Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets
Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Pr...
Gespeichert in:
| Veröffentlicht in: | International journal of approximate reasoning Jg. 169; S. 109181 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.06.2024
|
| Schlagworte: | |
| ISSN: | 0888-613X, 1873-4731 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Primarily, while they excel at harnessing label-feature relationships, they often struggle to leverage inter-feature information effectively. Secondly, numerous MLFS approaches overlook the uncertainty in the boundary domain, despite its critical role in identifying high-quality features. To address these issues, this paper introduces a novel MLFS algorithm, named VMFS. It innovatively integrates multi-granulation rough sets with three-way decision, leveraging multi-granularity decision-theoretic rough sets (MGDRS) with variable degrees for optimal performance. Initially, we construct coarse decision (RDC), fine decision (RDF), and uncertainty decision (RDU) functions for each object based on MGDRS with variable degrees. These decision functions then quantify the dependence of attribute subsets, considering both deterministic and uncertain aspects. Finally, we employ the dependency to assess attribute importance and rank them accordingly. Our proposed method has undergone rigorous evaluation on various standard multi-label datasets, demonstrating its superiority. Experimental results consistently show that VMFS significantly outperforms other algorithms on most datasets, underscoring its effectiveness and reliability in multi-label learning tasks. |
|---|---|
| AbstractList | Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods have their shortcomings. Primarily, while they excel at harnessing label-feature relationships, they often struggle to leverage inter-feature information effectively. Secondly, numerous MLFS approaches overlook the uncertainty in the boundary domain, despite its critical role in identifying high-quality features. To address these issues, this paper introduces a novel MLFS algorithm, named VMFS. It innovatively integrates multi-granulation rough sets with three-way decision, leveraging multi-granularity decision-theoretic rough sets (MGDRS) with variable degrees for optimal performance. Initially, we construct coarse decision (RDC), fine decision (RDF), and uncertainty decision (RDU) functions for each object based on MGDRS with variable degrees. These decision functions then quantify the dependence of attribute subsets, considering both deterministic and uncertain aspects. Finally, we employ the dependency to assess attribute importance and rank them accordingly. Our proposed method has undergone rigorous evaluation on various standard multi-label datasets, demonstrating its superiority. Experimental results consistently show that VMFS significantly outperforms other algorithms on most datasets, underscoring its effectiveness and reliability in multi-label learning tasks. |
| ArticleNumber | 109181 |
| Author | Wan, Ming Qian, Jin Zhao, Pengfei Yu, Ying Miao, Duoqian Zhang, Zhiqiang |
| Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0002-3480-4571 surname: Yu fullname: Yu, Ying email: yuyingjx@163.com organization: State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang, 330013, Jiangxi, China – sequence: 2 givenname: Ming surname: Wan fullname: Wan, Ming organization: College of Software, East China Jiaotong University, Nanchang, 330013, Jiangxi, China – sequence: 3 givenname: Jin surname: Qian fullname: Qian, Jin organization: College of Software, East China Jiaotong University, Nanchang, 330013, Jiangxi, China – sequence: 4 givenname: Duoqian surname: Miao fullname: Miao, Duoqian organization: School of Electronic and Information Engineering, Tongji University, Shanghai, 210048, China – sequence: 5 givenname: Zhiqiang surname: Zhang fullname: Zhang, Zhiqiang organization: College of Software, East China Jiaotong University, Nanchang, 330013, Jiangxi, China – sequence: 6 givenname: Pengfei surname: Zhao fullname: Zhao, Pengfei organization: Digital Economy Research Institute of Jiangxi Provincial Investment Group, Nanchang, 330013, Jiangxi, China |
| BookMark | eNp9kM9KxDAQh4Os4O7qC3jqC2RNmrZpwYssrgoLXhS8hSSddFOyrSTpgm9v9s_Jg6cZht83w3wLNBvGARC6p2RFCa0e-pXtpV_lJC_SoKE1vUJzWnOGC87oDM1JXde4ouzrBi1C6AkhFS_qOQobkHHykAVwoKMdh8yMPttPLlrspAKXOZB-sEOXKRmgzVLiIL2VygFuofMAl3Tn5TA5edrRgrYhNTjuYPQQrc78OHW7dCaGW3RtpAtwd6lL9Ll5_li_4u37y9v6aYs1IyRiA4YXValYyXPdcKqa1IBiDFgFheRaE0oYV0RLVTWMVGCK0nAmS8q1NJQtUX7eq_0Yggcjvr3dS_8jKBFHbaIXR23iqE2ctSWo_gNpG09PRS-t-x99PKOQnjpY8CJoC4OG1vrkVrSj_Q__BYWxjaI |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_176418 crossref_primary_10_1109_ACCESS_2024_3439858 crossref_primary_10_1038_s41598_025_92387_w crossref_primary_10_1002_pat_6550 crossref_primary_10_1016_j_ijar_2024_109310 crossref_primary_10_1088_1402_4896_ad9d92 crossref_primary_10_1016_j_aej_2025_01_071 crossref_primary_10_1109_JSEN_2025_3528956 crossref_primary_10_1002_pat_6595 crossref_primary_10_1111_nyas_15257 crossref_primary_10_1088_1361_6501_ad7f7b crossref_primary_10_1088_2515_7620_ad6d3e crossref_primary_10_3390_math12223495 crossref_primary_10_1109_TASE_2025_3584202 crossref_primary_10_1002_pat_6621 crossref_primary_10_1016_j_heliyon_2024_e39815 crossref_primary_10_1109_JSEN_2024_3523496 crossref_primary_10_1515_zna_2024_0257 crossref_primary_10_1016_j_knosys_2025_113210 crossref_primary_10_3390_axioms13070471 crossref_primary_10_1109_JSEN_2024_3457681 crossref_primary_10_1016_j_csite_2024_105074 crossref_primary_10_2174_0115748936299646240625092734 crossref_primary_10_1002_ima_70122 crossref_primary_10_1016_j_ijar_2025_109469 crossref_primary_10_1016_j_jwpe_2024_105854 crossref_primary_10_1007_s13042_025_02779_7 crossref_primary_10_1016_j_still_2025_106796 crossref_primary_10_1109_ACCESS_2024_3467678 crossref_primary_10_1002_ima_70009 crossref_primary_10_1109_JBHI_2024_3522306 crossref_primary_10_1109_TETCI_2025_3543272 crossref_primary_10_1109_JPHOT_2025_3541426 crossref_primary_10_1038_s41598_024_82565_7 crossref_primary_10_1016_j_inoche_2024_113037 crossref_primary_10_1016_j_engappai_2025_110878 crossref_primary_10_1109_JSEN_2024_3432277 crossref_primary_10_1109_TITS_2025_3547325 crossref_primary_10_1080_19392699_2024_2434891 crossref_primary_10_1038_s41598_025_05064_3 crossref_primary_10_1088_1402_4896_ad999d crossref_primary_10_1109_TSM_2025_3558015 crossref_primary_10_1049_ipr2_70118 crossref_primary_10_1016_j_array_2025_100402 crossref_primary_10_1002_pat_6571 crossref_primary_10_1109_JSEN_2024_3494772 crossref_primary_10_1155_2024_8814585 crossref_primary_10_1080_01431161_2024_2416592 crossref_primary_10_1109_TFUZZ_2025_3540884 crossref_primary_10_1016_j_padiff_2025_101176 crossref_primary_10_1109_JSEN_2024_3511554 crossref_primary_10_1007_s12355_024_01488_9 crossref_primary_10_1109_TII_2025_3547007 crossref_primary_10_1016_j_asoc_2025_112757 crossref_primary_10_1038_s41598_024_65153_7 crossref_primary_10_1038_s41598_024_80259_8 crossref_primary_10_1080_0954898X_2024_2447281 crossref_primary_10_1177_13694332241298017 crossref_primary_10_1109_LSP_2025_3528861 crossref_primary_10_1049_ipr2_13256 crossref_primary_10_2989_16073606_2025_2463674 crossref_primary_10_3390_sym17081217 crossref_primary_10_1109_TCDS_2024_3525180 crossref_primary_10_1007_s13538_024_01601_z crossref_primary_10_1080_00071668_2025_2500346 crossref_primary_10_1016_j_jddst_2024_106281 crossref_primary_10_1016_j_still_2024_106238 crossref_primary_10_1080_25740881_2024_2408346 crossref_primary_10_1109_JSTARS_2025_3535805 crossref_primary_10_1016_j_watres_2024_122715 crossref_primary_10_1007_s12665_024_11789_7 crossref_primary_10_1016_j_ijar_2024_109350 crossref_primary_10_1016_j_ins_2025_122632 crossref_primary_10_1080_10255842_2024_2410228 crossref_primary_10_1177_03611981251334618 crossref_primary_10_1016_j_orgel_2024_107145 |
| Cites_doi | 10.1016/j.knosys.2023.110743 10.1016/j.asoc.2021.107302 10.1016/j.ins.2009.06.010 10.1214/aoms/1177731944 10.1016/j.ins.2022.12.070 10.1007/s10489-020-01785-2 10.1016/j.knosys.2019.105066 10.1016/j.inffus.2023.101948 10.1016/j.patcog.2019.06.003 10.1109/TCYB.2018.2834390 10.1016/j.ijar.2021.06.005 10.1145/1839490.1839495 10.1016/j.ijar.2020.10.002 10.1016/j.neucom.2015.06.010 10.1080/01621459.1961.10482090 10.1007/s40747-021-00636-y 10.1016/j.patrec.2012.10.005 10.1016/j.neucom.2021.02.005 10.1016/j.patcog.2023.109899 10.1109/TKDE.2013.39 10.1016/j.inffus.2023.02.016 10.1016/j.asoc.2015.10.009 10.1109/TFUZZ.2020.2989098 10.1016/j.neucom.2022.11.096 10.1016/j.ijar.2018.09.005 10.1007/s41066-018-0110-9 10.1016/j.ijar.2013.03.004 10.1016/j.ins.2020.12.036 10.1111/j.2517-6161.1995.tb02031.x 10.3390/math10111847 10.1109/TPAMI.2021.3119334 10.1016/j.ins.2020.09.019 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. |
| Copyright_xml | – notice: 2024 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijar.2024.109181 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-4731 |
| ExternalDocumentID | 10_1016_j_ijar_2024_109181 S0888613X24000689 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K UHS WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-fef7465b3572c971b9572eb33e36e4a7cc01037b0cab69306ef45f73a517caf13 |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223598800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-613X |
| IngestDate | Tue Nov 18 22:00:56 EST 2025 Sat Nov 29 04:42:33 EST 2025 Sat Apr 20 15:58:49 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-label learning Feature selection Uncertainty Three-way decision Rough sets |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-fef7465b3572c971b9572eb33e36e4a7cc01037b0cab69306ef45f73a517caf13 |
| ORCID | 0000-0002-3480-4571 |
| ParticipantIDs | crossref_primary_10_1016_j_ijar_2024_109181 crossref_citationtrail_10_1016_j_ijar_2024_109181 elsevier_sciencedirect_doi_10_1016_j_ijar_2024_109181 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of approximate reasoning |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhang, Luo, Li, Zhou, Li (br0130) 2019; 95 Sun, Ji, Ye (br0060) 2013 Dunn (br0390) 1961; 56 Zhang, Peña, Robles (br0140) 2009; 179 Liu, Wang, Shen, Tsang (br0010) 2021; 44 Friedman (br0370) 1940; 11 Li, Li, Zhai, Wang, Zhang (br0250) 2014 Fan, Liu, Weng, Chen, Chen, Wu (br0080) 2021; 442 Fan, Liu, Tang, Liu, Lin, Du (br0160) 2024; 145 Sun, Wang, Ding, Qian, Xu (br0120) 2020; 29 Zhang, Zhou (br0050) 2010; 4 Zhang, Miao, Pedrycz, Zhao, Xu, Yu (br0320) 2020; 189 Lin, Hu, Liu, Duan (br0150) 2015; 168 Dong, Sun, Li, Ding, Sun (br0110) 2020; 50 Duan, Hu, Zhang, Qian, Li (br0230) 2015; 52 Xu, Shen, Sun (br0270) 2022; 8 Campagner (br0310) 2023; 372 Demšar (br0400) 2006; 7 Qian, Zhang, Sang, Liang (br0280) 2014; 55 Lin, Hu, Liu, Chen, Duan (br0240) 2016; 38 Qian, Tu, Qian, Shu (br0040) 2023; 276 Zhao, Zhang, Miao (br0330) 2022; 10 Pawlak (br0170) 1984 Ding, Lin, Cao (br0090) 2018; 49 Zhang, Gao, Hu, Li (br0070) 2021; 553 Yao (br0290) 2018; 103 Lyu, Feng, Li (br0020) 2021; 543 Li, Xue, Zhang (br0100) 2021; 106 Liu, Lin, Ding, Zhang, Wang, Du (br0210) 2023; 524 Kou, Lin, Qian, Liao (br0200) 2023; 624 Liang, Mi, Feng (br0260) 2019; 4 Hüllermeier, Destercke, Couso (br0300) 2019 Qian, Huang, Xu, Shu, Ding (br0030) 2023; 100 Zhang, Zhou (br0340) 2014; 26 Qian, Huang, Wang, Xie (br0220) 2021; 128 Lee, Kim (br0350) 2013; 34 Sun, Si, Ding, Wang, Tfsfb (br0190) 2023; 95 Spolaôr, Alvares Cherman, Monard, Lee (br0360) 2013 Benjamini, Hochberg (br0380) 1995; 57 Campagner, Ciucci, Hüllermeier (br0180) 2021; 136 Zhang (10.1016/j.ijar.2024.109181_br0320) 2020; 189 Zhang (10.1016/j.ijar.2024.109181_br0340) 2014; 26 Lyu (10.1016/j.ijar.2024.109181_br0020) 2021; 543 Yao (10.1016/j.ijar.2024.109181_br0290) 2018; 103 Zhang (10.1016/j.ijar.2024.109181_br0070) 2021; 553 Dong (10.1016/j.ijar.2024.109181_br0110) 2020; 50 Spolaôr (10.1016/j.ijar.2024.109181_br0360) 2013 Benjamini (10.1016/j.ijar.2024.109181_br0380) 1995; 57 Fan (10.1016/j.ijar.2024.109181_br0080) 2021; 442 Demšar (10.1016/j.ijar.2024.109181_br0400) 2006; 7 Dunn (10.1016/j.ijar.2024.109181_br0390) 1961; 56 Qian (10.1016/j.ijar.2024.109181_br0220) 2021; 128 Hüllermeier (10.1016/j.ijar.2024.109181_br0300) 2019 Liang (10.1016/j.ijar.2024.109181_br0260) 2019; 4 Li (10.1016/j.ijar.2024.109181_br0250) 2014 Duan (10.1016/j.ijar.2024.109181_br0230) 2015; 52 Lin (10.1016/j.ijar.2024.109181_br0240) 2016; 38 Zhang (10.1016/j.ijar.2024.109181_br0140) 2009; 179 Lee (10.1016/j.ijar.2024.109181_br0350) 2013; 34 Liu (10.1016/j.ijar.2024.109181_br0010) 2021; 44 Qian (10.1016/j.ijar.2024.109181_br0030) 2023; 100 Sun (10.1016/j.ijar.2024.109181_br0190) 2023; 95 Zhao (10.1016/j.ijar.2024.109181_br0330) 2022; 10 Kou (10.1016/j.ijar.2024.109181_br0200) 2023; 624 Pawlak (10.1016/j.ijar.2024.109181_br0170) 1984 Xu (10.1016/j.ijar.2024.109181_br0270) 2022; 8 Friedman (10.1016/j.ijar.2024.109181_br0370) 1940; 11 Zhang (10.1016/j.ijar.2024.109181_br0050) 2010; 4 Sun (10.1016/j.ijar.2024.109181_br0120) 2020; 29 Lin (10.1016/j.ijar.2024.109181_br0150) 2015; 168 Ding (10.1016/j.ijar.2024.109181_br0090) 2018; 49 Zhang (10.1016/j.ijar.2024.109181_br0130) 2019; 95 Fan (10.1016/j.ijar.2024.109181_br0160) 2024; 145 Liu (10.1016/j.ijar.2024.109181_br0210) 2023; 524 Sun (10.1016/j.ijar.2024.109181_br0060) 2013 Qian (10.1016/j.ijar.2024.109181_br0280) 2014; 55 Qian (10.1016/j.ijar.2024.109181_br0040) 2023; 276 Campagner (10.1016/j.ijar.2024.109181_br0310) 2023; 372 Li (10.1016/j.ijar.2024.109181_br0100) 2021; 106 Campagner (10.1016/j.ijar.2024.109181_br0180) 2021; 136 |
| References_xml | – volume: 442 start-page: 98 year: 2021 end-page: 115 ident: br0080 article-title: Multi-label feature selection with local discriminant model and label correlations publication-title: Neurocomputing – volume: 95 start-page: 91 year: 2023 end-page: 108 ident: br0190 article-title: Two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary whale optimization for imbalanced data publication-title: Inf. Fusion – volume: 128 start-page: 32 year: 2021 end-page: 55 ident: br0220 article-title: Label distribution feature selection for multi-label classification with rough set publication-title: Int. J. Approx. Reason. – volume: 136 start-page: 150 year: 2021 end-page: 167 ident: br0180 article-title: Rough set-based feature selection for weakly labeled data publication-title: Int. J. Approx. Reason. – volume: 10 start-page: 1847 year: 2022 ident: br0330 article-title: Intuitionistic fuzzy-based three-way label enhancement for multi-label classification publication-title: Mathematics – volume: 34 start-page: 349 year: 2013 end-page: 357 ident: br0350 article-title: Feature selection for multi-label classification using multivariate mutual information publication-title: Pattern Recognit. Lett. – volume: 8 start-page: 2105 year: 2022 end-page: 2129 ident: br0270 article-title: Multi-label feature selection based on fuzzy neighborhood rough sets publication-title: Complex Intell. Syst. – volume: 50 start-page: 3748 year: 2020 end-page: 3774 ident: br0110 article-title: A multi-objective algorithm for multi-label filter feature selection problem publication-title: Appl. Intell. – volume: 624 start-page: 299 year: 2023 end-page: 323 ident: br0200 article-title: A novel multi-label feature selection method with association rules and rough set publication-title: Inf. Sci. – volume: 55 start-page: 225 year: 2014 end-page: 237 ident: br0280 article-title: Multigranulation decision-theoretic rough sets publication-title: Int. J. Approx. Reason. – volume: 95 start-page: 136 year: 2019 end-page: 150 ident: br0130 article-title: Manifold regularized discriminative feature selection for multi-label learning publication-title: Pattern Recognit. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: br0400 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 56 start-page: 52 year: 1961 end-page: 64 ident: br0390 article-title: Multiple comparisons among means publication-title: J. Am. Stat. Assoc. – volume: 29 start-page: 19 year: 2020 end-page: 33 ident: br0120 article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets publication-title: IEEE Trans. Fuzzy Syst. – volume: 4 start-page: 323 year: 2019 end-page: 335 ident: br0260 article-title: Optimal granulation selection for multi-label data based on multi-granulation rough sets publication-title: Granul. Comput. – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: br0370 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. – volume: 106 year: 2021 ident: br0100 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. – volume: 103 start-page: 107 year: 2018 end-page: 123 ident: br0290 article-title: Three-way decision and granular computing publication-title: Int. J. Approx. Reason. – volume: 44 start-page: 7955 year: 2021 end-page: 7974 ident: br0010 article-title: The emerging trends of multi-label learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 553 start-page: 129 year: 2021 end-page: 153 ident: br0070 article-title: Multi-label feature selection based on the division of label topics publication-title: Inf. Sci. – volume: 524 start-page: 142 year: 2023 end-page: 157 ident: br0210 article-title: Multi-label feature selection based on label distribution and neighborhood rough set publication-title: Neurocomputing – volume: 276 year: 2023 ident: br0040 article-title: Partial multi-label learning via three-way decision-based tri-training publication-title: Knowl.-Based Syst. – year: 2013 ident: br0060 article-title: Multi-Label Dimensionality Reduction – volume: 145 year: 2024 ident: br0160 article-title: Learning correlation information for multi-label feature selection publication-title: Pattern Recognit. – volume: 168 start-page: 92 year: 2015 end-page: 103 ident: br0150 article-title: Multi-label feature selection based on max-dependency and min-redundancy publication-title: Neurocomputing – start-page: 6 year: 2013 end-page: 11 ident: br0360 article-title: Relieff for multi-label feature selection publication-title: 2013 Brazilian Conference on Intelligent Systems – volume: 49 start-page: 2744 year: 2018 end-page: 2757 ident: br0090 article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping pso with nearest-neighbor memeplexes publication-title: IEEE Trans. Cybern. – start-page: 187 year: 1984 end-page: 196 ident: br0170 article-title: Rough sets and decision tables publication-title: Symposium on Computation Theory – volume: 4 start-page: 1 year: 2010 end-page: 21 ident: br0050 article-title: Multilabel dimensionality reduction via dependence maximization publication-title: ACM Trans. Knowl. Discov. Data – start-page: 2014 year: 2014 ident: br0250 article-title: A variable precision attribute reduction approach in multilabel decision tables publication-title: Sci. World J. – volume: 26 start-page: 1819 year: 2014 end-page: 1837 ident: br0340 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. – volume: 38 start-page: 244 year: 2016 end-page: 256 ident: br0240 article-title: Multi-label feature selection based on neighborhood mutual information publication-title: Appl. Soft Comput. – volume: 189 year: 2020 ident: br0320 article-title: Granular structure-based incremental updating for multi-label classification publication-title: Knowl.-Based Syst. – start-page: 266 year: 2019 end-page: 279 ident: br0300 article-title: Learning from imprecise data: adjustments of optimistic and pessimistic variants publication-title: Scalable Uncertainty Management: 13th International Conference – volume: 372 start-page: 327 year: 2023 end-page: 334 ident: br0310 article-title: Credal learning: weakly supervised learning from credal sets publication-title: Front. Artif. Intell. Appl. – volume: 100 year: 2023 ident: br0030 article-title: A survey on multi-label feature selection from perspectives of label fusion publication-title: Inf. Fusion – volume: 179 start-page: 3218 year: 2009 end-page: 3229 ident: br0140 article-title: Feature selection for multi-label naive Bayes classification publication-title: Inf. Sci. – volume: 543 start-page: 454 year: 2021 end-page: 466 ident: br0020 article-title: Noisy label tolerance: a new perspective of partial multi-label learning publication-title: Inf. Sci. – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: br0380 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc., Ser. B, Methodol. – volume: 52 start-page: 56 year: 2015 end-page: 65 ident: br0230 article-title: Feature selection for multi-label classification based on neighborhood rough sets publication-title: J. Comput. Res. Dev. – volume: 276 year: 2023 ident: 10.1016/j.ijar.2024.109181_br0040 article-title: Partial multi-label learning via three-way decision-based tri-training publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110743 – volume: 106 year: 2021 ident: 10.1016/j.ijar.2024.109181_br0100 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107302 – volume: 179 start-page: 3218 issue: 19 year: 2009 ident: 10.1016/j.ijar.2024.109181_br0140 article-title: Feature selection for multi-label naive Bayes classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.06.010 – volume: 52 start-page: 56 issue: 1 year: 2015 ident: 10.1016/j.ijar.2024.109181_br0230 article-title: Feature selection for multi-label classification based on neighborhood rough sets publication-title: J. Comput. Res. Dev. – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ijar.2024.109181_br0400 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 372 start-page: 327 year: 2023 ident: 10.1016/j.ijar.2024.109181_br0310 article-title: Credal learning: weakly supervised learning from credal sets publication-title: Front. Artif. Intell. Appl. – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.ijar.2024.109181_br0370 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 624 start-page: 299 year: 2023 ident: 10.1016/j.ijar.2024.109181_br0200 article-title: A novel multi-label feature selection method with association rules and rough set publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.12.070 – start-page: 2014 year: 2014 ident: 10.1016/j.ijar.2024.109181_br0250 article-title: A variable precision attribute reduction approach in multilabel decision tables publication-title: Sci. World J. – volume: 50 start-page: 3748 year: 2020 ident: 10.1016/j.ijar.2024.109181_br0110 article-title: A multi-objective algorithm for multi-label filter feature selection problem publication-title: Appl. Intell. doi: 10.1007/s10489-020-01785-2 – volume: 189 year: 2020 ident: 10.1016/j.ijar.2024.109181_br0320 article-title: Granular structure-based incremental updating for multi-label classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105066 – volume: 100 year: 2023 ident: 10.1016/j.ijar.2024.109181_br0030 article-title: A survey on multi-label feature selection from perspectives of label fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.101948 – volume: 95 start-page: 136 year: 2019 ident: 10.1016/j.ijar.2024.109181_br0130 article-title: Manifold regularized discriminative feature selection for multi-label learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.06.003 – volume: 49 start-page: 2744 issue: 7 year: 2018 ident: 10.1016/j.ijar.2024.109181_br0090 article-title: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping pso with nearest-neighbor memeplexes publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2834390 – volume: 136 start-page: 150 year: 2021 ident: 10.1016/j.ijar.2024.109181_br0180 article-title: Rough set-based feature selection for weakly labeled data publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2021.06.005 – volume: 4 start-page: 1 issue: 3 year: 2010 ident: 10.1016/j.ijar.2024.109181_br0050 article-title: Multilabel dimensionality reduction via dependence maximization publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/1839490.1839495 – volume: 128 start-page: 32 year: 2021 ident: 10.1016/j.ijar.2024.109181_br0220 article-title: Label distribution feature selection for multi-label classification with rough set publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2020.10.002 – year: 2013 ident: 10.1016/j.ijar.2024.109181_br0060 – volume: 168 start-page: 92 year: 2015 ident: 10.1016/j.ijar.2024.109181_br0150 article-title: Multi-label feature selection based on max-dependency and min-redundancy publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.010 – volume: 56 start-page: 52 issue: 293 year: 1961 ident: 10.1016/j.ijar.2024.109181_br0390 article-title: Multiple comparisons among means publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1961.10482090 – volume: 8 start-page: 2105 issue: 3 year: 2022 ident: 10.1016/j.ijar.2024.109181_br0270 article-title: Multi-label feature selection based on fuzzy neighborhood rough sets publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00636-y – start-page: 266 year: 2019 ident: 10.1016/j.ijar.2024.109181_br0300 article-title: Learning from imprecise data: adjustments of optimistic and pessimistic variants – volume: 34 start-page: 349 issue: 3 year: 2013 ident: 10.1016/j.ijar.2024.109181_br0350 article-title: Feature selection for multi-label classification using multivariate mutual information publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.10.005 – volume: 442 start-page: 98 year: 2021 ident: 10.1016/j.ijar.2024.109181_br0080 article-title: Multi-label feature selection with local discriminant model and label correlations publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.005 – volume: 145 year: 2024 ident: 10.1016/j.ijar.2024.109181_br0160 article-title: Learning correlation information for multi-label feature selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109899 – volume: 26 start-page: 1819 issue: 8 year: 2014 ident: 10.1016/j.ijar.2024.109181_br0340 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.39 – volume: 95 start-page: 91 year: 2023 ident: 10.1016/j.ijar.2024.109181_br0190 article-title: Two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary whale optimization for imbalanced data publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.02.016 – volume: 38 start-page: 244 year: 2016 ident: 10.1016/j.ijar.2024.109181_br0240 article-title: Multi-label feature selection based on neighborhood mutual information publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.009 – start-page: 6 year: 2013 ident: 10.1016/j.ijar.2024.109181_br0360 article-title: Relieff for multi-label feature selection – volume: 29 start-page: 19 issue: 1 year: 2020 ident: 10.1016/j.ijar.2024.109181_br0120 article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2989098 – volume: 524 start-page: 142 year: 2023 ident: 10.1016/j.ijar.2024.109181_br0210 article-title: Multi-label feature selection based on label distribution and neighborhood rough set publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.11.096 – start-page: 187 year: 1984 ident: 10.1016/j.ijar.2024.109181_br0170 article-title: Rough sets and decision tables – volume: 103 start-page: 107 year: 2018 ident: 10.1016/j.ijar.2024.109181_br0290 article-title: Three-way decision and granular computing publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2018.09.005 – volume: 4 start-page: 323 year: 2019 ident: 10.1016/j.ijar.2024.109181_br0260 article-title: Optimal granulation selection for multi-label data based on multi-granulation rough sets publication-title: Granul. Comput. doi: 10.1007/s41066-018-0110-9 – volume: 55 start-page: 225 issue: 1 year: 2014 ident: 10.1016/j.ijar.2024.109181_br0280 article-title: Multigranulation decision-theoretic rough sets publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2013.03.004 – volume: 553 start-page: 129 year: 2021 ident: 10.1016/j.ijar.2024.109181_br0070 article-title: Multi-label feature selection based on the division of label topics publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.12.036 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 10.1016/j.ijar.2024.109181_br0380 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc., Ser. B, Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 10 start-page: 1847 issue: 11 year: 2022 ident: 10.1016/j.ijar.2024.109181_br0330 article-title: Intuitionistic fuzzy-based three-way label enhancement for multi-label classification publication-title: Mathematics doi: 10.3390/math10111847 – volume: 44 start-page: 7955 issue: 11 year: 2021 ident: 10.1016/j.ijar.2024.109181_br0010 article-title: The emerging trends of multi-label learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3119334 – volume: 543 start-page: 454 year: 2021 ident: 10.1016/j.ijar.2024.109181_br0020 article-title: Noisy label tolerance: a new perspective of partial multi-label learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.09.019 |
| SSID | ssj0006748 |
| Score | 2.624767 |
| Snippet | Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with irrelevant and redundant features. To tackle this, several multi-label... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109181 |
| SubjectTerms | Feature selection Multi-label learning Rough sets Three-way decision Uncertainty |
| Title | Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets |
| URI | https://dx.doi.org/10.1016/j.ijar.2024.109181 |
| Volume | 169 |
| WOSCitedRecordID | wos001223598800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4731 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: AIEXJ dateStart: 20211208 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgOXlqdoecgHbqtUm8ReJ8eKFkEFFUhF7C2yHbvKapWWZne1P4Wfy_iZ7S5U9MAliizHiTJfxjOTmfkQepcJ-MQEL5OalsZB0SIRQutkVBeE6kIoLSxryWd2fl5MJuXXweBXqIVZzljbFqtVef1fRQ1jIGxTOnsPccdFYQDOQehwBLHD8Z8Eb4w681egsww3IZPQJg4mIHI1C0wRl0OzhdXmd8ESPGZTQ5XUCvxv5Wdfwj7m2b2GtefiSWLl49AR_HTK9YIKFu7tEONaYwrbvXzVgIVsmFp4Z-PAUeks7F6wNvKD-7T-fuhb48bOmojoLw23sd6TxdXPAHQfw8hIn2sVVV0BTqxlBu71suNw8ZrVNDB15C5bSt_FH6ZHzZSbDq8ZOeon3-6wvbHzxXzEkOo2rcwalVmjcms8QLsZoyXoy93jT6eTs7jLG5IW56G4J_cFWS53cPNJ_mz0rBkyF4_RnvdA8LFDzhM0UO1TtB_YPbBX9s9Q54GEI5AwAAmvAQkHIGELJAwzNoCEt4CEt4GELZCwAdJz9P3D6cX7j4mn6EhkPhrNE600I2MqcsoyWbJUlHCiRJ6rfKwIZ1IaHhEmRpILQ7o5VhpUAMs5TZnkOs1foJ32qlUvEaZcjWnKS0JyTaQSBS84WFK1lCbEIckBSsM7rKTvX29oVGbV36V3gIbxmmvXveXO2TSIpvL2p7MrK0DaHdcd3usur9Cj_hN4jXbmNwv1Bj2Uy3nT3bz1MPsN9MatSA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+for+multi-label+learning+based+on+variable-degree+multi-granulation+decision-theoretic+rough+sets&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Yu%2C+Ying&rft.au=Wan%2C+Ming&rft.au=Qian%2C+Jin&rft.au=Miao%2C+Duoqian&rft.date=2024-06-01&rft.issn=0888-613X&rft.volume=169&rft.spage=109181&rft_id=info:doi/10.1016%2Fj.ijar.2024.109181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijar_2024_109181 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon |