A novel particle swarm optimization algorithm with Levy flight
•This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO) and Levy flight (LFPSO).•The performance and accuracy of the LFPSO are examined on numerical benchmark functions especially multimodal functio...
Saved in:
| Published in: | Applied soft computing Vol. 23; pp. 333 - 345 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2014
|
| Subjects: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO) and Levy flight (LFPSO).•The performance and accuracy of the LFPSO are examined on numerical benchmark functions especially multimodal functions.•The results obtained by LFPSO show that the LFPSO is more effective than state-of-the-art PSO (SPSO).•In addition, to evaluate achievement of the proposed method, the LFPSO algorithm is compared the other PSO variants and other methods. The LFPSO outperforms the PSO variants and other algorithms and it is closely successful with the ABC algorithm.
Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods. |
|---|---|
| AbstractList | •This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO) and Levy flight (LFPSO).•The performance and accuracy of the LFPSO are examined on numerical benchmark functions especially multimodal functions.•The results obtained by LFPSO show that the LFPSO is more effective than state-of-the-art PSO (SPSO).•In addition, to evaluate achievement of the proposed method, the LFPSO algorithm is compared the other PSO variants and other methods. The LFPSO outperforms the PSO variants and other algorithms and it is closely successful with the ABC algorithm.
Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods. |
| Author | Haklı, Hüseyin Uğuz, Harun |
| Author_xml | – sequence: 1 givenname: Hüseyin surname: Haklı fullname: Haklı, Hüseyin email: hhakli@selcuk.edu.tr – sequence: 2 givenname: Harun surname: Uğuz fullname: Uğuz, Harun |
| BookMark | eNp9kM1qAjEUhUOxULV9ga7yAjNNMjPJBEpBpH8gdNOuQ0xuNDJOJAmKffqOtasu3Jx7Nt-F803QqA89IHRPSUkJ5Q-bUqdgSkZoXRJekqq-QmPaClZI3tLR0BveFrWs-Q2apLQhAyRZO0ZPM9yHPXR4p2P2pgOcDjpucdhlv_XfOvvQY92tQvR5vcWHIfEC9kfsOr9a51t07XSX4O7vTtHXy_Pn_K1YfLy-z2eLwlSE5MIB1LYCKrStXMtlK7RcMi4kJaaplqwB3ggrBbilscI6RiSjBpjQjtlKNNUUsfNfE0NKEZzaRb_V8agoUScDaqNOBtTJgCJcDQYGqP0HGZ9_F-WofXcZfTyjMIzae4gqGQ-9AesjmKxs8JfwH6z7ei4 |
| CitedBy_id | crossref_primary_10_1016_j_cma_2025_118318 crossref_primary_10_1038_srep30515 crossref_primary_10_1007_s00366_020_00955_7 crossref_primary_10_1016_j_asoc_2017_06_044 crossref_primary_10_32604_cmc_2024_053627 crossref_primary_10_1007_s00521_022_07751_y crossref_primary_10_1007_s12206_018_0743_2 crossref_primary_10_1016_j_future_2023_09_035 crossref_primary_10_1109_ACCESS_2020_3006424 crossref_primary_10_3390_en17040960 crossref_primary_10_1109_ACCESS_2020_2979921 crossref_primary_10_1007_s00521_017_2881_3 crossref_primary_10_1109_TITS_2021_3127352 crossref_primary_10_32604_cmc_2023_046006 crossref_primary_10_1007_s10586_024_05079_x crossref_primary_10_1080_15567036_2020_1855274 crossref_primary_10_1016_j_asoc_2022_108640 crossref_primary_10_1016_j_measen_2022_100519 crossref_primary_10_3390_sym15071319 crossref_primary_10_1109_ACCESS_2022_3220792 crossref_primary_10_1007_s13369_020_04872_1 crossref_primary_10_1016_j_swevo_2018_04_006 crossref_primary_10_1007_s10845_022_02018_8 crossref_primary_10_1016_j_solener_2021_01_049 crossref_primary_10_1088_1742_6596_2456_1_012032 crossref_primary_10_1109_ACCESS_2019_2891673 crossref_primary_10_1002_jnm_2914 crossref_primary_10_3390_sym13122388 crossref_primary_10_1016_j_biosystems_2018_09_007 crossref_primary_10_3390_electronics10182183 crossref_primary_10_1016_j_cie_2015_10_019 crossref_primary_10_1016_j_asoc_2016_04_026 crossref_primary_10_1016_j_procs_2023_10_493 crossref_primary_10_32604_cmes_2025_058473 crossref_primary_10_1109_TCYB_2019_2943928 crossref_primary_10_1177_0142331219891571 crossref_primary_10_1103_PhysRevLett_118_228102 crossref_primary_10_1016_j_asoc_2021_108254 crossref_primary_10_3390_s23041809 crossref_primary_10_1007_s13198_022_01821_z crossref_primary_10_1016_j_knosys_2023_110374 crossref_primary_10_1109_ACCESS_2020_2984023 crossref_primary_10_3390_electronics11132104 crossref_primary_10_1016_j_eswa_2024_123871 crossref_primary_10_1016_j_seta_2022_102186 crossref_primary_10_1016_j_swevo_2023_101262 crossref_primary_10_1016_j_asoc_2021_107924 crossref_primary_10_1016_j_eswa_2017_12_039 crossref_primary_10_1007_s42235_022_00228_7 crossref_primary_10_1080_01431161_2017_1368102 crossref_primary_10_3390_math11051195 crossref_primary_10_1007_s11277_025_11799_z crossref_primary_10_1016_j_eswa_2024_125815 crossref_primary_10_1016_j_procs_2021_09_244 crossref_primary_10_3390_s22093383 crossref_primary_10_1007_s10462_021_09962_6 crossref_primary_10_3390_electronics11223678 crossref_primary_10_1038_s41598_025_02200_x crossref_primary_10_1109_ACCESS_2020_2994984 crossref_primary_10_1016_j_asoc_2020_106560 crossref_primary_10_1016_j_chaos_2021_110969 crossref_primary_10_1109_ACCESS_2019_2940104 crossref_primary_10_1016_j_asoc_2021_107376 crossref_primary_10_1155_2019_6871298 crossref_primary_10_3390_e24050656 crossref_primary_10_1007_s12065_020_00465_x crossref_primary_10_1016_j_advengsoft_2022_103272 crossref_primary_10_1007_s40747_023_01041_3 crossref_primary_10_1016_j_compmedimag_2025_102542 crossref_primary_10_1016_j_cpc_2017_05_009 crossref_primary_10_1016_j_ins_2015_07_035 crossref_primary_10_1016_j_enconman_2020_112615 crossref_primary_10_1038_s41598_024_77137_8 crossref_primary_10_1155_2021_6681322 crossref_primary_10_1016_j_knosys_2018_05_002 crossref_primary_10_1007_s00607_015_0456_7 crossref_primary_10_1049_iet_rpg_2016_0319 crossref_primary_10_1049_iet_rpg_2019_0959 crossref_primary_10_1109_LGRS_2022_3147272 crossref_primary_10_1007_s11227_025_07596_x crossref_primary_10_1007_s40866_022_00149_8 crossref_primary_10_1016_j_asoc_2019_105822 crossref_primary_10_1007_s11047_017_9630_5 crossref_primary_10_1016_j_engappai_2023_106328 crossref_primary_10_3390_biology11010043 crossref_primary_10_1155_2021_8878686 crossref_primary_10_1016_j_energy_2025_135424 crossref_primary_10_1016_j_swevo_2019_100573 crossref_primary_10_1016_j_seta_2021_101310 crossref_primary_10_1016_j_jer_2025_05_001 crossref_primary_10_3390_en15197370 crossref_primary_10_1088_2631_8695_addc39 crossref_primary_10_1155_2022_9588610 crossref_primary_10_1016_j_asoc_2025_112938 crossref_primary_10_4018_IJRSDA_2018040101 crossref_primary_10_1007_s40995_020_00886_4 crossref_primary_10_1016_j_asoc_2022_108684 crossref_primary_10_1016_j_ijepes_2021_107893 crossref_primary_10_1007_s12065_021_00634_6 crossref_primary_10_1002_nme_6338 crossref_primary_10_1016_j_swevo_2018_02_013 crossref_primary_10_3390_pr9081452 crossref_primary_10_1007_s00366_021_01497_2 crossref_primary_10_1007_s12293_025_00461_7 crossref_primary_10_1109_ACCESS_2020_3003366 crossref_primary_10_1007_s13198_022_01758_3 crossref_primary_10_1016_j_isatra_2024_10_028 crossref_primary_10_1007_s11042_020_08635_w crossref_primary_10_1002_ese3_790 crossref_primary_10_2478_fcds_2024_0001 crossref_primary_10_1109_ACCESS_2019_2904511 crossref_primary_10_1088_1361_6501_abeea7 crossref_primary_10_1007_s10489_022_03429_z crossref_primary_10_3390_ijgi9070462 crossref_primary_10_1016_j_renene_2021_04_088 crossref_primary_10_1016_j_eswa_2025_129244 crossref_primary_10_1155_2021_6505253 crossref_primary_10_1016_j_cma_2023_116199 crossref_primary_10_1016_j_eswa_2024_124882 crossref_primary_10_1007_s00158_016_1624_x crossref_primary_10_1016_j_jhydrol_2022_129034 crossref_primary_10_1109_ACCESS_2019_2938063 crossref_primary_10_1016_j_knosys_2021_107625 crossref_primary_10_1007_s11227_021_04150_3 crossref_primary_10_1007_s11063_023_11313_1 crossref_primary_10_32604_cmes_2022_020824 crossref_primary_10_1016_j_apm_2020_07_052 crossref_primary_10_1371_journal_pone_0281568 crossref_primary_10_3390_w15142593 crossref_primary_10_1016_j_asoc_2018_09_007 crossref_primary_10_1016_j_asoc_2018_09_008 crossref_primary_10_1007_s00500_023_08414_3 crossref_primary_10_1007_s11663_024_03184_1 crossref_primary_10_3390_math10224169 crossref_primary_10_1016_j_techfore_2021_120824 crossref_primary_10_1007_s00521_024_10910_y crossref_primary_10_1016_j_chemolab_2016_10_011 crossref_primary_10_1007_s00477_025_02914_4 crossref_primary_10_3390_math10234509 crossref_primary_10_3390_photonics9020093 crossref_primary_10_1016_j_asoc_2025_113462 crossref_primary_10_1016_j_eswa_2019_112970 crossref_primary_10_1007_s10586_024_04713_y crossref_primary_10_1038_s41598_025_86264_9 crossref_primary_10_1007_s12517_021_06687_2 crossref_primary_10_1007_s12541_024_01160_y crossref_primary_10_1016_j_swevo_2022_101207 crossref_primary_10_3390_en15134631 crossref_primary_10_1007_s00500_024_09814_9 crossref_primary_10_3390_s25185638 crossref_primary_10_1155_2022_6461690 crossref_primary_10_32604_cmc_2022_029315 crossref_primary_10_1016_j_eswa_2022_117629 crossref_primary_10_1016_j_cie_2022_108032 crossref_primary_10_1016_j_asoc_2019_105744 crossref_primary_10_1016_j_asoc_2018_09_019 crossref_primary_10_1016_j_mtcomm_2025_111627 crossref_primary_10_1016_j_jhydrol_2023_129977 crossref_primary_10_1109_ACCESS_2024_3350442 crossref_primary_10_1111_exsy_12843 crossref_primary_10_1109_ACCESS_2019_2893200 crossref_primary_10_1515_nanoph_2025_0159 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_1016_j_ins_2017_09_015 crossref_primary_10_1007_s00521_022_08057_9 crossref_primary_10_1007_s11227_024_06856_6 crossref_primary_10_1109_ACCESS_2019_2936823 crossref_primary_10_3233_JIFS_210520 crossref_primary_10_3390_math10152785 crossref_primary_10_1007_s10462_022_10222_4 crossref_primary_10_1007_s10845_020_01691_x crossref_primary_10_1007_s00500_022_07515_9 crossref_primary_10_1016_j_eswa_2025_126686 crossref_primary_10_3390_math12071066 crossref_primary_10_1080_02522667_2020_1804133 crossref_primary_10_1016_j_apm_2019_02_004 crossref_primary_10_1109_TEC_2021_3124941 crossref_primary_10_1109_TIV_2024_3362386 crossref_primary_10_1016_j_asoc_2019_105521 crossref_primary_10_1007_s11071_019_05252_7 crossref_primary_10_1016_j_chaos_2025_116219 crossref_primary_10_1016_j_swevo_2017_12_006 crossref_primary_10_1016_j_cma_2024_116915 crossref_primary_10_1016_j_eswa_2019_03_039 crossref_primary_10_3390_s22010384 crossref_primary_10_1186_s40064_016_3244_8 crossref_primary_10_1016_j_jprocont_2017_08_014 crossref_primary_10_1016_j_measurement_2023_113951 crossref_primary_10_1002_adts_202400135 crossref_primary_10_1016_j_asoc_2018_06_028 crossref_primary_10_1016_j_ces_2024_120512 crossref_primary_10_1016_j_knosys_2018_12_031 crossref_primary_10_1007_s10489_018_1198_y crossref_primary_10_1007_s10489_022_04224_6 crossref_primary_10_1109_ACCESS_2019_2960472 crossref_primary_10_1515_biol_2018_0044 crossref_primary_10_1051_bioconf_20170801037 crossref_primary_10_1007_s13042_024_02227_y crossref_primary_10_1155_2022_8312450 crossref_primary_10_1109_JSEN_2025_3587987 crossref_primary_10_1109_ACCESS_2022_3162074 crossref_primary_10_1109_ACCESS_2022_3204798 crossref_primary_10_1371_journal_pone_0279572 crossref_primary_10_3390_s25061785 crossref_primary_10_1177_1748006X19852814 crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1016_j_knosys_2017_10_011 crossref_primary_10_1016_j_asoc_2016_02_018 crossref_primary_10_1016_j_asoc_2018_02_042 crossref_primary_10_3233_JIFS_17275 crossref_primary_10_1155_2017_8034573 crossref_primary_10_32604_cmc_2024_048461 crossref_primary_10_4018_IJAMC_292496 crossref_primary_10_1515_comp_2020_0223 crossref_primary_10_1007_s00500_017_2601_z crossref_primary_10_1007_s00500_022_07202_9 crossref_primary_10_1016_j_eswa_2023_122638 crossref_primary_10_1016_j_eswa_2022_117428 crossref_primary_10_1155_2019_2981282 crossref_primary_10_1109_TIM_2023_3277962 crossref_primary_10_1007_s11063_022_10821_w crossref_primary_10_1007_s10588_019_09293_6 crossref_primary_10_1007_s00366_021_01356_0 crossref_primary_10_1007_s11664_024_11554_3 crossref_primary_10_1007_s11053_025_10455_4 crossref_primary_10_1016_j_apenergy_2022_119277 crossref_primary_10_1007_s40095_021_00397_x crossref_primary_10_1016_j_apm_2023_05_023 crossref_primary_10_1093_comjnl_bxab206 crossref_primary_10_3390_sym12122088 crossref_primary_10_1155_jece_2004118 crossref_primary_10_3390_app14177916 crossref_primary_10_1016_j_asoc_2017_07_050 crossref_primary_10_1016_j_asoc_2018_06_003 crossref_primary_10_1007_s13198_022_01743_w crossref_primary_10_1007_s40866_022_00142_1 crossref_primary_10_1007_s11831_021_09532_7 crossref_primary_10_1016_j_asoc_2016_11_037 crossref_primary_10_1016_j_apor_2020_102231 crossref_primary_10_4316_AECE_2017_04008 crossref_primary_10_1007_s40436_023_00451_3 crossref_primary_10_1038_s41598_023_41093_6 crossref_primary_10_2166_hydro_2023_037 crossref_primary_10_1007_s10462_024_10946_5 crossref_primary_10_1007_s00500_017_2733_1 crossref_primary_10_1371_journal_pone_0324253 crossref_primary_10_1155_2022_4587880 crossref_primary_10_1016_j_asoc_2020_106402 crossref_primary_10_1016_j_dsp_2024_104516 crossref_primary_10_1016_j_asoc_2023_110091 crossref_primary_10_1109_ACCESS_2020_3020895 crossref_primary_10_1080_15435075_2024_2326074 crossref_primary_10_1016_j_cie_2019_06_015 crossref_primary_10_1016_j_eswa_2020_113292 crossref_primary_10_1109_ACCESS_2020_2997783 crossref_primary_10_3390_math10183405 crossref_primary_10_7717_peerj_cs_834 crossref_primary_10_1109_TNS_2023_3255892 crossref_primary_10_1016_j_eswa_2022_116835 crossref_primary_10_1016_j_knosys_2023_110454 crossref_primary_10_1016_j_asoc_2021_107367 crossref_primary_10_3390_biomimetics10080526 crossref_primary_10_1155_2021_9271283 crossref_primary_10_3390_electronics12020289 crossref_primary_10_1007_s11269_022_03064_w crossref_primary_10_1007_s11227_023_05728_9 crossref_primary_10_1109_ACCESS_2021_3083220 crossref_primary_10_1016_j_matcom_2023_04_027 crossref_primary_10_1007_s11042_022_13600_w crossref_primary_10_1007_s12065_022_00755_6 crossref_primary_10_1007_s10489_024_06155_w crossref_primary_10_1109_ACCESS_2020_2965150 crossref_primary_10_1016_j_swevo_2024_101533 crossref_primary_10_1016_j_asoc_2016_09_048 crossref_primary_10_1016_j_swevo_2023_101336 crossref_primary_10_1109_ACCESS_2024_3466170 crossref_primary_10_1371_journal_pcbi_1009490 crossref_primary_10_3390_e23050527 crossref_primary_10_1371_journal_pone_0167341 crossref_primary_10_1109_ACCESS_2024_3436899 crossref_primary_10_4018_IJIRR_289569 crossref_primary_10_1016_j_rser_2016_11_241 crossref_primary_10_2298_JMMB240928033S crossref_primary_10_1186_s40537_025_01129_2 crossref_primary_10_1107_S1600576724001031 crossref_primary_10_1016_j_bspc_2022_104543 crossref_primary_10_1016_j_chaos_2023_113163 crossref_primary_10_1109_ACCESS_2019_2899043 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_1007_s11227_025_07106_z crossref_primary_10_1016_j_ins_2014_09_053 crossref_primary_10_1007_s13369_021_05866_3 crossref_primary_10_1109_ACCESS_2021_3136239 crossref_primary_10_1088_1361_6501_ad574c crossref_primary_10_3390_pr13072044 crossref_primary_10_1007_s00500_021_05961_5 crossref_primary_10_1155_2022_8148586 |
| Cites_doi | 10.1016/j.eswa.2008.08.007 10.1016/j.eswa.2011.12.017 10.1016/j.cor.2006.12.030 10.1016/j.eswa.2008.02.048 10.1016/j.amc.2009.03.090 10.1016/j.asoc.2012.03.022 10.1109/TEVC.2005.857610 10.1016/j.cor.2011.09.026 10.1201/b10497-6 10.1016/j.simpat.2012.04.001 10.1016/j.ipl.2004.11.003 10.1016/S1006-1266(07)60128-X 10.1016/j.amc.2010.04.011 10.1109/TEVC.2010.2052054 10.1038/381413a0 10.1016/j.ins.2010.07.013 10.1016/j.eswa.2010.05.085 10.1016/j.amc.2012.06.078 10.1109/TEVC.2004.826074 10.1016/j.eswa.2011.01.041 10.1016/j.asoc.2009.06.010 10.1016/j.eswa.2011.02.140 10.1016/j.compbiolchem.2007.09.005 10.1109/TEVC.2004.826071 10.1016/j.ejor.2005.12.024 10.1038/nature06199 10.1016/j.asoc.2011.11.032 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2014.06.034 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 345 |
| ExternalDocumentID | 10_1016_j_asoc_2014_06_034 S1568494614003081 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-fee4d3e17ad3f86987a9b267910c53b25e657d97efbcd7df20921ce27af2d3753 |
| ISICitedReferencesCount | 350 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341680000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:05:22 EST 2025 Tue Nov 18 21:24:00 EST 2025 Fri Feb 23 02:28:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Levy distribution Levy flight Particle swarm optimization Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-fee4d3e17ad3f86987a9b267910c53b25e657d97efbcd7df20921ce27af2d3753 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2014_06_034 crossref_citationtrail_10_1016_j_asoc_2014_06_034 elsevier_sciencedirect_doi_10_1016_j_asoc_2014_06_034 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cottone, Pirrotta, Scimemi, Sanseverino (bib0195) 2010 Al-Temeemy, Spencer, Ralph (bib0130) 2010 Yang (bib0210) 2010 Kıran, Gunduz, Baykan (bib0125) 2012; 219 Tsoulos, Stavrakoudis (bib0110) 2010; 216 Xinchao (bib0100) 2010; 10 Mendes, Kennedy, Neves (bib0230) 2004; 8 Kennedy, Mendes (bib0235) 2002 Krishnanand, Ghose (bib0245) 2005 Yang (bib0175) 2010 Yang, Kung, Liu, Chen, Chang, Hwang (bib0075) 2010 Candela, Cottone, Scimemi, Sanseverino (bib0190) 2010 Pereyra, Batatia (bib0140) 2010 Cavuslu, Karakuzu, Karakaya (bib0055) 2012; 12 Ratnaweera, Halgamuge, Watson (bib0225) 2004; 8 Zhang, Huang, Ji, Xie (bib0060) 2011; 38 Yang, Yuan, Yuan, Mao (bib0040) 2010; 37 Chuang, Chang, Tu, Yang (bib0050) 2008; 32 Liang, Qin, Suganthan, Baskar (bib0095) 2006 Chechkin, Metzler, Klafter, Gonchar (bib0205) 2008 Sutantyo, Kernbach, Levi, Nepomnyashchikh (bib0150) 2010 Ortakçı (bib0200) 2011 Coello Coello, Luna, Aguirre (bib0080) 2004 Rhee, Shin, Hong, Lee, Kim, Chong (bib0155) 2011 Lee, Yao (bib0180) 2001 Chen (bib0135) 2010 Wu, Qian, Ni, Fan (bib0255) 2012; 39 Li, Lin, Kou (bib0020) 2012; 12 Yang, Deb (bib0170) 2013; 40 Tasgetiren, Liang, Sevkli, Gencyilmaz (bib0070) 2007; 177 Candela, Cottone, Scimemi, Sanseverino (bib0185) 2009 Edwards, Phillips, Watkins, Freeman, Murphy, Afanasyev, Buldyrev, da Luz, Raposo, Stanley, Viswanathan (bib0160) 2007; 449 Eberhart, Hu (bib0085) 1999 Yang, Zhang, Deng, Du (bib0045) 2007; 17 Liang, Suganthan (bib0240) 2005 Karaboga, Akay (bib0270) 2009; 214 Sarangi, Mahapatra, Panigrahi (bib0025) 2011; 38 Chiou, Tsai, Liu (bib0035) 2012; 26 Zhan, Zhang, Li, Shi (bib0220) 2011; 15 Pana, Tasgetiren, Liang (bib0065) 2008; 35 Chang, Ko (bib0030) 2009; 36 Kennedy, Eberhart (bib0015) 1995 Omran (bib0215) 2007 Karaboga (bib0005) 2005 Shi, Liang, Lee, Lu, Wang (bib0115) 2005; 93 Chiam, Tan, Mamun (bib0120) 2009; 36 Dorigo, Caro (bib0010) 1999 Shi, Eberhart (bib0090) 1998 Viswanathan, Afanasyev, Buldyrev, Murphy, Prince, Stanley (bib0165) 1996; 381 Wang, Li, Weise, Wang, Yuan, Tian (bib0105) 2011; 181 bib0265 Yang (bib0250) 2009 bib0260 Terdik, Gyires (bib0145) 2009 Viswanathan (10.1016/j.asoc.2014.06.034_bib0165) 1996; 381 Kennedy (10.1016/j.asoc.2014.06.034_bib0015) 1995 Chang (10.1016/j.asoc.2014.06.034_bib0030) 2009; 36 Edwards (10.1016/j.asoc.2014.06.034_bib0160) 2007; 449 Ratnaweera (10.1016/j.asoc.2014.06.034_bib0225) 2004; 8 Candela (10.1016/j.asoc.2014.06.034_bib0190) 2010 Liang (10.1016/j.asoc.2014.06.034_bib0240) 2005 Zhan (10.1016/j.asoc.2014.06.034_bib0220) 2011; 15 Lee (10.1016/j.asoc.2014.06.034_bib0180) 2001 Wu (10.1016/j.asoc.2014.06.034_bib0255) 2012; 39 Karaboga (10.1016/j.asoc.2014.06.034_bib0270) 2009; 214 Xinchao (10.1016/j.asoc.2014.06.034_bib0100) 2010; 10 Ortakçı (10.1016/j.asoc.2014.06.034_bib0200) 2011 Kennedy (10.1016/j.asoc.2014.06.034_bib0235) 2002 Pereyra (10.1016/j.asoc.2014.06.034_bib0140) 2010 Yang (10.1016/j.asoc.2014.06.034_bib0250) 2009 Sarangi (10.1016/j.asoc.2014.06.034_bib0025) 2011; 38 Terdik (10.1016/j.asoc.2014.06.034_bib0145) 2009 Yang (10.1016/j.asoc.2014.06.034_bib0075) 2010 Tsoulos (10.1016/j.asoc.2014.06.034_bib0110) 2010; 216 Dorigo (10.1016/j.asoc.2014.06.034_bib0010) 1999 Cottone (10.1016/j.asoc.2014.06.034_bib0195) 2010 Wang (10.1016/j.asoc.2014.06.034_bib0105) 2011; 181 Zhang (10.1016/j.asoc.2014.06.034_bib0060) 2011; 38 Chechkin (10.1016/j.asoc.2014.06.034_bib0205) 2008 Al-Temeemy (10.1016/j.asoc.2014.06.034_bib0130) 2010 Eberhart (10.1016/j.asoc.2014.06.034_bib0085) 1999 Tasgetiren (10.1016/j.asoc.2014.06.034_bib0070) 2007; 177 Candela (10.1016/j.asoc.2014.06.034_bib0185) 2009 Mendes (10.1016/j.asoc.2014.06.034_bib0230) 2004; 8 Liang (10.1016/j.asoc.2014.06.034_bib0095) 2006 Kıran (10.1016/j.asoc.2014.06.034_bib0125) 2012; 219 Chen (10.1016/j.asoc.2014.06.034_bib0135) 2010 Li (10.1016/j.asoc.2014.06.034_bib0020) 2012; 12 Shi (10.1016/j.asoc.2014.06.034_bib0090) 1998 Omran (10.1016/j.asoc.2014.06.034_bib0215) 2007 Chiam (10.1016/j.asoc.2014.06.034_bib0120) 2009; 36 Chuang (10.1016/j.asoc.2014.06.034_bib0050) 2008; 32 Karaboga (10.1016/j.asoc.2014.06.034_bib0005) 2005 Rhee (10.1016/j.asoc.2014.06.034_bib0155) 2011 Pana (10.1016/j.asoc.2014.06.034_bib0065) 2008; 35 Chiou (10.1016/j.asoc.2014.06.034_bib0035) 2012; 26 Shi (10.1016/j.asoc.2014.06.034_bib0115) 2005; 93 Yang (10.1016/j.asoc.2014.06.034_bib0045) 2007; 17 Yang (10.1016/j.asoc.2014.06.034_bib0210) 2010 Krishnanand (10.1016/j.asoc.2014.06.034_bib0245) 2005 Cavuslu (10.1016/j.asoc.2014.06.034_bib0055) 2012; 12 Sutantyo (10.1016/j.asoc.2014.06.034_bib0150) 2010 Yang (10.1016/j.asoc.2014.06.034_bib0175) 2010 Yang (10.1016/j.asoc.2014.06.034_bib0040) 2010; 37 Yang (10.1016/j.asoc.2014.06.034_bib0170) 2013; 40 Coello Coello (10.1016/j.asoc.2014.06.034_bib0080) 2004 |
| References_xml | – volume: 219 start-page: 1515 year: 2012 end-page: 1521 ident: bib0125 article-title: A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum publication-title: Appl. Math. Comput. – start-page: 69 year: 1998 end-page: 73 ident: bib0090 article-title: A modified particle swarm optimizer publication-title: The 1998 IEEE International Conference on Evolutionary Computation Proceedings – volume: 26 start-page: 49 year: 2012 end-page: 59 ident: bib0035 article-title: A. PSO-based adaptive fuzzy PID-controllers publication-title: Simul. Model. Pract. Theory – volume: 40 start-page: 1616 year: 2013 end-page: 1624 ident: bib0170 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput. Oper. Res. – start-page: 71 year: 2004 end-page: 78 ident: bib0080 article-title: A comparative study of encodings to design combinational logic circuits using particle swarm optimization publication-title: Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware – start-page: 169 year: 2009 end-page: 178 ident: bib0250 article-title: Firefly algorithms for multimodal optimization publication-title: 5th International Symposium SAGA – start-page: 1470 year: 1999 end-page: 1477 ident: bib0010 article-title: Ant colony optimization: a new meta-heuristic publication-title: Proceedings of the 1999 Congress on Evolutionary Computation – ident: bib0260 – volume: 32 start-page: 29 year: 2008 end-page: 38 ident: bib0050 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput. Biol. Chem. – year: 2010 ident: bib0210 article-title: Engineering Optimization an Introduction with Metaheuristic Applications – start-page: 2327 year: 2010 end-page: 2331 ident: bib0140 article-title: A Levy flight model for ultrasound in skin tissues publication-title: 2010 IEEE on Ultrasonics Symposium (IUS) – start-page: 456 year: 2010 end-page: 459 ident: bib0075 article-title: Logic circuit design by neural network and PSO algorithm publication-title: 2010 First International Conference on Pervasive Computing Signal Processing and Applications (PCSPA) – start-page: 129 year: 2008 end-page: 162 ident: bib0205 article-title: Introduction to the theory of Lévy flights publication-title: Anomalous Transport: Foundations and Applications – volume: 381 start-page: 413 year: 1996 end-page: 415 ident: bib0165 article-title: Lévy flight search patterns of wandering albatrosses publication-title: Nature – start-page: 120 year: 2009 end-page: 129 ident: bib0145 article-title: Lévy flights and fractal modeling of internet traffic publication-title: IEEE/ACM Transactions on Networking – start-page: 1671 year: 2002 end-page: 1676 ident: bib0235 article-title: Population structure and particle swarm performance publication-title: IEEE Congr. Evol. Comput., Honolulu – volume: 37 start-page: 8036 year: 2010 end-page: 8041 ident: bib0040 article-title: An improved WM method based on PSO for electric load forecasting publication-title: Expert Syst. Appl. – start-page: 281 year: 2006 end-page: 295 ident: bib0095 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib0270 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – volume: 15 start-page: 832 year: 2011 end-page: 846 ident: bib0220 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 449 start-page: 1044 year: 2007 end-page: 1048 ident: bib0160 article-title: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer publication-title: Nature – volume: 216 start-page: 2988 year: 2010 end-page: 3001 ident: bib0110 article-title: Enhancing PSO methods for global optimization publication-title: Appl. Math. Comput. – volume: 36 start-page: 3695 year: 2009 end-page: 3711 ident: bib0120 article-title: A memetic model of evolutionary PSO for computational finance applications publication-title: Expert Syst. Appl. – volume: 10 start-page: 119 year: 2010 end-page: 124 ident: bib0100 article-title: A perturbed particle swarm algorithm for numerical optimization publication-title: Appl. Soft Comput. – start-page: 1 year: 2010 end-page: 6 ident: bib0150 article-title: Multi-robot searching algorithm using Levy flight and artificial potential field publication-title: 2010 IEEE International Workshop on Safety Security and Rescue Robotics (SSRR) – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: bib0225 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. – year: 2005 ident: bib0005 article-title: An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty publication-title: Comput. Eng. Dep. – start-page: 39 year: 1995 end-page: 43 ident: bib0015 article-title: Particle swarm optimization publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science – volume: 93 start-page: 255 year: 2005 end-page: 261 ident: bib0115 article-title: An improved GA and a novel PSO-GA-based hybrid algorithm publication-title: Inf. Process. Lett. – start-page: 37 year: 2010 end-page: 44 ident: bib0195 article-title: Damage identification by Lévy ant colony optimization publication-title: Reliab. Optim. Struct. Syst. – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib0230 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. – volume: 39 start-page: 6335 year: 2012 end-page: 6342 ident: bib0255 article-title: The improvement of glowworm swarm optimization for continuous optimization problems publication-title: Expert Syst. Appl. – start-page: 630 year: 2011 end-page: 643 ident: bib0155 article-title: On the Levy-walk nature of human mobility publication-title: IEEE/ACM Transactions on Networking – start-page: 209 year: 2010 end-page: 218 ident: bib0175 article-title: Firefly algorithm, Levy flights and global optimization publication-title: Research and Development in Intelligent Systems XXVI – start-page: 124 year: 2005 end-page: 129 ident: bib0240 article-title: Dynamic multi-swarm particle swarm optimizer – start-page: 288 year: 2010 end-page: 297 ident: bib0190 article-title: Composite laminates buckling optimization through Lévy based ant colony optimization publication-title: 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems – volume: 17 start-page: 473 year: 2007 end-page: 478 ident: bib0045 article-title: Research into a feature selection method for hyperspectral imagery using PSO and SVM publication-title: J. China Univ. Mining Technol. – volume: 38 start-page: 9036 year: 2011 end-page: 9040 ident: bib0060 article-title: Image segmentation using PSO and PCM with Mahalanobis distance publication-title: Expert Syst. Appl. – volume: 35 start-page: 2807 year: 2008 end-page: 2839 ident: bib0065 article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem publication-title: Comput. Oper. Res. – volume: 12 start-page: 975 year: 2012 end-page: 987 ident: bib0020 article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization publication-title: Appl. Soft Comput. – volume: 177 start-page: 1930 year: 2007 end-page: 1947 ident: bib0070 article-title: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem publication-title: Eur. J. Oper. Res. – volume: 36 start-page: 6809 year: 2009 end-page: 6816 ident: bib0030 article-title: A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters publication-title: Expert Syst. Appl. – start-page: 4421 year: 2010 end-page: 4423 ident: bib0135 article-title: Research and simulation on Levy flight model for DTN publication-title: 2010 3rd International Congress on Image and Signal Processing – volume: 12 start-page: 2707 year: 2012 end-page: 2718 ident: bib0055 article-title: Neural identification of dynamic systems on FPGA with improved PSO learning publication-title: Appl. Soft Comput. – start-page: 79 year: 2009 end-page: 88 ident: bib0185 article-title: Lévy flights for ant colony optimization in continuous domains publication-title: Mathematical Theory and Computational Practice Fifth Conference on Computability in Europe – start-page: 225 year: 2010 end-page: 228 ident: bib0130 article-title: Levy flights for improved ladar scanning publication-title: 2010 IEEE International Conference on Imaging Systems and Techniques (IST) – year: 2007 ident: bib0215 article-title: SPSO 2007 Matlab – start-page: 1927 year: 1999 end-page: 1930 ident: bib0085 article-title: Human tremor analysis using particle swarm optimization publication-title: Proceedings of the 1999 Congress on Evolutionary Computation – ident: bib0265 – volume: 181 start-page: 4515 year: 2011 end-page: 4538 ident: bib0105 article-title: Self-adaptive learning based particle swarm optimization publication-title: Inf. Sci. – start-page: 84 year: 2005 end-page: 91 ident: bib0245 article-title: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics publication-title: IEEE Swarm Intelligence Symposium – start-page: 568 year: 2001 end-page: 575 ident: bib0180 article-title: Evolutionary algorithms with adaptive Levy mutations publication-title: Proceedings of the 2001 Congress on Evolutionary Computation – year: 2011 ident: bib0200 article-title: Comparison of Particle Swarm Optimization Methods in Applications – volume: 38 start-page: 10966 year: 2011 end-page: 10973 ident: bib0025 article-title: DEPSO and PSO-QI in digital filter design publication-title: Expert Syst. Appl. – start-page: 568 year: 2001 ident: 10.1016/j.asoc.2014.06.034_bib0180 article-title: Evolutionary algorithms with adaptive Levy mutations – start-page: 456 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0075 article-title: Logic circuit design by neural network and PSO algorithm – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2014.06.034_bib0015 article-title: Particle swarm optimization – volume: 36 start-page: 6809 year: 2009 ident: 10.1016/j.asoc.2014.06.034_bib0030 article-title: A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.08.007 – volume: 39 start-page: 6335 year: 2012 ident: 10.1016/j.asoc.2014.06.034_bib0255 article-title: The improvement of glowworm swarm optimization for continuous optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.12.017 – volume: 35 start-page: 2807 year: 2008 ident: 10.1016/j.asoc.2014.06.034_bib0065 article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2006.12.030 – volume: 36 start-page: 3695 year: 2009 ident: 10.1016/j.asoc.2014.06.034_bib0120 article-title: A memetic model of evolutionary PSO for computational finance applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.02.048 – year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0210 – start-page: 209 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0175 article-title: Firefly algorithm, Levy flights and global optimization – start-page: 1 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0150 article-title: Multi-robot searching algorithm using Levy flight and artificial potential field – start-page: 1927 year: 1999 ident: 10.1016/j.asoc.2014.06.034_bib0085 article-title: Human tremor analysis using particle swarm optimization – start-page: 2327 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0140 article-title: A Levy flight model for ultrasound in skin tissues – start-page: 69 year: 1998 ident: 10.1016/j.asoc.2014.06.034_bib0090 article-title: A modified particle swarm optimizer – volume: 214 start-page: 108 year: 2009 ident: 10.1016/j.asoc.2014.06.034_bib0270 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – volume: 12 start-page: 2707 year: 2012 ident: 10.1016/j.asoc.2014.06.034_bib0055 article-title: Neural identification of dynamic systems on FPGA with improved PSO learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.03.022 – start-page: 281 year: 2006 ident: 10.1016/j.asoc.2014.06.034_bib0095 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 40 start-page: 1616 year: 2013 ident: 10.1016/j.asoc.2014.06.034_bib0170 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.09.026 – start-page: 37 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0195 article-title: Damage identification by Lévy ant colony optimization publication-title: Reliab. Optim. Struct. Syst. doi: 10.1201/b10497-6 – volume: 26 start-page: 49 year: 2012 ident: 10.1016/j.asoc.2014.06.034_bib0035 article-title: A. PSO-based adaptive fuzzy PID-controllers publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2012.04.001 – year: 2007 ident: 10.1016/j.asoc.2014.06.034_bib0215 – volume: 93 start-page: 255 year: 2005 ident: 10.1016/j.asoc.2014.06.034_bib0115 article-title: An improved GA and a novel PSO-GA-based hybrid algorithm publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2004.11.003 – volume: 17 start-page: 473 year: 2007 ident: 10.1016/j.asoc.2014.06.034_bib0045 article-title: Research into a feature selection method for hyperspectral imagery using PSO and SVM publication-title: J. China Univ. Mining Technol. doi: 10.1016/S1006-1266(07)60128-X – volume: 216 start-page: 2988 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0110 article-title: Enhancing PSO methods for global optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.04.011 – volume: 15 start-page: 832 year: 2011 ident: 10.1016/j.asoc.2014.06.034_bib0220 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2052054 – start-page: 79 year: 2009 ident: 10.1016/j.asoc.2014.06.034_bib0185 article-title: Lévy flights for ant colony optimization in continuous domains – volume: 381 start-page: 413 year: 1996 ident: 10.1016/j.asoc.2014.06.034_bib0165 article-title: Lévy flight search patterns of wandering albatrosses publication-title: Nature doi: 10.1038/381413a0 – volume: 181 start-page: 4515 year: 2011 ident: 10.1016/j.asoc.2014.06.034_bib0105 article-title: Self-adaptive learning based particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.07.013 – start-page: 169 year: 2009 ident: 10.1016/j.asoc.2014.06.034_bib0250 article-title: Firefly algorithms for multimodal optimization – start-page: 630 year: 2011 ident: 10.1016/j.asoc.2014.06.034_bib0155 article-title: On the Levy-walk nature of human mobility – volume: 37 start-page: 8036 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0040 article-title: An improved WM method based on PSO for electric load forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.05.085 – start-page: 84 year: 2005 ident: 10.1016/j.asoc.2014.06.034_bib0245 article-title: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics – start-page: 71 year: 2004 ident: 10.1016/j.asoc.2014.06.034_bib0080 article-title: A comparative study of encodings to design combinational logic circuits using particle swarm optimization – volume: 219 start-page: 1515 year: 2012 ident: 10.1016/j.asoc.2014.06.034_bib0125 article-title: A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.06.078 – start-page: 4421 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0135 article-title: Research and simulation on Levy flight model for DTN – start-page: 124 year: 2005 ident: 10.1016/j.asoc.2014.06.034_bib0240 – start-page: 129 year: 2008 ident: 10.1016/j.asoc.2014.06.034_bib0205 article-title: Introduction to the theory of Lévy flights – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 10.1016/j.asoc.2014.06.034_bib0230 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 – year: 2011 ident: 10.1016/j.asoc.2014.06.034_bib0200 – volume: 38 start-page: 9036 year: 2011 ident: 10.1016/j.asoc.2014.06.034_bib0060 article-title: Image segmentation using PSO and PCM with Mahalanobis distance publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.041 – volume: 10 start-page: 119 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0100 article-title: A perturbed particle swarm algorithm for numerical optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.06.010 – start-page: 1470 year: 1999 ident: 10.1016/j.asoc.2014.06.034_bib0010 article-title: Ant colony optimization: a new meta-heuristic – start-page: 120 year: 2009 ident: 10.1016/j.asoc.2014.06.034_bib0145 article-title: Lévy flights and fractal modeling of internet traffic – start-page: 1671 year: 2002 ident: 10.1016/j.asoc.2014.06.034_bib0235 article-title: Population structure and particle swarm performance publication-title: IEEE Congr. Evol. Comput., Honolulu – volume: 38 start-page: 10966 year: 2011 ident: 10.1016/j.asoc.2014.06.034_bib0025 article-title: DEPSO and PSO-QI in digital filter design publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.140 – start-page: 225 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0130 article-title: Levy flights for improved ladar scanning – start-page: 288 year: 2010 ident: 10.1016/j.asoc.2014.06.034_bib0190 article-title: Composite laminates buckling optimization through Lévy based ant colony optimization – volume: 32 start-page: 29 year: 2008 ident: 10.1016/j.asoc.2014.06.034_bib0050 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2007.09.005 – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10.1016/j.asoc.2014.06.034_bib0225 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 – volume: 177 start-page: 1930 year: 2007 ident: 10.1016/j.asoc.2014.06.034_bib0070 article-title: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.12.024 – volume: 449 start-page: 1044 year: 2007 ident: 10.1016/j.asoc.2014.06.034_bib0160 article-title: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer publication-title: Nature doi: 10.1038/nature06199 – volume: 12 start-page: 975 year: 2012 ident: 10.1016/j.asoc.2014.06.034_bib0020 article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.11.032 – year: 2005 ident: 10.1016/j.asoc.2014.06.034_bib0005 article-title: An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty publication-title: Comput. Eng. Dep. |
| SSID | ssj0016928 |
| Score | 2.5689766 |
| Snippet | •This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 333 |
| SubjectTerms | Levy distribution Levy flight Optimization Particle swarm optimization |
| Title | A novel particle swarm optimization algorithm with Levy flight |
| URI | https://dx.doi.org/10.1016/j.asoc.2014.06.034 |
| Volume | 23 |
| WOSCitedRecordID | wos000341680000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbowqGXtpRWhT7kQ29R0MZ24vhSaUEgWiHUA0h7i5zYbpfuZldJlsK_r19xU1oQHHqJoiR2En-jmc_j8QwAHxGWWFtWEXNBaUwUUTGvtCxrY1vKRFGkSov0KT07y6dT9tWXuG9tOQFa1_n1NVv9V6j1NQ222Tr7CLhDp_qCPteg66OGXR8fBPwkqpdXch6t_L2o_cmbRbTUumHhN11GfP5t2cy67wvnhzWFiyM1N_P0IVntGWqrVbWNPV93vaGzOuuHJaYHiTVfZsX94LCVN7MgbhfmNjteWx_1CW_W9dDHkJAQrRbUYpbHhHlnodebCA8UH3bpLLwNxS5F5F_q2XkKLve5ljwTVkds7lTvzfwjF_YtGxUiB_ugtMvC9FGYPgoTmYfJE7CJaMryEdicfD6afglrSRmzFXbDP_itUy7K7_aX_JueDCjH-QvwzM8V4MThuA02ZP0SPO_rcECvlnfApwm0kMMecmghh0PIYYAcGsihgRw6yF-Bi-Oj88OT2NfFiCs8HnexkpIILBPKBVZ5xnLKWYkyqplfleISpTJLqWBUqrISVCg0ZiipJKJcIYH1_PQ1GNXLWr4B0LA3wokoZWYKvEuuuNlsjceoJFWa8V2Q9MNRVD5pvKldMi_uBmIXRKHNyqVMuffptB_lwpM-R-YKLTT3tNt71Fvegqe_5fodGHXNWr4HW9VVN2ubD15ifgF_j3Y3 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+particle+swarm+optimization+algorithm+with+Levy+flight&rft.jtitle=Applied+soft+computing&rft.au=Hakl%C4%B1%2C+H%C3%BCseyin&rft.au=U%C4%9Fuz%2C+Harun&rft.date=2014-10-01&rft.issn=1568-4946&rft.volume=23&rft.spage=333&rft.epage=345&rft_id=info:doi/10.1016%2Fj.asoc.2014.06.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2014_06_034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |