Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life

Selective Laser Melting (SLM) and Electron Beam Melting (EBM) are powder bed fusion processing which allows to build-up parts by successive addition of layers using 3D-CAD models. Among the advantages, are the high degree of freedom for part design and the small loss of material, which explain the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia engineering Jg. 213; S. 89 - 97
Hauptverfasser: Vayssette, Bastien, Saintier, Nicolas, Brugger, Charles, Elmay, Mohamed, Pessard, Etienne
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 2018
Elsevier
Schlagworte:
ISSN:1877-7058, 1877-7058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Selective Laser Melting (SLM) and Electron Beam Melting (EBM) are powder bed fusion processing which allows to build-up parts by successive addition of layers using 3D-CAD models. Among the advantages, are the high degree of freedom for part design and the small loss of material, which explain the increase of Ti-6Al-4V parts obtained by these processes. However, Ti-6Al-4V parts produced by SLM and EBM contain defects (surface roughness, porosity, tensile residual stresses) which decrease significantly the High Cycle Fatigue (HCF) life. In order to minimize the porosity and tensile residual stresses, post-processing treatments like Hot Isostatic Pressing (HIP) and Stress Relieving are often conducted. But the modification of the surface roughness by machining is very costly and not always possible, especially for parts with complex design. The aim of this work is to evaluate the effect of the surface roughness and microstructure of Ti-6Al-4V parts produced by SLM and EBM on the HCF life. Five sets of specimens were tested in tension-compression (R=-1; f=120Hz): Hot-Rolled (reference); SLM HIP machined; SLM HIP As-Built; EBM HIP machined; EBM HIP As-Built. For each condition, microstructure characterization, observation of the fracture surface of broken specimens and surface analysis were carried out respectively by Optical Microscope (OM), Scanning Electron Microscope (SEM) and 3D optical profilometer. Results of fatigue testing show a significant decrease of the HCF life mainly due to the surface roughness. Along with experimental testing, numerical simulations using FEM were conducted using the surface scans obtained by profilometry. Based on extreme values statistics of the crossland equivalent stress averaged on a critical distance, a methodology is proposed to take into account the effect of the surface roughness on the HCF life.
AbstractList Selective Laser Melting (SLM) and Electron Beam Melting (EBM) are powder bed fusion processing which allows to build-up parts by successive addition of layers using 3D-CAD models. Among the advantages, are the high degree of freedom for part design and the small loss of material, which explain the increase of Ti-6Al-4V parts obtained by these processes. However, Ti-6Al-4V parts produced by SLM and EBM contain defects (surface roughness, porosity, tensile residual stresses) which decrease significantly the High Cycle Fatigue (HCF) life. In order to minimize the porosity and tensile residual stresses, post-processing treatments like Hot Isostatic Pressing (HIP) and Stress Relieving are often conducted. But the modification of the surface roughness by machining is very costly and not always possible, especially for parts with complex design. The aim of this work is to evaluate the effect of the surface roughness and microstructure of Ti-6Al-4V parts produced by SLM and EBM on the HCF life. Five sets of specimens were tested in tension-compression (R=-1; f=120Hz): Hot-Rolled (reference); SLM HIP machined; SLM HIP As-Built; EBM HIP machined; EBM HIP As-Built. For each condition, microstructure characterization, observation of the fracture surface of broken specimens and surface analysis were carried out respectively by Optical Microscope (OM), Scanning Electron Microscope (SEM) and 3D optical profilometer. Results of fatigue testing show a significant decrease of the HCF life mainly due to the surface roughness. Along with experimental testing, numerical simulations using FEM were conducted using the surface scans obtained by profilometry. Based on extreme values statistics of the crossland equivalent stress averaged on a critical distance, a methodology is proposed to take into account the effect of the surface roughness on the HCF life.
Author Brugger, Charles
Vayssette, Bastien
Pessard, Etienne
Elmay, Mohamed
Saintier, Nicolas
Author_xml – sequence: 1
  givenname: Bastien
  surname: Vayssette
  fullname: Vayssette, Bastien
  organization: Arts et Metiers Paristech, I2M, CNRS, Talence 33400, France
– sequence: 2
  givenname: Nicolas
  surname: Saintier
  fullname: Saintier, Nicolas
  organization: Arts et Metiers Paristech, I2M, CNRS, Talence 33400, France
– sequence: 3
  givenname: Charles
  surname: Brugger
  fullname: Brugger, Charles
  organization: Arts et Metiers Paristech, I2M, CNRS, Talence 33400, France
– sequence: 4
  givenname: Mohamed
  surname: Elmay
  fullname: Elmay, Mohamed
  organization: Arts et Metiers Paristech, I2M, CNRS, Talence 33400, France
– sequence: 5
  givenname: Etienne
  surname: Pessard
  fullname: Pessard, Etienne
  organization: Arts et Metiers Paristech, LAMPA, Angers 49035, France
BackLink https://hal.science/hal-02333371$$DView record in HAL
BookMark eNqFkMFOAjEQhhuDiYi8gYdePezadllaOZggATGBeAC9NqU7hZK1Jd2FhLe3mzXGeNC5tPkz32Tmu0Yd5x0gdEtJSgkd3u_TQ_DgtikjVKSEpYSSC9SlgvOEk1x0fvyvUL-q9qQpTlhOu0ivjsEoDTj443bnoKqwN3htk-G4TAbv-KBCHaNNrayDAm_OeLVYYuUKPH1ajvDUGNA19g7XO8Bzu93hyVmXgGeqttsj4NIauEGXRpUV9L_eHnqbTdeTebJ4fX6ZjBeJzuLOic6pEvlAP-SM54JkKt5DmDHE5JkQvFBcccFFzDUII4AA55oXQ8U5ZUPBsh66a-fuVCkPwX6ocJZeWTkfL2STEZbF4vREY--g7dXBV1UA8w1QIhuvci9br7LxGlEZd4zY6BembR1P9a4Oypb_wY8tDFHCyUKQlbbgNBQ2RIuy8PbvAZ82TJRp
CitedBy_id crossref_primary_10_1007_s40194_023_01604_5
crossref_primary_10_1016_j_addma_2018_05_033
crossref_primary_10_1016_S1003_6326_20_65366_3
crossref_primary_10_1016_j_jallcom_2021_163072
crossref_primary_10_1016_j_tafmec_2019_102260
crossref_primary_10_3390_app11062869
crossref_primary_10_1007_s00170_021_06775_3
crossref_primary_10_1016_j_ijfatigue_2022_107276
crossref_primary_10_1080_10402004_2025_2457970
crossref_primary_10_1007_s11665_020_04904_9
crossref_primary_10_3390_met12111992
crossref_primary_10_3390_ma14113002
crossref_primary_10_1111_ffe_14355
crossref_primary_10_3390_jmmp7040119
crossref_primary_10_3390_jmmp3040089
crossref_primary_10_4028_p_h0iapl
crossref_primary_10_1007_s00170_025_15665_x
crossref_primary_10_1007_s12540_022_01378_3
crossref_primary_10_1007_s00170_023_11534_7
crossref_primary_10_1177_14644207251366376
crossref_primary_10_1088_1757_899X_629_1_012034
crossref_primary_10_1016_j_ijfatigue_2024_108356
crossref_primary_10_1016_j_msea_2021_140880
crossref_primary_10_1007_s00170_025_15630_8
crossref_primary_10_1007_s00161_020_00878_0
crossref_primary_10_1016_j_mtla_2021_101041
crossref_primary_10_3390_ma17081929
crossref_primary_10_1016_j_surfcoat_2020_125794
crossref_primary_10_1016_j_msea_2020_139794
crossref_primary_10_1016_j_rineng_2025_105761
crossref_primary_10_7736_JKSPE_019_102
crossref_primary_10_1016_j_jmapro_2022_02_011
crossref_primary_10_1016_j_mtcomm_2024_108634
crossref_primary_10_1371_journal_pone_0252772
crossref_primary_10_1016_j_ijfatigue_2023_107774
crossref_primary_10_1016_j_pmatsci_2023_101126
crossref_primary_10_1016_j_rineng_2024_103101
crossref_primary_10_1080_10408436_2021_1989664
crossref_primary_10_1080_15376494_2018_1536816
crossref_primary_10_1016_j_matdes_2024_112885
crossref_primary_10_1016_j_msea_2022_144232
crossref_primary_10_1520_SSMS20180035
crossref_primary_10_1016_j_addma_2021_102556
crossref_primary_10_1016_j_msea_2022_143422
crossref_primary_10_1016_j_mtcomm_2024_109580
crossref_primary_10_1016_j_addma_2021_101989
crossref_primary_10_1051_matecconf_201930003004
crossref_primary_10_1016_j_ijfatigue_2020_105946
crossref_primary_10_1016_j_addma_2019_101014
crossref_primary_10_1515_mt_2023_0149
crossref_primary_10_3103_S1068798X2470165X
crossref_primary_10_1016_j_jmapro_2024_04_051
crossref_primary_10_1007_s40964_024_00885_6
crossref_primary_10_3390_ma15165617
crossref_primary_10_1007_s10845_021_01773_4
crossref_primary_10_1016_j_matpr_2020_08_414
crossref_primary_10_1108_RPJ_12_2019_0310
crossref_primary_10_3390_ma16052017
crossref_primary_10_1007_s40964_021_00228_9
crossref_primary_10_1177_09544089251369972
crossref_primary_10_1051_smdo_2024019
crossref_primary_10_3390_machines10050400
crossref_primary_10_1016_j_matdes_2023_112580
crossref_primary_10_3390_ma13245730
crossref_primary_10_1007_s00170_020_06221_w
crossref_primary_10_1016_j_engfailanal_2024_108250
crossref_primary_10_1016_j_matchar_2024_114206
crossref_primary_10_1016_j_jmapro_2023_10_036
crossref_primary_10_1016_j_tafmec_2020_102477
crossref_primary_10_52577_eom_2022_58_6_01
crossref_primary_10_1016_j_msea_2024_147640
crossref_primary_10_3390_met10081006
crossref_primary_10_1007_s00170_023_11502_1
crossref_primary_10_1016_j_matdes_2024_113277
crossref_primary_10_3390_met12122053
crossref_primary_10_1016_j_ijmecsci_2025_110370
crossref_primary_10_3390_ma15093380
crossref_primary_10_1016_j_pmatsci_2022_101051
crossref_primary_10_1177_1938640020971415
crossref_primary_10_1016_j_ijfatigue_2022_106810
crossref_primary_10_1016_j_tafmec_2023_104143
crossref_primary_10_1007_s11665_022_06701_y
crossref_primary_10_1016_j_jmapro_2023_09_028
crossref_primary_10_1007_s11665_021_05927_6
crossref_primary_10_1016_j_mechmat_2021_103951
crossref_primary_10_1007_s00170_020_06391_7
crossref_primary_10_1016_j_pnsc_2019_04_011
crossref_primary_10_1016_j_addma_2020_101653
crossref_primary_10_1016_j_jmapro_2022_06_023
crossref_primary_10_1016_j_matdes_2018_107552
crossref_primary_10_1007_s00170_024_14858_0
crossref_primary_10_1016_j_ijfatigue_2023_108025
crossref_primary_10_1016_j_matpr_2021_01_354
crossref_primary_10_1007_s11665_025_11115_7
crossref_primary_10_1016_j_ijfatigue_2024_108621
crossref_primary_10_1002_adem_202402615
crossref_primary_10_1007_s41230_021_1039_1
crossref_primary_10_1016_j_addma_2019_100918
crossref_primary_10_1016_j_jallcom_2019_04_255
crossref_primary_10_3390_jmmp6040082
crossref_primary_10_1007_s00466_022_02243_1
crossref_primary_10_1016_j_bbe_2021_10_002
crossref_primary_10_3390_ma13235584
crossref_primary_10_1016_j_ijfatigue_2020_105623
crossref_primary_10_1016_j_matdes_2021_109602
crossref_primary_10_1111_ffe_14375
crossref_primary_10_3103_S1068375523040063
crossref_primary_10_1111_ffe_13967
crossref_primary_10_1016_j_cirpj_2023_06_006
crossref_primary_10_1016_j_matdes_2025_113660
crossref_primary_10_1007_s40964_023_00443_6
crossref_primary_10_3390_ma15062054
crossref_primary_10_1016_j_engfracmech_2025_111482
crossref_primary_10_1016_j_ijfatigue_2023_108034
crossref_primary_10_1016_j_ijfatigue_2019_105301
crossref_primary_10_1016_j_msea_2024_146821
crossref_primary_10_1177_09544089241263144
crossref_primary_10_1016_j_optlastec_2020_106639
crossref_primary_10_1177_09544062251319075
Cites_doi 10.1016/S0142-1123(99)00007-9
10.1016/j.matdes.2015.07.147
10.1016/0142-1123(80)90024-9
10.1111/ffe.12329
10.2514/6.2012-1733
10.1007/s11665-013-0658-0
10.1016/j.actamat.2010.02.004
10.1016/j.msea.2014.01.041
10.1016/j.matchar.2015.02.008
10.1177/002199839903300201
10.1007/s11661-012-1470-4
10.1016/j.ijfatigue.2008.05.020
10.1016/j.engfracmech.2010.04.001
10.1016/S1005-0302(12)60016-4
10.1016/j.ijfatigue.2008.06.003
10.1016/S0142-1123(02)00012-9
10.1016/j.ijplas.2011.01.006
10.1016/j.ijfatigue.2014.01.024
ContentType Journal Article
Copyright 2018
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2018
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.proeng.2018.02.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1877-7058
EndPage 97
ExternalDocumentID oai:HAL:hal-02333371v1
10_1016_j_proeng_2018_02_010
S1877705818302327
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FEDTE
FNPLU
HVGLF
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
SES
SSZ
XH2
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
1XC
VOOES
ID FETCH-LOGICAL-c3010-c51a854c95275803a01802ff0f53887da7a78783a0ce8f8e0e77c7d6a77126823
ISSN 1877-7058
IngestDate Sun Nov 23 06:20:45 EST 2025
Tue Nov 18 22:17:38 EST 2025
Sat Nov 29 05:23:33 EST 2025
Fri Feb 23 02:31:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords EBM
HCF
Surface Roughness
SLM
Ti-6Al-4V
FEM
Language English
License This is an open access article under the CC BY-NC-ND license.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3010-c51a854c95275803a01802ff0f53887da7a78783a0ce8f8e0e77c7d6a77126823
ORCID 0000-0002-4793-5343
0000-0002-7383-8221
0000-0001-9072-7745
0000-0001-7738-5760
OpenAccessLink https://hal.science/hal-02333371
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_02333371v1
crossref_primary_10_1016_j_proeng_2018_02_010
crossref_citationtrail_10_1016_j_proeng_2018_02_010
elsevier_sciencedirect_doi_10_1016_j_proeng_2018_02_010
PublicationCentury 2000
PublicationDate 2018
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Procedia engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Murr, Gaytan, Ramirez, Martinez, Hernandez, Amato, Shindo, Medina, Wicker (bib0001) 2012; 28
Arola, Ramulu (bib00011) 1999; 33
Murakami, Endo (bib00015) 1980; 2
Tammas-Williams, Zhao, Léonard, Derguti, Todd, Prangnell (bib0007) 2015; 102
Taylor (bib00017) 2000; 22
Zhao, Li, Zhang, Liu, Sercombe, Wang, Hao, Yang, Murr (bib0004) 2016; 95
H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, B. E. Stucker, Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting 22 (December) (2013) 3872–3883. doi:10.1007/s11665-013-0658-0.
Taylor (bib00016) 2000; 21
Edwards, Ramulu (bib0005) 2014; 598
Peterson (bib00013) 1974
El May, Saintier, Palin-Luc, Devos (bib00018) 2015; 38
Hrabe, Quinn (bib0006) 2013; 573
Hor, Saintier, Robert, Palin-Luc, Morel (bib00022) 2014; 67
Przybyla, Mcdowell (bib00021) 2011; 27
B. Van Hooreweder, R. Boonen, D. Moens, P. Sas, On the Determination of Fatigue Properties of Ti6Al4V Produced by Selective Laser Melting On the determination of fatigue properties of Ti6Al4V produced by selective laser melting (April 2012). doi:10.2514/6.2012-1733.
Suraratchai, Limido, Mabru, Chieragatti (bib00014) 2008; 30
Morel, Huyen (bib00020) 2008; 49
Gong, Rafi, Gu, Janaki Ram, Starr, Stucker (bib0003) 2015; 86
As, Skallerud, Tveiten (bib00019) 2008; 30
Arola, Williams (bib00012) 2002; 24
Yamashita, Ueda, Kuroki, Shinozaki (bib00023) 2010; 77
Chan, Koike, Mason, Okabe (bib0008) 2013; 44
Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib0002) 2010; 58
Gong (10.1016/j.proeng.2018.02.010_bib0003) 2015; 86
Arola (10.1016/j.proeng.2018.02.010_bib00011) 1999; 33
Peterson (10.1016/j.proeng.2018.02.010_bib00013) 1974
Tammas-Williams (10.1016/j.proeng.2018.02.010_bib0007) 2015; 102
As (10.1016/j.proeng.2018.02.010_bib00019) 2008; 30
Przybyla (10.1016/j.proeng.2018.02.010_bib00021) 2011; 27
Chan (10.1016/j.proeng.2018.02.010_bib0008) 2013; 44
Thijs (10.1016/j.proeng.2018.02.010_bib0002) 2010; 58
Morel (10.1016/j.proeng.2018.02.010_bib00020) 2008; 49
Suraratchai (10.1016/j.proeng.2018.02.010_bib00014) 2008; 30
Yamashita (10.1016/j.proeng.2018.02.010_bib00023) 2010; 77
El May (10.1016/j.proeng.2018.02.010_bib00018) 2015; 38
Zhao (10.1016/j.proeng.2018.02.010_bib0004) 2016; 95
Taylor (10.1016/j.proeng.2018.02.010_bib00017) 2000; 22
Arola (10.1016/j.proeng.2018.02.010_bib00012) 2002; 24
Hor (10.1016/j.proeng.2018.02.010_bib00022) 2014; 67
Murr (10.1016/j.proeng.2018.02.010_bib0001) 2012; 28
Edwards (10.1016/j.proeng.2018.02.010_bib0005) 2014; 598
Murakami (10.1016/j.proeng.2018.02.010_bib00015) 1980; 2
10.1016/j.proeng.2018.02.010_bib00010
Hrabe (10.1016/j.proeng.2018.02.010_bib0006) 2013; 573
10.1016/j.proeng.2018.02.010_bib0009
Taylor (10.1016/j.proeng.2018.02.010_bib00016) 2000; 21
References_xml – volume: 598
  start-page: 327
  year: 2014
  end-page: 337
  ident: bib0005
  article-title: Fatigue performance evaluation of selective laser melted Ti-6Al-4V
  publication-title: Materials Science and Engineering A
– volume: 22
  start-page: 735
  year: 2000
  end-page: 742
  ident: bib00017
  publication-title: Prediction of fatigue failure location on a component using a critical distance method
– volume: 573
  start-page: 264
  year: 2013
  end-page: 270
  ident: bib0006
  article-title: Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM)
  publication-title: Part 1: Distance from build plate and part size, Materials Science and Engineering A
– volume: 38
  start-page: 1017
  year: 2015
  end-page: 1025
  ident: bib00018
  article-title: Non-local high cycle fatigue strength criterion for metallic materials with corrosion defects
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
– volume: 24
  start-page: 923
  year: 2002
  end-page: 930
  ident: bib00012
  article-title: Estimating the fatigue stress concentration factor of machined surfaces
  publication-title: International Journal of Fatigue
– volume: 102
  start-page: 47
  year: 2015
  end-page: 61
  ident: bib0007
  article-title: XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting
  publication-title: Materials Characterization
– volume: 44
  start-page: 1010
  year: 2013
  end-page: 1022
  ident: bib0008
  article-title: Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants
  publication-title: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
– volume: 86
  start-page: 545
  year: 2015
  end-page: 554
  ident: bib0003
  article-title: Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting
  publication-title: Materials and Design
– volume: 28
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib0001
  article-title: Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
  publication-title: Journal of Materials Science and Technology
– volume: 77
  start-page: 1439
  year: 2010
  end-page: 1453
  ident: bib00023
  article-title: Fatigue life prediction of small notched Ti-6Al-4V specimens using critical distance
  publication-title: Engineering Fracture Mechanics
– reference: H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, B. E. Stucker, Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting 22 (December) (2013) 3872–3883. doi:10.1007/s11665-013-0658-0.
– year: 1974
  ident: bib00013
  publication-title: Peterson’s Stress Concentration Factors
– volume: 21
  start-page: 413
  year: 2000
  end-page: 420
  ident: bib00016
  article-title: Geometrical effects in fatigue: a unifying theoretical model
  publication-title: International Journal of Fatigue
– volume: 30
  start-page: 2200
  year: 2008
  end-page: 2209
  ident: bib00019
  article-title: Surface roughness characterization for fatigue life predictions using finite element analysis
  publication-title: International Journal of Fatigue
– volume: 95
  start-page: 21
  year: 2016
  end-page: 31
  ident: bib0004
  article-title: Comparison of the microstructures and mechanical properties of Ti6Al 4V fabricated by selective laser melting and electron beam melting
  publication-title: Jmade
– volume: 27
  start-page: 1871
  year: 2011
  end-page: 1895
  ident: bib00021
  article-title: Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti 6Al 4V
  publication-title: International Journal of Plasticity
– reference: B. Van Hooreweder, R. Boonen, D. Moens, P. Sas, On the Determination of Fatigue Properties of Ti6Al4V Produced by Selective Laser Melting On the determination of fatigue properties of Ti6Al4V produced by selective laser melting (April 2012). doi:10.2514/6.2012-1733.
– volume: 33
  start-page: 102
  year: 1999
  end-page: 123
  ident: bib00011
  article-title: An Examination of the Effects from Surface Texture on the Strength of Fiber Reinforced Plastics
  publication-title: Journal of Composite Materials
– volume: 49
  start-page: 98
  year: 2008
  end-page: 127
  ident: bib00020
  publication-title: Plasticity and damage heterogeneity in fatigue
– volume: 67
  start-page: 151
  year: 2014
  end-page: 158
  ident: bib00022
  article-title: Statistical assessment of multiaxial HCF criteria at the grain scale
  publication-title: International Journal of Fatigue
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: bib0002
  article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V
  publication-title: Acta Materialia
– volume: 30
  start-page: 2119
  year: 2008
  end-page: 2126
  ident: bib00014
  article-title: Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy
  publication-title: International Journal of Fatigue
– volume: 2
  start-page: 23
  year: 1980
  end-page: 30
  ident: bib00015
  article-title: Effects of small defects on fatigue strength of metals
  publication-title: International Journal of Fatigue
– volume: 21
  start-page: 413
  issue: 5
  year: 2000
  ident: 10.1016/j.proeng.2018.02.010_bib00016
  article-title: Geometrical effects in fatigue: a unifying theoretical model
  publication-title: International Journal of Fatigue
  doi: 10.1016/S0142-1123(99)00007-9
– volume: 86
  start-page: 545
  year: 2015
  ident: 10.1016/j.proeng.2018.02.010_bib0003
  article-title: Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting
  publication-title: Materials and Design
  doi: 10.1016/j.matdes.2015.07.147
– volume: 2
  start-page: 23
  issue: 1
  year: 1980
  ident: 10.1016/j.proeng.2018.02.010_bib00015
  article-title: Effects of small defects on fatigue strength of metals
  publication-title: International Journal of Fatigue
  doi: 10.1016/0142-1123(80)90024-9
– volume: 49
  start-page: 98
  year: 2008
  ident: 10.1016/j.proeng.2018.02.010_bib00020
  publication-title: Plasticity and damage heterogeneity in fatigue
– year: 1974
  ident: 10.1016/j.proeng.2018.02.010_bib00013
  publication-title: Peterson’s Stress Concentration Factors
– volume: 38
  start-page: 1017
  issue: 9
  year: 2015
  ident: 10.1016/j.proeng.2018.02.010_bib00018
  article-title: Non-local high cycle fatigue strength criterion for metallic materials with corrosion defects
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.12329
– ident: 10.1016/j.proeng.2018.02.010_bib0009
  doi: 10.2514/6.2012-1733
– volume: 573
  start-page: 264
  year: 2013
  ident: 10.1016/j.proeng.2018.02.010_bib0006
  article-title: Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM)
  publication-title: Part 1: Distance from build plate and part size, Materials Science and Engineering A
– ident: 10.1016/j.proeng.2018.02.010_bib00010
  doi: 10.1007/s11665-013-0658-0
– volume: 58
  start-page: 3303
  issue: 9
  year: 2010
  ident: 10.1016/j.proeng.2018.02.010_bib0002
  article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2010.02.004
– volume: 598
  start-page: 327
  year: 2014
  ident: 10.1016/j.proeng.2018.02.010_bib0005
  article-title: Fatigue performance evaluation of selective laser melted Ti-6Al-4V
  publication-title: Materials Science and Engineering A
  doi: 10.1016/j.msea.2014.01.041
– volume: 102
  start-page: 47
  year: 2015
  ident: 10.1016/j.proeng.2018.02.010_bib0007
  article-title: XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting
  publication-title: Materials Characterization
  doi: 10.1016/j.matchar.2015.02.008
– volume: 33
  start-page: 102
  issue: 2
  year: 1999
  ident: 10.1016/j.proeng.2018.02.010_bib00011
  article-title: An Examination of the Effects from Surface Texture on the Strength of Fiber Reinforced Plastics
  publication-title: Journal of Composite Materials
  doi: 10.1177/002199839903300201
– volume: 44
  start-page: 1010
  issue: 2
  year: 2013
  ident: 10.1016/j.proeng.2018.02.010_bib0008
  article-title: Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants
  publication-title: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
  doi: 10.1007/s11661-012-1470-4
– volume: 95
  start-page: 21
  year: 2016
  ident: 10.1016/j.proeng.2018.02.010_bib0004
  article-title: Comparison of the microstructures and mechanical properties of Ti6Al 4V fabricated by selective laser melting and electron beam melting
  publication-title: Jmade
– volume: 30
  start-page: 2200
  year: 2008
  ident: 10.1016/j.proeng.2018.02.010_bib00019
  article-title: Surface roughness characterization for fatigue life predictions using finite element analysis
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2008.05.020
– volume: 77
  start-page: 1439
  issue: 9
  year: 2010
  ident: 10.1016/j.proeng.2018.02.010_bib00023
  article-title: Fatigue life prediction of small notched Ti-6Al-4V specimens using critical distance
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2010.04.001
– volume: 28
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.proeng.2018.02.010_bib0001
  article-title: Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
  publication-title: Journal of Materials Science and Technology
  doi: 10.1016/S1005-0302(12)60016-4
– volume: 30
  start-page: 2119
  issue: 12
  year: 2008
  ident: 10.1016/j.proeng.2018.02.010_bib00014
  article-title: Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2008.06.003
– volume: 24
  start-page: 923
  issue: 9
  year: 2002
  ident: 10.1016/j.proeng.2018.02.010_bib00012
  article-title: Estimating the fatigue stress concentration factor of machined surfaces
  publication-title: International Journal of Fatigue
  doi: 10.1016/S0142-1123(02)00012-9
– volume: 27
  start-page: 1871
  issue: 12
  year: 2011
  ident: 10.1016/j.proeng.2018.02.010_bib00021
  article-title: Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti 6Al 4V
  publication-title: International Journal of Plasticity
  doi: 10.1016/j.ijplas.2011.01.006
– volume: 22
  start-page: 735
  year: 2000
  ident: 10.1016/j.proeng.2018.02.010_bib00017
  publication-title: Prediction of fatigue failure location on a component using a critical distance method
– volume: 67
  start-page: 151
  year: 2014
  ident: 10.1016/j.proeng.2018.02.010_bib00022
  article-title: Statistical assessment of multiaxial HCF criteria at the grain scale
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2014.01.024
SSID ssj0000070251
Score 2.5180647
Snippet Selective Laser Melting (SLM) and Electron Beam Melting (EBM) are powder bed fusion processing which allows to build-up parts by successive addition of layers...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms EBM
FEM
HCF
Physics
SLM
Surface Roughness
Ti-6Al-4V
Title Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life
URI https://dx.doi.org/10.1016/j.proeng.2018.02.010
https://hal.science/hal-02333371
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZC4QAHxFOUlyzELVqUfdlebqFq1UNSITVEva0cr52kSjfRpomaC_-G_8mM7d00FCg9kMMqa-3D6_lkj8fffCbkY5LGBS9MFLBEwwRFFCzIWJYFOkwUS7VIpd2tYdjjJyfi7Cz72mr9qHNh1jNeluLqKlv8V1NDGRgbU2fvYO7moVAA_8HocASzw_GfDH-6qoxUyBtcjSe2IwN_cDANWHcWJMP2QtolghGGBJz3edrr2yWEwy99jA94PWO3iGB5IO2DDbyjfQQvGK90ezY1O_whm2sAMGvrrbZhbceh3CyXyCZyaxtLFHFtgjpQAzivGkDKbci-Wo3HPkXR8QG2HJMLaXHRn0_khc_M8lGLnS5WcB7wjhNs_6R_U-b75SiMr_WsbqMhP0Y7Su-N3t8FIs5x7IEvRt6esIKsnji7I7b9yyDYUBNr1tt57p6S41PyTpTbRL77EYcZGDJEv29DeSiZFNmNPpvvqJM0LZPwZnX-5ATdm9ThfOveDJ6Qx35eQrsOT09JS5fPyKNrapXPifLIog2y6NzQBlnUIovWyKKjDQVkUUAWBWR9pg5XdF5SwBVFXFGLK-pxRRFXL8i3o8PBwXHg9-gIVIw8CpWGUqSJylJoGdGJJQrCRcZ0DIykgheSSxgSBJQrLYzQHc254gWTnIcRE1H8kuyV81K_IlQVjHGcbhimE6nCURYaaEsmI52MdGj2SVw3Wq68gD3uozLL_2azfRI0dy2cgMst1_PaHrl3Qp1zmQPKbrnzA5iveQnqth93ezmWgWMMPx6uw9d3rM4b8hDPXNDvLdm7rFb6HXmg1pfTZfXe4vAnmqexrw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+roughness+of+Ti-6Al-4V+parts+obtained+by+SLM+and+EBM%3A+Effect+on+the+High+Cycle+Fatigue+life&rft.jtitle=Procedia+engineering&rft.au=Vayssette%2C+Bastien&rft.au=Saintier%2C+Nicolas&rft.au=Brugger%2C+Charles&rft.au=Elmay%2C+Mohamed&rft.date=2018&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=213&rft.spage=89&rft.epage=97&rft_id=info:doi/10.1016%2Fj.proeng.2018.02.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proeng_2018_02_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon