34d6f3
IEDL.DBID DRFUL
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-7820
IngestDate Fri Jul 25 19:21:59 EDT 2025
Sat Nov 29 06:58:55 EST 2025
Tue Nov 18 22:32:59 EST 2025
Wed Jan 22 16:26:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3010-f099de04ad856e8d101646dfeb5a83ff0d3822b1744127759819c50e23e34d6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5372-3988
PQID 2646680544
PQPubID 41752
PageCount 17
ParticipantIDs proquest_journals_2646680544
crossref_primary_10_1111_jace_18350
crossref_citationtrail_10_1111_jace_18350
wiley_primary_10_1111_jace_18350_JACE18350
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2021; 208
2017; 42
2000; 48
2016; 669
2013; 61
2009; 156
1975; 58
2018; 82
2019; 162
2018; 44
1989; 72
2020; 250
2021; 158
2021; 114
2015; 86
2016; 113
2017; 160
2014; 51
2012; 217
2007; 27
1990; 73
2010; 31
2021; 3
2017; 26
2018; 501
2010
2015; 94
2019; 346
2008
2020; 36
2021; 263
2021; 142
2010; 162
2021; 188
2020; 103
2005; 83
2017; 177
2014; 276
2019; 182
2011; 171
2010; 89
2004; 112
2015; 471
2012; 2
2016; 3
2021
2020; 28
2019
2016
2017; 143
2012; 358
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
Zanotto ED (e_1_2_6_6_1) 2010; 89
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Bobaru F (e_1_2_6_27_1) 2012; 2
e_1_2_6_43_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Montazerian M (e_1_2_6_8_1) 2015; 94
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
Nguyen HA (e_1_2_6_55_1) 2021
e_1_2_6_40_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Deng B (e_1_2_6_20_1) 2021
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – volume: 471
  issue: 2183
  year: 2015
  article-title: Peridynamic simulations of brittle structures with thermal residual deformation: Strengthening and structural reactivity of glasses under impacts
  publication-title: Proc R Soc A.
– volume: 40
  start-page: 1214
  issue: 8
  year: 2017
  end-page: 26
  article-title: Peridynamics for predicting damage and its growth in composites
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 162
  start-page: 229
  issue: 1
  year: 2010
  end-page: 44
  article-title: Studies of dynamic crack propagation and crack branching with peridynamics
  publication-title: Int J Fract
– volume: 113
  start-page: 154
  year: 2016
  end-page: 70
  article-title: Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites
  publication-title: Comput Mater Sci
– volume: 86
  start-page: 216
  year: 2015
  end-page: 28
  article-title: Crystallization toughening of a model glass–ceramic
  publication-title: Acta Mater
– volume: 143
  issue: 4
  year: 2017
  article-title: Meshfree methods: Progress made after 20 years
  publication-title: J Eng Mech
– volume: 501
  start-page: 3
  year: 2018
  end-page: 10
  article-title: Updated definition of glass–ceramics
  publication-title: J Non‐Cryst Solids
– volume: 142
  year: 2021
  article-title: Three‐dimensional crystal plasticity simulations using peridynamics theory and experimental comparison
  publication-title: Int J Plast
– start-page: 1
  year: 2021
  end-page: 27
  article-title: An in‐depth investigation of bimaterial interface modeling using ordinary state‐based peridynamics
  publication-title: J Peridyn Nonlocal Model
– volume: 82
  start-page: 355
  year: 2018
  end-page: 70
  article-title: Effect of microstructure on the mechanical properties of lithium disilicate glass–ceramics
  publication-title: J Mech Behav Biomed Mater
– volume: 114
  year: 2021
  article-title: A peridynamic model for fracture analysis of polycrystalline BCC‐Fe associated with molecular dynamics simulation
  publication-title: Theor Appl Fract Mech
– volume: 156
  start-page: 165
  issue: 2
  year: 2009
  end-page: 77
  article-title: Prediction of crack paths in a quenched glass plate by using peridynamic theory
  publication-title: Int J Fract
– volume: 217
  start-page: 247
  year: 2012
  end-page: 61
  article-title: Peridynamic model for dynamic fracture in unidirectional fiber‐reinforced composites
  publication-title: Comput Meth Appl Mech Eng
– volume: 61
  start-page: 489
  issue: 2
  year: 2013
  end-page: 503
  article-title: Prediction of fracture toughness of ceramic composites as function of microstructure: II. Analytical model
  publication-title: J Mech Phys Solids
– volume: 44
  start-page: 11650
  issue: 10
  year: 2018
  end-page: 7
  article-title: Strengthening of a lithium disilicate glass–ceramic by rapid cooling
  publication-title: Ceram Int
– volume: 27
  start-page: 1521
  year: 2007
  end-page: 6
  article-title: Principles and phenomena of bioengineering with glass–ceramics for dental restoration
  publication-title: J Eur Ceram Soc
– year: 2008
– volume: 263
  year: 2021
  article-title: A rate‐dependent peridynamic model for predicting the dynamic response of particle reinforced metal matrix composites
  publication-title: Compos Struct
– volume: 3
  start-page: 113
  issue: 2
  year: 2021
  end-page: 47
  article-title: A multi‐threaded method to assemble a sparse stiffness matrix for quasi‐static solutions of linearized bond‐based peridynamics
  publication-title: J Peridyn Nonlocal Model
– volume: 182
  year: 2019
  article-title: A stochastically homogenized peridynamic model for intraply fracture in fiber‐reinforced composites
  publication-title: Compos Sci Technol
– year: 2019
– volume: 48
  start-page: 175
  issue: 1
  year: 2000
  end-page: 209
  article-title: Reformulation of elasticity theory for discontinuities and long‐range forces
  publication-title: J Mech Phys Solids
– volume: 358
  start-page: 975
  year: 2012
  end-page: 84
  article-title: Internal residual stresses in glass–ceramics: A review
  publication-title: J Non‐Cryst Solids
– volume: 3
  year: 2016
  article-title: Dr. S. Donald (Don) Stookey (1915–2014): Pioneering researcher and adventurer
  publication-title: Front Mater
– volume: 51
  start-page: 3350
  year: 2014
  end-page: 60
  article-title: A peridynamic implementation of crystal plasticity
  publication-title: Int J Solids Struct
– volume: 103
  start-page: 965
  issue: 2
  year: 2020
  end-page: 72
  article-title: Toughening of Li O–2SiO glass–ceramics induced by intriguing deformation behavior of lithium disilicate nanocrystal
  publication-title: J Am Ceram Soc
– volume: 26
  issue: 1
  year: 2017
  article-title: Effects of microscale damage evolution on piezoresistive sensing in nanocomposite bonded explosives under dynamic loading via electromechanical peridynamics
  publication-title: Modell Simul Mater Sci Eng
– volume: 31
  start-page: 3270
  issue: 7
  year: 2010
  end-page: 4
  article-title: Flexural strength and translucent characteristics of lithium disilicate glass–ceramics with different P O content
  publication-title: Mater Design
– volume: 89
  start-page: 19
  issue: 8
  year: 2010
  end-page: 27
  article-title: Bright future for glass–ceramics
  publication-title: Am Ceram Soc Bull
– volume: 177
  start-page: 180
  year: 2017
  end-page: 202
  article-title: Computational electromechanical peridynamics modeling of strain and damage sensing in nanocomposite bonded explosive materials (NCBX)
  publication-title: Eng Fract Mech
– year: 2016
– volume: 346
  start-page: 126
  year: 2019
  end-page: 51
  article-title: Static solution of crack propagation problems in peridynamics
  publication-title: Comput Meth Appl Mech Eng
– volume: 669
  start-page: 332
  year: 2016
  end-page: 9
  article-title: Effects of crystal size on the mechanical properties of a lithium disilicate glass–ceramic
  publication-title: Mater Sci Eng A
– volume: 103
  start-page: 465
  issue: 1
  year: 2020
  end-page: 79
  article-title: Residual stress effect on the fracture toughness of lithium disilicate glass–ceramics
  publication-title: J Am Ceram Soc
– volume: 42
  start-page: 220
  issue: 3
  year: 2017
  end-page: 5
  article-title: Nature‐inspired design of strong, tough glass–ceramics
  publication-title: MRS Bull
– year: 2010
– volume: 158
  year: 2021
  article-title: A constitutive model for glass–ceramic materials
  publication-title: Mech Mater
– volume: 73
  start-page: 187
  issue: 2
  year: 1990
  end-page: 206
  article-title: Perspective on the development of high‐toughness ceramics
  publication-title: J Am Ceram Soc
– volume: 72
  start-page: 2300
  issue: 12
  year: 1989
  end-page: 3
  article-title: Interface debonding and fiber cracking in brittle matrix composites
  publication-title: J Am Ceram Soc
– volume: 171
  issue: 1
  year: 2011
  article-title: Predicting crack propagation with peridynamics: A comparative study
  publication-title: Int J Fract
– volume: 28
  issue: 8
  year: 2020
  article-title: Mesoscale strain and damage sensing in nanocomposite bonded energetic materials under low velocity impact with frictional heating via peridynamics
  publication-title: Modell Simul Mater Sci Eng
– volume: 208
  year: 2021
  article-title: Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li O–2SiO glass–ceramics
  publication-title: Acta Mater
– volume: 162
  start-page: 277
  year: 2019
  end-page: 80
  article-title: Molecular dynamics simulations on fracture toughness of Al O –SiO glass–ceramics
  publication-title: Scr Mater
– volume: 94
  start-page: 30
  issue: 4
  year: 2015
  end-page: 5
  article-title: An analysis of glass–ceramic research and commercialization
  publication-title: Am Ceram Soc Bull
– volume: 250
  year: 2020
  article-title: An approach of peridynamic modeling associated with molecular dynamics for fracture simulation of particle reinforced metal matrix composites
  publication-title: Compos Struct
– volume: 36
  start-page: 223
  issue: 2
  year: 2020
  end-page: 34
  article-title: Peridynamic modelling of fracture in polycrystalline ice
  publication-title: J Mech
– volume: 61
  start-page: 472
  issue: 2
  year: 2013
  end-page: 88
  article-title: Prediction of fracture toughness of ceramic composites as function of microstructure: I. Numerical simulations
  publication-title: J Mech Phys Solids
– volume: 188
  year: 2021
  article-title: Piezoresistive detection of simulated hotspots and the effects of low velocity impact at the mesoscale in nanocomposite bonded energetic materials via multiphysics peridynamics modeling
  publication-title: Comput Mater Sci
– volume: 103
  start-page: 4304
  issue: 8
  year: 2020
  end-page: 12
  article-title: Atomic picture of crack propagation in Li O–2SiO glass–ceramics revealed by molecular dynamics simulations
  publication-title: J Am Ceram Soc
– volume: 160
  start-page: 169
  year: 2017
  end-page: 84
  article-title: Peridynamics for fatigue life and residual strength prediction of composite laminates
  publication-title: Compos Struct
– volume: 2
  start-page: 551
  issue: 4
  year: 2012
  end-page: 61
  article-title: Damage progression from impact in layered glass modeled with peridynamics
  publication-title: Cen Eur J Eng
– start-page: 208:
  year: 2021
  article-title: Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li O–2SiO glass–ceramics
  publication-title: Acta Mater
– volume: 58
  start-page: 385
  year: 1975
  end-page: 91
  article-title: Strength and microstructure in lithium disilicate glass–ceramics
  publication-title: J Am Ceram Soc
– volume: 276
  start-page: 431
  year: 2014
  end-page: 52
  article-title: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media
  publication-title: Comput Meth Appl Mech Eng
– volume: 83
  start-page: 1526
  year: 2005
  end-page: 35
  article-title: A meshfree method based on the peridynamic model of solid mechanics
  publication-title: Comput Struct
– volume: 112
  start-page: 259
  issue: 1305
  year: 2004
  end-page: 62
  article-title: Strength of Li O–SiO ‐system transparent glass–ceramics
  publication-title: J Ceram Soc Jpn
– ident: e_1_2_6_28_1
  doi: 10.1007/s10704-010-9442-4
– ident: e_1_2_6_51_1
  doi: 10.1201/9781315373331
– ident: e_1_2_6_19_1
  doi: 10.1111/jace.17183
– ident: e_1_2_6_42_1
  doi: 10.1016/j.commatsci.2020.110211
– volume: 89
  start-page: 19
  issue: 8
  year: 2010
  ident: e_1_2_6_6_1
  article-title: Bright future for glass–ceramics
  publication-title: Am Ceram Soc Bull
– ident: e_1_2_6_29_1
  doi: 10.1098/rspa.2015.0231
– ident: e_1_2_6_53_1
  doi: 10.1016/j.compstruc.2004.11.026
– ident: e_1_2_6_54_1
  doi: 10.1016/j.actamat.2021.116715
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ceramint.2018.03.240
– start-page: 208:
  year: 2021
  ident: e_1_2_6_20_1
  article-title: Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li2O–2SiO2 glass–ceramics
  publication-title: Acta Mater
– ident: e_1_2_6_5_1
  doi: 10.1016/j.mechmat.2021.103849
– ident: e_1_2_6_56_1
  doi: 10.1016/j.cma.2018.11.028
– ident: e_1_2_6_32_1
  doi: 10.1016/j.cma.2014.04.002
– volume: 2
  start-page: 551
  issue: 4
  year: 2012
  ident: e_1_2_6_27_1
  article-title: Damage progression from impact in layered glass modeled with peridynamics
  publication-title: Cen Eur J Eng
– ident: e_1_2_6_21_1
  doi: 10.1111/jace.16794
– ident: e_1_2_6_31_1
  doi: 10.1088/1742-6596/125/1/012078
– ident: e_1_2_6_12_1
  doi: 10.1016/j.msea.2016.05.068
– ident: e_1_2_6_33_1
  doi: 10.1017/jmech.2019.61
– ident: e_1_2_6_7_1
  doi: 10.3389/fmats.2016.00037
– ident: e_1_2_6_45_1
  doi: 10.1016/j.compstruct.2021.113673
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1151-2916.1990.tb06493.x
– volume: 94
  start-page: 30
  issue: 4
  year: 2015
  ident: e_1_2_6_8_1
  article-title: An analysis of glass–ceramic research and commercialization
  publication-title: Am Ceram Soc Bull
– ident: e_1_2_6_36_1
  doi: 10.1111/ffe.12618
– ident: e_1_2_6_39_1
  doi: 10.1088/1361-651X/aa938e
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ijplas.2021.102991
– ident: e_1_2_6_16_1
  doi: 10.1016/j.matdes.2010.02.013
– ident: e_1_2_6_14_1
  doi: 10.1016/j.scriptamat.2018.11.034
– ident: e_1_2_6_34_1
  doi: 10.1016/j.tafmec.2021.102999
– ident: e_1_2_6_3_1
  doi: 10.1016/j.actamat.2014.12.007
– ident: e_1_2_6_23_1
  doi: 10.1111/jace.16664
– ident: e_1_2_6_30_1
  doi: 10.1007/s10704-009-9355-2
– ident: e_1_2_6_26_1
  doi: 10.1016/S0022-5096(99)00029-0
– ident: e_1_2_6_2_1
  doi: 10.1002/9781119423737
– ident: e_1_2_6_47_1
  doi: 10.1016/j.ijsolstr.2014.05.027
– ident: e_1_2_6_41_1
  doi: 10.1016/j.engfracmech.2017.04.003
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1151-2916.1975.tb19004.x
– ident: e_1_2_6_17_1
  doi: 10.2109/jcersj.112.259
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1151-2916.1989.tb06079.x
– ident: e_1_2_6_22_1
  doi: 10.1016/j.jnoncrysol.2012.01.040
– ident: e_1_2_6_9_1
  doi: 10.1557/mrs.2017.31
– ident: e_1_2_6_49_1
  doi: 10.1109/ECTC.2010.5490851
– start-page: 1
  year: 2021
  ident: e_1_2_6_55_1
  article-title: An in‐depth investigation of bimaterial interface modeling using ordinary state‐based peridynamics
  publication-title: J Peridyn Nonlocal Model
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jnoncrysol.2018.01.033
– ident: e_1_2_6_40_1
  doi: 10.1016/j.commatsci.2015.11.008
– ident: e_1_2_6_44_1
  doi: 10.1016/j.compstruct.2020.112613
– ident: e_1_2_6_37_1
  doi: 10.1016/j.compscitech.2019.107770
– ident: e_1_2_6_50_1
  doi: 10.1061/(ASCE)EM.1943-7889.0001176
– ident: e_1_2_6_52_1
  doi: 10.1007/s42102-020-00041-y
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jeurceramsoc.2006.04.101
– ident: e_1_2_6_43_1
  doi: 10.1088/1361-651X/abbfb9
– ident: e_1_2_6_35_1
  doi: 10.1016/j.compstruct.2016.10.010
– ident: e_1_2_6_13_1
  doi: 10.1016/j.jmbbm.2018.02.032
– ident: e_1_2_6_38_1
  doi: 10.1016/j.cma.2012.01.016
– ident: e_1_2_6_10_1
  doi: 10.1016/j.actamat.2014.12.007
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jmps.2012.09.013
– ident: e_1_2_6_48_1
  doi: 10.1007/s10704-011-9628-4
– ident: e_1_2_6_57_1
  doi: 10.1016/j.jmps.2012.09.011
SSID ssj0001984
Score 2.4571517
Snippet Glass–ceramics (GCs), obtained by controlled crystallization of a specially formulated precursor glass, are interesting materials that show great promise in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4304
SubjectTerms Continuum mechanics
Crack propagation
Crystal structure
Crystallinity
Crystallization
Fracture mechanics
fracture mechanics/toughness
Fracture toughness
Glass ceramics
Impact strength
Lithium
Microstructure
modeling/model
Precursors
Tortuosity
Title Investigation of microscale fracture mechanisms in glass–ceramics using peridynamics simulations
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.18350
https://www.proquest.com/docview/2646680544
Volume 105
WOSCitedRecordID wos000752095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1551-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001984
  issn: 0002-7820
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL2MzQd98FucTgnoi0JlTb_BlzE3RMYQcWNvJW0SKdhOms1n_4P_0F9ikna1ggjiWwu3peSem5yb3pwLcO6ZOCI4sA2T80AlKDLmeGQZBDPepdThnpZjmI688difzYL7BlyvzsIU-hDVhpuKDD1fqwAnkagHOYnZlQSkSthbWALXaULr5mE4GVUzsUyo7RX9VbpwpTypruSpnv6-IH2xzDpX1YvNcOt_n7kNmyXJRL0CFTvQYNkubNSkB-XdNBHLwkbsQVST25hnaM5Rqgr1hHQgQ1wdpFrmDKVMHRNORCpQkiHNuz_e3mOWq572AqkS-ieklJNp0eZeIJGkZXswsQ-T4eCxf2uU3ReM2FJ_yLnkjpR1bUJ9x2U-NbUUGeUscohvcelJS5KLSGY0tok9zwkkt4idLsMWs2zqcusAmtk8Y4eAfOJgCYhAq_W5ESdY0UJKYs83rcjz2nCxckEYl9LkqkPGc1ilKHIUQz2KbTirbF8KQY4frTorT4ZlUIpQcj_X9SVHtdtwqX32yxvCu15_oK-O_mJ8DOtYAV7v03SguciX7ATW4tdFIvLTEqCfErvqWg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA3iBPXBb3E6NaAvCpP1M-3jmBtT6xDZxt5K2yRSsJ00m8_-B_-hv8TctKsVRBDfWrgtJffc5Nz05lyEzommh4Humk2NcxcSFBlzPDSagc54i1KLEyXHMPbIYOBMJu5DUZsDZ2FyfYhyww0iQ83XEOCwIV2N8iBiVxKRkLHXTIkjCfDa9WNv5JVTscyozQX_BWG4Qp9UlfKUT39fkb5oZpWsqtWmt_nP79xCGwXNxO0cF9toiaU7aL0iPijvxrGY5zZiF4UVwY1piqccJ1CqJ6QLGeZwlGqeMZwwOCgci0TgOMWKeX-8vUcsg672AkMR_RMG7WSaN7oXWMRJ0SBM7KFRrzvs9JtF_4VmZMA_ci7ZI2UtM6COZTOHakqMjHIWWoFjcOlLQ9KLUOY0pqYTYrmSXURWi-kGM0xqc2MfLafTlB0g7ASWLiHhKr0-O-SBDsSQBhFxNCMkpI4uFj7wo0KcHHpkPPtlkiJH0VejWEdnpe1LLsnxo1Vj4Uq_CEvhS_Zn245kqWYdXSqn_fIG_7bd6aqrw78Yn6LV_vDe872bwd0RWtMB_mrXpoGWZ9mcHaOV6HUWi-ykQOsnGpTuSg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB2kFdEH72K16oK-KFSae_JY2gYvpRSxxbeQZHclYNPSbX32H_xDv8SdTRojiCC-JTAJYWdm98xm9hyAC0fTo1D3zIbGuYcFisw5HhmNUGe8SanFHUXHMOo5_b779OQN8t4cPAuT8UMUG26YGWq-xgRnU8rLWR7G7FpGJFbsVRNVZCpQ7Tz4w14xFcuK2lziXySGy_lJVStP8fT3FekLZpbBqlpt_K1_fuc2bOYwk7SyuNiBFZbuwkaJfFDejRKxyGzEHkQlwo1JSiacjLFVT0gXMsLxKNVixsiY4UHhRIwFSVKikPfH23vMZqhqLwg20T8T5E6mmdC9ICIZ5wJhYh-GfvexfdPI9RcasYH_yLlEj5Q1zZC6ls1cqikyMspZZIWuwaUvDQkvIlnTmJruOJYn0UVsNZluMMOkNjcOoJJOUnYIxA0tXYaEp_j67IiHOgJDGsaOqxmR49TgcumDIM7JyVEj4yUoihQ5ioEaxRqcF7bTjJLjR6v60pVBnpYikOjPtl2JUs0aXCmn_fKG4K7V7qqro78Yn8HaoOMHvdv-_TGs6xj9atOmDpX5bMFOYDV-nSdidpoH6yfAJ-3F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+microscale+fracture+mechanisms+in+glass%E2%80%93ceramics+using+peridynamics+simulations&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Prakash%2C+Naveen&rft.au=Deng%2C+Binghui&rft.au=Stewart%2C+Ross+J.&rft.au=Smith%2C+Charlene+M.&rft.date=2022-06-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=105&rft.issue=6&rft.spage=4304&rft.epage=4320&rft_id=info:doi/10.1111%2Fjace.18350&rft.externalDBID=10.1111%252Fjace.18350&rft.externalDocID=JACE18350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon