A novel particle swarm optimization algorithm with Levy flight

•This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO) and Levy flight (LFPSO).•The performance and accuracy of the LFPSO are examined on numerical benchmark functions especially multimodal functio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 23; s. 333 - 345
Hlavní autoři: Haklı, Hüseyin, Uğuz, Harun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2014
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO) and Levy flight (LFPSO).•The performance and accuracy of the LFPSO are examined on numerical benchmark functions especially multimodal functions.•The results obtained by LFPSO show that the LFPSO is more effective than state-of-the-art PSO (SPSO).•In addition, to evaluate achievement of the proposed method, the LFPSO algorithm is compared the other PSO variants and other methods. The LFPSO outperforms the PSO variants and other algorithms and it is closely successful with the ABC algorithm. Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods.
AbstractList •This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO) and Levy flight (LFPSO).•The performance and accuracy of the LFPSO are examined on numerical benchmark functions especially multimodal functions.•The results obtained by LFPSO show that the LFPSO is more effective than state-of-the-art PSO (SPSO).•In addition, to evaluate achievement of the proposed method, the LFPSO algorithm is compared the other PSO variants and other methods. The LFPSO outperforms the PSO variants and other algorithms and it is closely successful with the ABC algorithm. Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods.
Author Haklı, Hüseyin
Uğuz, Harun
Author_xml – sequence: 1
  givenname: Hüseyin
  surname: Haklı
  fullname: Haklı, Hüseyin
  email: hhakli@selcuk.edu.tr
– sequence: 2
  givenname: Harun
  surname: Uğuz
  fullname: Uğuz, Harun
BookMark eNp9kM1qAjEUhUOxULV9ga7yAjNNMjPJBEpBpH8gdNOuQ0xuNDJOJAmKffqOtasu3Jx7Nt-F803QqA89IHRPSUkJ5Q-bUqdgSkZoXRJekqq-QmPaClZI3tLR0BveFrWs-Q2apLQhAyRZO0ZPM9yHPXR4p2P2pgOcDjpucdhlv_XfOvvQY92tQvR5vcWHIfEC9kfsOr9a51t07XSX4O7vTtHXy_Pn_K1YfLy-z2eLwlSE5MIB1LYCKrStXMtlK7RcMi4kJaaplqwB3ggrBbilscI6RiSjBpjQjtlKNNUUsfNfE0NKEZzaRb_V8agoUScDaqNOBtTJgCJcDQYGqP0HGZ9_F-WofXcZfTyjMIzae4gqGQ-9AesjmKxs8JfwH6z7ei4
CitedBy_id crossref_primary_10_1016_j_cma_2025_118318
crossref_primary_10_1038_srep30515
crossref_primary_10_1007_s00366_020_00955_7
crossref_primary_10_1016_j_asoc_2017_06_044
crossref_primary_10_32604_cmc_2024_053627
crossref_primary_10_1007_s00521_022_07751_y
crossref_primary_10_1007_s12206_018_0743_2
crossref_primary_10_1016_j_future_2023_09_035
crossref_primary_10_1109_ACCESS_2020_3006424
crossref_primary_10_3390_en17040960
crossref_primary_10_1109_ACCESS_2020_2979921
crossref_primary_10_1007_s00521_017_2881_3
crossref_primary_10_1109_TITS_2021_3127352
crossref_primary_10_32604_cmc_2023_046006
crossref_primary_10_1007_s10586_024_05079_x
crossref_primary_10_1080_15567036_2020_1855274
crossref_primary_10_1016_j_asoc_2022_108640
crossref_primary_10_1016_j_measen_2022_100519
crossref_primary_10_3390_sym15071319
crossref_primary_10_1109_ACCESS_2022_3220792
crossref_primary_10_1007_s13369_020_04872_1
crossref_primary_10_1016_j_swevo_2018_04_006
crossref_primary_10_1007_s10845_022_02018_8
crossref_primary_10_1016_j_solener_2021_01_049
crossref_primary_10_1088_1742_6596_2456_1_012032
crossref_primary_10_1109_ACCESS_2019_2891673
crossref_primary_10_1002_jnm_2914
crossref_primary_10_3390_sym13122388
crossref_primary_10_1016_j_biosystems_2018_09_007
crossref_primary_10_3390_electronics10182183
crossref_primary_10_1016_j_cie_2015_10_019
crossref_primary_10_1016_j_asoc_2016_04_026
crossref_primary_10_1016_j_procs_2023_10_493
crossref_primary_10_32604_cmes_2025_058473
crossref_primary_10_1109_TCYB_2019_2943928
crossref_primary_10_1177_0142331219891571
crossref_primary_10_1103_PhysRevLett_118_228102
crossref_primary_10_1016_j_asoc_2021_108254
crossref_primary_10_3390_s23041809
crossref_primary_10_1007_s13198_022_01821_z
crossref_primary_10_1016_j_knosys_2023_110374
crossref_primary_10_1109_ACCESS_2020_2984023
crossref_primary_10_3390_electronics11132104
crossref_primary_10_1016_j_eswa_2024_123871
crossref_primary_10_1016_j_seta_2022_102186
crossref_primary_10_1016_j_swevo_2023_101262
crossref_primary_10_1016_j_asoc_2021_107924
crossref_primary_10_1016_j_eswa_2017_12_039
crossref_primary_10_1007_s42235_022_00228_7
crossref_primary_10_1080_01431161_2017_1368102
crossref_primary_10_3390_math11051195
crossref_primary_10_1007_s11277_025_11799_z
crossref_primary_10_1016_j_eswa_2024_125815
crossref_primary_10_1016_j_procs_2021_09_244
crossref_primary_10_3390_s22093383
crossref_primary_10_1007_s10462_021_09962_6
crossref_primary_10_3390_electronics11223678
crossref_primary_10_1038_s41598_025_02200_x
crossref_primary_10_1109_ACCESS_2020_2994984
crossref_primary_10_1016_j_asoc_2020_106560
crossref_primary_10_1016_j_chaos_2021_110969
crossref_primary_10_1109_ACCESS_2019_2940104
crossref_primary_10_1016_j_asoc_2021_107376
crossref_primary_10_1155_2019_6871298
crossref_primary_10_3390_e24050656
crossref_primary_10_1007_s12065_020_00465_x
crossref_primary_10_1016_j_advengsoft_2022_103272
crossref_primary_10_1007_s40747_023_01041_3
crossref_primary_10_1016_j_compmedimag_2025_102542
crossref_primary_10_1016_j_cpc_2017_05_009
crossref_primary_10_1016_j_ins_2015_07_035
crossref_primary_10_1016_j_enconman_2020_112615
crossref_primary_10_1038_s41598_024_77137_8
crossref_primary_10_1155_2021_6681322
crossref_primary_10_1016_j_knosys_2018_05_002
crossref_primary_10_1007_s00607_015_0456_7
crossref_primary_10_1049_iet_rpg_2016_0319
crossref_primary_10_1049_iet_rpg_2019_0959
crossref_primary_10_1109_LGRS_2022_3147272
crossref_primary_10_1007_s11227_025_07596_x
crossref_primary_10_1007_s40866_022_00149_8
crossref_primary_10_1016_j_asoc_2019_105822
crossref_primary_10_1007_s11047_017_9630_5
crossref_primary_10_1016_j_engappai_2023_106328
crossref_primary_10_3390_biology11010043
crossref_primary_10_1155_2021_8878686
crossref_primary_10_1016_j_energy_2025_135424
crossref_primary_10_1016_j_swevo_2019_100573
crossref_primary_10_1016_j_seta_2021_101310
crossref_primary_10_1016_j_jer_2025_05_001
crossref_primary_10_3390_en15197370
crossref_primary_10_1088_2631_8695_addc39
crossref_primary_10_1155_2022_9588610
crossref_primary_10_1016_j_asoc_2025_112938
crossref_primary_10_4018_IJRSDA_2018040101
crossref_primary_10_1007_s40995_020_00886_4
crossref_primary_10_1016_j_asoc_2022_108684
crossref_primary_10_1016_j_ijepes_2021_107893
crossref_primary_10_1007_s12065_021_00634_6
crossref_primary_10_1002_nme_6338
crossref_primary_10_1016_j_swevo_2018_02_013
crossref_primary_10_3390_pr9081452
crossref_primary_10_1007_s00366_021_01497_2
crossref_primary_10_1007_s12293_025_00461_7
crossref_primary_10_1109_ACCESS_2020_3003366
crossref_primary_10_1007_s13198_022_01758_3
crossref_primary_10_1016_j_isatra_2024_10_028
crossref_primary_10_1007_s11042_020_08635_w
crossref_primary_10_1002_ese3_790
crossref_primary_10_2478_fcds_2024_0001
crossref_primary_10_1109_ACCESS_2019_2904511
crossref_primary_10_1088_1361_6501_abeea7
crossref_primary_10_1007_s10489_022_03429_z
crossref_primary_10_3390_ijgi9070462
crossref_primary_10_1016_j_renene_2021_04_088
crossref_primary_10_1016_j_eswa_2025_129244
crossref_primary_10_1155_2021_6505253
crossref_primary_10_1016_j_cma_2023_116199
crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_1007_s00158_016_1624_x
crossref_primary_10_1016_j_jhydrol_2022_129034
crossref_primary_10_1109_ACCESS_2019_2938063
crossref_primary_10_1016_j_knosys_2021_107625
crossref_primary_10_1007_s11227_021_04150_3
crossref_primary_10_1007_s11063_023_11313_1
crossref_primary_10_32604_cmes_2022_020824
crossref_primary_10_1016_j_apm_2020_07_052
crossref_primary_10_1371_journal_pone_0281568
crossref_primary_10_3390_w15142593
crossref_primary_10_1016_j_asoc_2018_09_007
crossref_primary_10_1016_j_asoc_2018_09_008
crossref_primary_10_1007_s00500_023_08414_3
crossref_primary_10_1007_s11663_024_03184_1
crossref_primary_10_3390_math10224169
crossref_primary_10_1016_j_techfore_2021_120824
crossref_primary_10_1007_s00521_024_10910_y
crossref_primary_10_1016_j_chemolab_2016_10_011
crossref_primary_10_1007_s00477_025_02914_4
crossref_primary_10_3390_math10234509
crossref_primary_10_3390_photonics9020093
crossref_primary_10_1016_j_asoc_2025_113462
crossref_primary_10_1016_j_eswa_2019_112970
crossref_primary_10_1007_s10586_024_04713_y
crossref_primary_10_1038_s41598_025_86264_9
crossref_primary_10_1007_s12517_021_06687_2
crossref_primary_10_1007_s12541_024_01160_y
crossref_primary_10_1016_j_swevo_2022_101207
crossref_primary_10_3390_en15134631
crossref_primary_10_1007_s00500_024_09814_9
crossref_primary_10_3390_s25185638
crossref_primary_10_1155_2022_6461690
crossref_primary_10_32604_cmc_2022_029315
crossref_primary_10_1016_j_eswa_2022_117629
crossref_primary_10_1016_j_cie_2022_108032
crossref_primary_10_1016_j_asoc_2019_105744
crossref_primary_10_1016_j_asoc_2018_09_019
crossref_primary_10_1016_j_mtcomm_2025_111627
crossref_primary_10_1016_j_jhydrol_2023_129977
crossref_primary_10_1109_ACCESS_2024_3350442
crossref_primary_10_1111_exsy_12843
crossref_primary_10_1109_ACCESS_2019_2893200
crossref_primary_10_1515_nanoph_2025_0159
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_1016_j_ins_2017_09_015
crossref_primary_10_1007_s00521_022_08057_9
crossref_primary_10_1007_s11227_024_06856_6
crossref_primary_10_1109_ACCESS_2019_2936823
crossref_primary_10_3233_JIFS_210520
crossref_primary_10_3390_math10152785
crossref_primary_10_1007_s10462_022_10222_4
crossref_primary_10_1007_s10845_020_01691_x
crossref_primary_10_1007_s00500_022_07515_9
crossref_primary_10_1016_j_eswa_2025_126686
crossref_primary_10_3390_math12071066
crossref_primary_10_1080_02522667_2020_1804133
crossref_primary_10_1016_j_apm_2019_02_004
crossref_primary_10_1109_TEC_2021_3124941
crossref_primary_10_1109_TIV_2024_3362386
crossref_primary_10_1016_j_asoc_2019_105521
crossref_primary_10_1007_s11071_019_05252_7
crossref_primary_10_1016_j_chaos_2025_116219
crossref_primary_10_1016_j_swevo_2017_12_006
crossref_primary_10_1016_j_cma_2024_116915
crossref_primary_10_1016_j_eswa_2019_03_039
crossref_primary_10_3390_s22010384
crossref_primary_10_1186_s40064_016_3244_8
crossref_primary_10_1016_j_jprocont_2017_08_014
crossref_primary_10_1016_j_measurement_2023_113951
crossref_primary_10_1002_adts_202400135
crossref_primary_10_1016_j_asoc_2018_06_028
crossref_primary_10_1016_j_ces_2024_120512
crossref_primary_10_1016_j_knosys_2018_12_031
crossref_primary_10_1007_s10489_018_1198_y
crossref_primary_10_1007_s10489_022_04224_6
crossref_primary_10_1109_ACCESS_2019_2960472
crossref_primary_10_1515_biol_2018_0044
crossref_primary_10_1051_bioconf_20170801037
crossref_primary_10_1007_s13042_024_02227_y
crossref_primary_10_1155_2022_8312450
crossref_primary_10_1109_JSEN_2025_3587987
crossref_primary_10_1109_ACCESS_2022_3162074
crossref_primary_10_1109_ACCESS_2022_3204798
crossref_primary_10_1371_journal_pone_0279572
crossref_primary_10_3390_s25061785
crossref_primary_10_1177_1748006X19852814
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1016_j_knosys_2017_10_011
crossref_primary_10_1016_j_asoc_2016_02_018
crossref_primary_10_1016_j_asoc_2018_02_042
crossref_primary_10_3233_JIFS_17275
crossref_primary_10_1155_2017_8034573
crossref_primary_10_32604_cmc_2024_048461
crossref_primary_10_4018_IJAMC_292496
crossref_primary_10_1515_comp_2020_0223
crossref_primary_10_1007_s00500_017_2601_z
crossref_primary_10_1007_s00500_022_07202_9
crossref_primary_10_1016_j_eswa_2023_122638
crossref_primary_10_1016_j_eswa_2022_117428
crossref_primary_10_1155_2019_2981282
crossref_primary_10_1109_TIM_2023_3277962
crossref_primary_10_1007_s11063_022_10821_w
crossref_primary_10_1007_s10588_019_09293_6
crossref_primary_10_1007_s00366_021_01356_0
crossref_primary_10_1007_s11664_024_11554_3
crossref_primary_10_1007_s11053_025_10455_4
crossref_primary_10_1016_j_apenergy_2022_119277
crossref_primary_10_1007_s40095_021_00397_x
crossref_primary_10_1016_j_apm_2023_05_023
crossref_primary_10_1093_comjnl_bxab206
crossref_primary_10_3390_sym12122088
crossref_primary_10_1155_jece_2004118
crossref_primary_10_3390_app14177916
crossref_primary_10_1016_j_asoc_2017_07_050
crossref_primary_10_1016_j_asoc_2018_06_003
crossref_primary_10_1007_s13198_022_01743_w
crossref_primary_10_1007_s40866_022_00142_1
crossref_primary_10_1007_s11831_021_09532_7
crossref_primary_10_1016_j_asoc_2016_11_037
crossref_primary_10_1016_j_apor_2020_102231
crossref_primary_10_4316_AECE_2017_04008
crossref_primary_10_1007_s40436_023_00451_3
crossref_primary_10_1038_s41598_023_41093_6
crossref_primary_10_2166_hydro_2023_037
crossref_primary_10_1007_s10462_024_10946_5
crossref_primary_10_1007_s00500_017_2733_1
crossref_primary_10_1371_journal_pone_0324253
crossref_primary_10_1155_2022_4587880
crossref_primary_10_1016_j_asoc_2020_106402
crossref_primary_10_1016_j_dsp_2024_104516
crossref_primary_10_1016_j_asoc_2023_110091
crossref_primary_10_1109_ACCESS_2020_3020895
crossref_primary_10_1080_15435075_2024_2326074
crossref_primary_10_1016_j_cie_2019_06_015
crossref_primary_10_1016_j_eswa_2020_113292
crossref_primary_10_1109_ACCESS_2020_2997783
crossref_primary_10_3390_math10183405
crossref_primary_10_7717_peerj_cs_834
crossref_primary_10_1109_TNS_2023_3255892
crossref_primary_10_1016_j_eswa_2022_116835
crossref_primary_10_1016_j_knosys_2023_110454
crossref_primary_10_1016_j_asoc_2021_107367
crossref_primary_10_3390_biomimetics10080526
crossref_primary_10_1155_2021_9271283
crossref_primary_10_3390_electronics12020289
crossref_primary_10_1007_s11269_022_03064_w
crossref_primary_10_1007_s11227_023_05728_9
crossref_primary_10_1109_ACCESS_2021_3083220
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1007_s11042_022_13600_w
crossref_primary_10_1007_s12065_022_00755_6
crossref_primary_10_1007_s10489_024_06155_w
crossref_primary_10_1109_ACCESS_2020_2965150
crossref_primary_10_1016_j_swevo_2024_101533
crossref_primary_10_1016_j_asoc_2016_09_048
crossref_primary_10_1016_j_swevo_2023_101336
crossref_primary_10_1109_ACCESS_2024_3466170
crossref_primary_10_1371_journal_pcbi_1009490
crossref_primary_10_3390_e23050527
crossref_primary_10_1371_journal_pone_0167341
crossref_primary_10_1109_ACCESS_2024_3436899
crossref_primary_10_4018_IJIRR_289569
crossref_primary_10_1016_j_rser_2016_11_241
crossref_primary_10_2298_JMMB240928033S
crossref_primary_10_1186_s40537_025_01129_2
crossref_primary_10_1107_S1600576724001031
crossref_primary_10_1016_j_bspc_2022_104543
crossref_primary_10_1016_j_chaos_2023_113163
crossref_primary_10_1109_ACCESS_2019_2899043
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_1007_s11227_025_07106_z
crossref_primary_10_1016_j_ins_2014_09_053
crossref_primary_10_1007_s13369_021_05866_3
crossref_primary_10_1109_ACCESS_2021_3136239
crossref_primary_10_1088_1361_6501_ad574c
crossref_primary_10_3390_pr13072044
crossref_primary_10_1007_s00500_021_05961_5
crossref_primary_10_1155_2022_8148586
Cites_doi 10.1016/j.eswa.2008.08.007
10.1016/j.eswa.2011.12.017
10.1016/j.cor.2006.12.030
10.1016/j.eswa.2008.02.048
10.1016/j.amc.2009.03.090
10.1016/j.asoc.2012.03.022
10.1109/TEVC.2005.857610
10.1016/j.cor.2011.09.026
10.1201/b10497-6
10.1016/j.simpat.2012.04.001
10.1016/j.ipl.2004.11.003
10.1016/S1006-1266(07)60128-X
10.1016/j.amc.2010.04.011
10.1109/TEVC.2010.2052054
10.1038/381413a0
10.1016/j.ins.2010.07.013
10.1016/j.eswa.2010.05.085
10.1016/j.amc.2012.06.078
10.1109/TEVC.2004.826074
10.1016/j.eswa.2011.01.041
10.1016/j.asoc.2009.06.010
10.1016/j.eswa.2011.02.140
10.1016/j.compbiolchem.2007.09.005
10.1109/TEVC.2004.826071
10.1016/j.ejor.2005.12.024
10.1038/nature06199
10.1016/j.asoc.2011.11.032
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2014.06.034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 345
ExternalDocumentID 10_1016_j_asoc_2014_06_034
S1568494614003081
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-fee4d3e17ad3f86987a9b267910c53b25e657d97efbcd7df20921ce27af2d3753
ISICitedReferencesCount 350
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341680000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:22 EST 2025
Tue Nov 18 21:24:00 EST 2025
Fri Feb 23 02:28:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Levy distribution
Levy flight
Particle swarm optimization
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-fee4d3e17ad3f86987a9b267910c53b25e657d97efbcd7df20921ce27af2d3753
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_asoc_2014_06_034
crossref_citationtrail_10_1016_j_asoc_2014_06_034
elsevier_sciencedirect_doi_10_1016_j_asoc_2014_06_034
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cottone, Pirrotta, Scimemi, Sanseverino (bib0195) 2010
Al-Temeemy, Spencer, Ralph (bib0130) 2010
Yang (bib0210) 2010
Kıran, Gunduz, Baykan (bib0125) 2012; 219
Tsoulos, Stavrakoudis (bib0110) 2010; 216
Xinchao (bib0100) 2010; 10
Mendes, Kennedy, Neves (bib0230) 2004; 8
Kennedy, Mendes (bib0235) 2002
Krishnanand, Ghose (bib0245) 2005
Yang (bib0175) 2010
Yang, Kung, Liu, Chen, Chang, Hwang (bib0075) 2010
Candela, Cottone, Scimemi, Sanseverino (bib0190) 2010
Pereyra, Batatia (bib0140) 2010
Cavuslu, Karakuzu, Karakaya (bib0055) 2012; 12
Ratnaweera, Halgamuge, Watson (bib0225) 2004; 8
Zhang, Huang, Ji, Xie (bib0060) 2011; 38
Yang, Yuan, Yuan, Mao (bib0040) 2010; 37
Chuang, Chang, Tu, Yang (bib0050) 2008; 32
Liang, Qin, Suganthan, Baskar (bib0095) 2006
Chechkin, Metzler, Klafter, Gonchar (bib0205) 2008
Sutantyo, Kernbach, Levi, Nepomnyashchikh (bib0150) 2010
Ortakçı (bib0200) 2011
Coello Coello, Luna, Aguirre (bib0080) 2004
Rhee, Shin, Hong, Lee, Kim, Chong (bib0155) 2011
Lee, Yao (bib0180) 2001
Chen (bib0135) 2010
Wu, Qian, Ni, Fan (bib0255) 2012; 39
Li, Lin, Kou (bib0020) 2012; 12
Yang, Deb (bib0170) 2013; 40
Tasgetiren, Liang, Sevkli, Gencyilmaz (bib0070) 2007; 177
Candela, Cottone, Scimemi, Sanseverino (bib0185) 2009
Edwards, Phillips, Watkins, Freeman, Murphy, Afanasyev, Buldyrev, da Luz, Raposo, Stanley, Viswanathan (bib0160) 2007; 449
Eberhart, Hu (bib0085) 1999
Yang, Zhang, Deng, Du (bib0045) 2007; 17
Liang, Suganthan (bib0240) 2005
Karaboga, Akay (bib0270) 2009; 214
Sarangi, Mahapatra, Panigrahi (bib0025) 2011; 38
Chiou, Tsai, Liu (bib0035) 2012; 26
Zhan, Zhang, Li, Shi (bib0220) 2011; 15
Pana, Tasgetiren, Liang (bib0065) 2008; 35
Chang, Ko (bib0030) 2009; 36
Kennedy, Eberhart (bib0015) 1995
Omran (bib0215) 2007
Karaboga (bib0005) 2005
Shi, Liang, Lee, Lu, Wang (bib0115) 2005; 93
Chiam, Tan, Mamun (bib0120) 2009; 36
Dorigo, Caro (bib0010) 1999
Shi, Eberhart (bib0090) 1998
Viswanathan, Afanasyev, Buldyrev, Murphy, Prince, Stanley (bib0165) 1996; 381
Wang, Li, Weise, Wang, Yuan, Tian (bib0105) 2011; 181
bib0265
Yang (bib0250) 2009
bib0260
Terdik, Gyires (bib0145) 2009
Viswanathan (10.1016/j.asoc.2014.06.034_bib0165) 1996; 381
Kennedy (10.1016/j.asoc.2014.06.034_bib0015) 1995
Chang (10.1016/j.asoc.2014.06.034_bib0030) 2009; 36
Edwards (10.1016/j.asoc.2014.06.034_bib0160) 2007; 449
Ratnaweera (10.1016/j.asoc.2014.06.034_bib0225) 2004; 8
Candela (10.1016/j.asoc.2014.06.034_bib0190) 2010
Liang (10.1016/j.asoc.2014.06.034_bib0240) 2005
Zhan (10.1016/j.asoc.2014.06.034_bib0220) 2011; 15
Lee (10.1016/j.asoc.2014.06.034_bib0180) 2001
Wu (10.1016/j.asoc.2014.06.034_bib0255) 2012; 39
Karaboga (10.1016/j.asoc.2014.06.034_bib0270) 2009; 214
Xinchao (10.1016/j.asoc.2014.06.034_bib0100) 2010; 10
Ortakçı (10.1016/j.asoc.2014.06.034_bib0200) 2011
Kennedy (10.1016/j.asoc.2014.06.034_bib0235) 2002
Pereyra (10.1016/j.asoc.2014.06.034_bib0140) 2010
Yang (10.1016/j.asoc.2014.06.034_bib0250) 2009
Sarangi (10.1016/j.asoc.2014.06.034_bib0025) 2011; 38
Terdik (10.1016/j.asoc.2014.06.034_bib0145) 2009
Yang (10.1016/j.asoc.2014.06.034_bib0075) 2010
Tsoulos (10.1016/j.asoc.2014.06.034_bib0110) 2010; 216
Dorigo (10.1016/j.asoc.2014.06.034_bib0010) 1999
Cottone (10.1016/j.asoc.2014.06.034_bib0195) 2010
Wang (10.1016/j.asoc.2014.06.034_bib0105) 2011; 181
Zhang (10.1016/j.asoc.2014.06.034_bib0060) 2011; 38
Chechkin (10.1016/j.asoc.2014.06.034_bib0205) 2008
Al-Temeemy (10.1016/j.asoc.2014.06.034_bib0130) 2010
Eberhart (10.1016/j.asoc.2014.06.034_bib0085) 1999
Tasgetiren (10.1016/j.asoc.2014.06.034_bib0070) 2007; 177
Candela (10.1016/j.asoc.2014.06.034_bib0185) 2009
Mendes (10.1016/j.asoc.2014.06.034_bib0230) 2004; 8
Liang (10.1016/j.asoc.2014.06.034_bib0095) 2006
Kıran (10.1016/j.asoc.2014.06.034_bib0125) 2012; 219
Chen (10.1016/j.asoc.2014.06.034_bib0135) 2010
Li (10.1016/j.asoc.2014.06.034_bib0020) 2012; 12
Shi (10.1016/j.asoc.2014.06.034_bib0090) 1998
Omran (10.1016/j.asoc.2014.06.034_bib0215) 2007
Chiam (10.1016/j.asoc.2014.06.034_bib0120) 2009; 36
Chuang (10.1016/j.asoc.2014.06.034_bib0050) 2008; 32
Karaboga (10.1016/j.asoc.2014.06.034_bib0005) 2005
Rhee (10.1016/j.asoc.2014.06.034_bib0155) 2011
Pana (10.1016/j.asoc.2014.06.034_bib0065) 2008; 35
Chiou (10.1016/j.asoc.2014.06.034_bib0035) 2012; 26
Shi (10.1016/j.asoc.2014.06.034_bib0115) 2005; 93
Yang (10.1016/j.asoc.2014.06.034_bib0045) 2007; 17
Yang (10.1016/j.asoc.2014.06.034_bib0210) 2010
Krishnanand (10.1016/j.asoc.2014.06.034_bib0245) 2005
Cavuslu (10.1016/j.asoc.2014.06.034_bib0055) 2012; 12
Sutantyo (10.1016/j.asoc.2014.06.034_bib0150) 2010
Yang (10.1016/j.asoc.2014.06.034_bib0175) 2010
Yang (10.1016/j.asoc.2014.06.034_bib0040) 2010; 37
Yang (10.1016/j.asoc.2014.06.034_bib0170) 2013; 40
Coello Coello (10.1016/j.asoc.2014.06.034_bib0080) 2004
References_xml – volume: 219
  start-page: 1515
  year: 2012
  end-page: 1521
  ident: bib0125
  article-title: A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum
  publication-title: Appl. Math. Comput.
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0090
  article-title: A modified particle swarm optimizer
  publication-title: The 1998 IEEE International Conference on Evolutionary Computation Proceedings
– volume: 26
  start-page: 49
  year: 2012
  end-page: 59
  ident: bib0035
  article-title: A. PSO-based adaptive fuzzy PID-controllers
  publication-title: Simul. Model. Pract. Theory
– volume: 40
  start-page: 1616
  year: 2013
  end-page: 1624
  ident: bib0170
  article-title: Multiobjective cuckoo search for design optimization
  publication-title: Comput. Oper. Res.
– start-page: 71
  year: 2004
  end-page: 78
  ident: bib0080
  article-title: A comparative study of encodings to design combinational logic circuits using particle swarm optimization
  publication-title: Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware
– start-page: 169
  year: 2009
  end-page: 178
  ident: bib0250
  article-title: Firefly algorithms for multimodal optimization
  publication-title: 5th International Symposium SAGA
– start-page: 1470
  year: 1999
  end-page: 1477
  ident: bib0010
  article-title: Ant colony optimization: a new meta-heuristic
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation
– ident: bib0260
– volume: 32
  start-page: 29
  year: 2008
  end-page: 38
  ident: bib0050
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
– year: 2010
  ident: bib0210
  article-title: Engineering Optimization an Introduction with Metaheuristic Applications
– start-page: 2327
  year: 2010
  end-page: 2331
  ident: bib0140
  article-title: A Levy flight model for ultrasound in skin tissues
  publication-title: 2010 IEEE on Ultrasonics Symposium (IUS)
– start-page: 456
  year: 2010
  end-page: 459
  ident: bib0075
  article-title: Logic circuit design by neural network and PSO algorithm
  publication-title: 2010 First International Conference on Pervasive Computing Signal Processing and Applications (PCSPA)
– start-page: 129
  year: 2008
  end-page: 162
  ident: bib0205
  article-title: Introduction to the theory of Lévy flights
  publication-title: Anomalous Transport: Foundations and Applications
– volume: 381
  start-page: 413
  year: 1996
  end-page: 415
  ident: bib0165
  article-title: Lévy flight search patterns of wandering albatrosses
  publication-title: Nature
– start-page: 120
  year: 2009
  end-page: 129
  ident: bib0145
  article-title: Lévy flights and fractal modeling of internet traffic
  publication-title: IEEE/ACM Transactions on Networking
– start-page: 1671
  year: 2002
  end-page: 1676
  ident: bib0235
  article-title: Population structure and particle swarm performance
  publication-title: IEEE Congr. Evol. Comput., Honolulu
– volume: 37
  start-page: 8036
  year: 2010
  end-page: 8041
  ident: bib0040
  article-title: An improved WM method based on PSO for electric load forecasting
  publication-title: Expert Syst. Appl.
– start-page: 281
  year: 2006
  end-page: 295
  ident: bib0095
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib0270
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 15
  start-page: 832
  year: 2011
  end-page: 846
  ident: bib0220
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 449
  start-page: 1044
  year: 2007
  end-page: 1048
  ident: bib0160
  article-title: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer
  publication-title: Nature
– volume: 216
  start-page: 2988
  year: 2010
  end-page: 3001
  ident: bib0110
  article-title: Enhancing PSO methods for global optimization
  publication-title: Appl. Math. Comput.
– volume: 36
  start-page: 3695
  year: 2009
  end-page: 3711
  ident: bib0120
  article-title: A memetic model of evolutionary PSO for computational finance applications
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 119
  year: 2010
  end-page: 124
  ident: bib0100
  article-title: A perturbed particle swarm algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2010
  end-page: 6
  ident: bib0150
  article-title: Multi-robot searching algorithm using Levy flight and artificial potential field
  publication-title: 2010 IEEE International Workshop on Safety Security and Rescue Robotics (SSRR)
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: bib0225
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
– year: 2005
  ident: bib0005
  article-title: An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty
  publication-title: Comput. Eng. Dep.
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0015
  article-title: Particle swarm optimization
  publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– volume: 93
  start-page: 255
  year: 2005
  end-page: 261
  ident: bib0115
  article-title: An improved GA and a novel PSO-GA-based hybrid algorithm
  publication-title: Inf. Process. Lett.
– start-page: 37
  year: 2010
  end-page: 44
  ident: bib0195
  article-title: Damage identification by Lévy ant colony optimization
  publication-title: Reliab. Optim. Struct. Syst.
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib0230
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
– volume: 39
  start-page: 6335
  year: 2012
  end-page: 6342
  ident: bib0255
  article-title: The improvement of glowworm swarm optimization for continuous optimization problems
  publication-title: Expert Syst. Appl.
– start-page: 630
  year: 2011
  end-page: 643
  ident: bib0155
  article-title: On the Levy-walk nature of human mobility
  publication-title: IEEE/ACM Transactions on Networking
– start-page: 209
  year: 2010
  end-page: 218
  ident: bib0175
  article-title: Firefly algorithm, Levy flights and global optimization
  publication-title: Research and Development in Intelligent Systems XXVI
– start-page: 124
  year: 2005
  end-page: 129
  ident: bib0240
  article-title: Dynamic multi-swarm particle swarm optimizer
– start-page: 288
  year: 2010
  end-page: 297
  ident: bib0190
  article-title: Composite laminates buckling optimization through Lévy based ant colony optimization
  publication-title: 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems
– volume: 17
  start-page: 473
  year: 2007
  end-page: 478
  ident: bib0045
  article-title: Research into a feature selection method for hyperspectral imagery using PSO and SVM
  publication-title: J. China Univ. Mining Technol.
– volume: 38
  start-page: 9036
  year: 2011
  end-page: 9040
  ident: bib0060
  article-title: Image segmentation using PSO and PCM with Mahalanobis distance
  publication-title: Expert Syst. Appl.
– volume: 35
  start-page: 2807
  year: 2008
  end-page: 2839
  ident: bib0065
  article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 12
  start-page: 975
  year: 2012
  end-page: 987
  ident: bib0020
  article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization
  publication-title: Appl. Soft Comput.
– volume: 177
  start-page: 1930
  year: 2007
  end-page: 1947
  ident: bib0070
  article-title: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem
  publication-title: Eur. J. Oper. Res.
– volume: 36
  start-page: 6809
  year: 2009
  end-page: 6816
  ident: bib0030
  article-title: A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters
  publication-title: Expert Syst. Appl.
– start-page: 4421
  year: 2010
  end-page: 4423
  ident: bib0135
  article-title: Research and simulation on Levy flight model for DTN
  publication-title: 2010 3rd International Congress on Image and Signal Processing
– volume: 12
  start-page: 2707
  year: 2012
  end-page: 2718
  ident: bib0055
  article-title: Neural identification of dynamic systems on FPGA with improved PSO learning
  publication-title: Appl. Soft Comput.
– start-page: 79
  year: 2009
  end-page: 88
  ident: bib0185
  article-title: Lévy flights for ant colony optimization in continuous domains
  publication-title: Mathematical Theory and Computational Practice Fifth Conference on Computability in Europe
– start-page: 225
  year: 2010
  end-page: 228
  ident: bib0130
  article-title: Levy flights for improved ladar scanning
  publication-title: 2010 IEEE International Conference on Imaging Systems and Techniques (IST)
– year: 2007
  ident: bib0215
  article-title: SPSO 2007 Matlab
– start-page: 1927
  year: 1999
  end-page: 1930
  ident: bib0085
  article-title: Human tremor analysis using particle swarm optimization
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation
– ident: bib0265
– volume: 181
  start-page: 4515
  year: 2011
  end-page: 4538
  ident: bib0105
  article-title: Self-adaptive learning based particle swarm optimization
  publication-title: Inf. Sci.
– start-page: 84
  year: 2005
  end-page: 91
  ident: bib0245
  article-title: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics
  publication-title: IEEE Swarm Intelligence Symposium
– start-page: 568
  year: 2001
  end-page: 575
  ident: bib0180
  article-title: Evolutionary algorithms with adaptive Levy mutations
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation
– year: 2011
  ident: bib0200
  article-title: Comparison of Particle Swarm Optimization Methods in Applications
– volume: 38
  start-page: 10966
  year: 2011
  end-page: 10973
  ident: bib0025
  article-title: DEPSO and PSO-QI in digital filter design
  publication-title: Expert Syst. Appl.
– start-page: 568
  year: 2001
  ident: 10.1016/j.asoc.2014.06.034_bib0180
  article-title: Evolutionary algorithms with adaptive Levy mutations
– start-page: 456
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0075
  article-title: Logic circuit design by neural network and PSO algorithm
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2014.06.034_bib0015
  article-title: Particle swarm optimization
– volume: 36
  start-page: 6809
  year: 2009
  ident: 10.1016/j.asoc.2014.06.034_bib0030
  article-title: A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.08.007
– volume: 39
  start-page: 6335
  year: 2012
  ident: 10.1016/j.asoc.2014.06.034_bib0255
  article-title: The improvement of glowworm swarm optimization for continuous optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.12.017
– volume: 35
  start-page: 2807
  year: 2008
  ident: 10.1016/j.asoc.2014.06.034_bib0065
  article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2006.12.030
– volume: 36
  start-page: 3695
  year: 2009
  ident: 10.1016/j.asoc.2014.06.034_bib0120
  article-title: A memetic model of evolutionary PSO for computational finance applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.048
– year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0210
– start-page: 209
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0175
  article-title: Firefly algorithm, Levy flights and global optimization
– start-page: 1
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0150
  article-title: Multi-robot searching algorithm using Levy flight and artificial potential field
– start-page: 1927
  year: 1999
  ident: 10.1016/j.asoc.2014.06.034_bib0085
  article-title: Human tremor analysis using particle swarm optimization
– start-page: 2327
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0140
  article-title: A Levy flight model for ultrasound in skin tissues
– start-page: 69
  year: 1998
  ident: 10.1016/j.asoc.2014.06.034_bib0090
  article-title: A modified particle swarm optimizer
– volume: 214
  start-page: 108
  year: 2009
  ident: 10.1016/j.asoc.2014.06.034_bib0270
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– volume: 12
  start-page: 2707
  year: 2012
  ident: 10.1016/j.asoc.2014.06.034_bib0055
  article-title: Neural identification of dynamic systems on FPGA with improved PSO learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.03.022
– start-page: 281
  year: 2006
  ident: 10.1016/j.asoc.2014.06.034_bib0095
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857610
– volume: 40
  start-page: 1616
  year: 2013
  ident: 10.1016/j.asoc.2014.06.034_bib0170
  article-title: Multiobjective cuckoo search for design optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.09.026
– start-page: 37
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0195
  article-title: Damage identification by Lévy ant colony optimization
  publication-title: Reliab. Optim. Struct. Syst.
  doi: 10.1201/b10497-6
– volume: 26
  start-page: 49
  year: 2012
  ident: 10.1016/j.asoc.2014.06.034_bib0035
  article-title: A. PSO-based adaptive fuzzy PID-controllers
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2012.04.001
– year: 2007
  ident: 10.1016/j.asoc.2014.06.034_bib0215
– volume: 93
  start-page: 255
  year: 2005
  ident: 10.1016/j.asoc.2014.06.034_bib0115
  article-title: An improved GA and a novel PSO-GA-based hybrid algorithm
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2004.11.003
– volume: 17
  start-page: 473
  year: 2007
  ident: 10.1016/j.asoc.2014.06.034_bib0045
  article-title: Research into a feature selection method for hyperspectral imagery using PSO and SVM
  publication-title: J. China Univ. Mining Technol.
  doi: 10.1016/S1006-1266(07)60128-X
– volume: 216
  start-page: 2988
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0110
  article-title: Enhancing PSO methods for global optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.04.011
– volume: 15
  start-page: 832
  year: 2011
  ident: 10.1016/j.asoc.2014.06.034_bib0220
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2052054
– start-page: 79
  year: 2009
  ident: 10.1016/j.asoc.2014.06.034_bib0185
  article-title: Lévy flights for ant colony optimization in continuous domains
– volume: 381
  start-page: 413
  year: 1996
  ident: 10.1016/j.asoc.2014.06.034_bib0165
  article-title: Lévy flight search patterns of wandering albatrosses
  publication-title: Nature
  doi: 10.1038/381413a0
– volume: 181
  start-page: 4515
  year: 2011
  ident: 10.1016/j.asoc.2014.06.034_bib0105
  article-title: Self-adaptive learning based particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.07.013
– start-page: 169
  year: 2009
  ident: 10.1016/j.asoc.2014.06.034_bib0250
  article-title: Firefly algorithms for multimodal optimization
– start-page: 630
  year: 2011
  ident: 10.1016/j.asoc.2014.06.034_bib0155
  article-title: On the Levy-walk nature of human mobility
– volume: 37
  start-page: 8036
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0040
  article-title: An improved WM method based on PSO for electric load forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.05.085
– start-page: 84
  year: 2005
  ident: 10.1016/j.asoc.2014.06.034_bib0245
  article-title: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics
– start-page: 71
  year: 2004
  ident: 10.1016/j.asoc.2014.06.034_bib0080
  article-title: A comparative study of encodings to design combinational logic circuits using particle swarm optimization
– volume: 219
  start-page: 1515
  year: 2012
  ident: 10.1016/j.asoc.2014.06.034_bib0125
  article-title: A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.06.078
– start-page: 4421
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0135
  article-title: Research and simulation on Levy flight model for DTN
– start-page: 124
  year: 2005
  ident: 10.1016/j.asoc.2014.06.034_bib0240
– start-page: 129
  year: 2008
  ident: 10.1016/j.asoc.2014.06.034_bib0205
  article-title: Introduction to the theory of Lévy flights
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2014.06.034_bib0230
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
– year: 2011
  ident: 10.1016/j.asoc.2014.06.034_bib0200
– volume: 38
  start-page: 9036
  year: 2011
  ident: 10.1016/j.asoc.2014.06.034_bib0060
  article-title: Image segmentation using PSO and PCM with Mahalanobis distance
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.041
– volume: 10
  start-page: 119
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0100
  article-title: A perturbed particle swarm algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.06.010
– start-page: 1470
  year: 1999
  ident: 10.1016/j.asoc.2014.06.034_bib0010
  article-title: Ant colony optimization: a new meta-heuristic
– start-page: 120
  year: 2009
  ident: 10.1016/j.asoc.2014.06.034_bib0145
  article-title: Lévy flights and fractal modeling of internet traffic
– start-page: 1671
  year: 2002
  ident: 10.1016/j.asoc.2014.06.034_bib0235
  article-title: Population structure and particle swarm performance
  publication-title: IEEE Congr. Evol. Comput., Honolulu
– volume: 38
  start-page: 10966
  year: 2011
  ident: 10.1016/j.asoc.2014.06.034_bib0025
  article-title: DEPSO and PSO-QI in digital filter design
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.140
– start-page: 225
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0130
  article-title: Levy flights for improved ladar scanning
– start-page: 288
  year: 2010
  ident: 10.1016/j.asoc.2014.06.034_bib0190
  article-title: Composite laminates buckling optimization through Lévy based ant colony optimization
– volume: 32
  start-page: 29
  year: 2008
  ident: 10.1016/j.asoc.2014.06.034_bib0050
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2014.06.034_bib0225
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
– volume: 177
  start-page: 1930
  year: 2007
  ident: 10.1016/j.asoc.2014.06.034_bib0070
  article-title: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.024
– volume: 449
  start-page: 1044
  year: 2007
  ident: 10.1016/j.asoc.2014.06.034_bib0160
  article-title: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer
  publication-title: Nature
  doi: 10.1038/nature06199
– volume: 12
  start-page: 975
  year: 2012
  ident: 10.1016/j.asoc.2014.06.034_bib0020
  article-title: A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.11.032
– year: 2005
  ident: 10.1016/j.asoc.2014.06.034_bib0005
  article-title: An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty
  publication-title: Comput. Eng. Dep.
SSID ssj0016928
Score 2.5689151
Snippet •This paper proposes a new approach for solving continuous optimization problems.•The proposed approach is a combination of particle swarm optimization (PSO)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Levy distribution
Levy flight
Optimization
Particle swarm optimization
Title A novel particle swarm optimization algorithm with Levy flight
URI https://dx.doi.org/10.1016/j.asoc.2014.06.034
Volume 23
WOSCitedRecordID wos000341680000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4EL5ak-APnALQpK7CSOL5W2VavCoeLQSnuL_IQtu9lVki3tv69fCaFARQ9crCiOncTfeGY8Hs8A8IGgUiVcFzFJZBFnKRExl5mImUQq07wQOPHJJsjZWTmb0S8hxX3r0gmQui6vr-n6v0Jt7hmw7dHZB8A9dGpumGsDuikN7Kb8J-CnUb26UotoHeqi9gdrltHK8IZlOHQZscXXVTPvvi29HdYmLo70wq7Tx8pqr6G2hlU73_NN1ws6x7O-O8X0MHXiy-64Hx616mY-kNuFraYnG2ejPmXNph7bGNJs8FYb2GJRxhkNxsLANxEeMT7sw1kEGYp9iMjf2LO3FFx-ZIbyrFtd5mKnBmvmL7Gw78iowXOwd0q7rGwfle2jsp55OHsMthDJaTkBW9NPx7PPw15SQV2G3eEfwtEp7-V390v-rJ6MVI7z5-BZWCvAqcfxBXik6pdgu8_DAQNbfgUOptBBDnvIoYMcjiGHA-TQQg4t5NBD_hpcnByfH53GIS9GbGZO0sVaqUxilRImsS4LWhJGOSqI0fxEjjnKVZETSYnSXEgiNUooSoVChGkksVmfvgGTelWrHQB1SQnlmAlpV6ZEMjM7jSjGKc-5SBK1C9J-OCoRgsbb3CWL6u9A7IJoaLP2IVPufTrvR7kKSp9X5ipDNPe023vQW_bB0590_RZMumaj3oEn4qqbt837QDG3KLZ3Ww
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+particle+swarm+optimization+algorithm+with+Levy+flight&rft.jtitle=Applied+soft+computing&rft.au=Hakl%C4%B1%2C+H%C3%BCseyin&rft.au=U%C4%9Fuz%2C+Harun&rft.date=2014-10-01&rft.issn=1568-4946&rft.volume=23&rft.spage=333&rft.epage=345&rft_id=info:doi/10.1016%2Fj.asoc.2014.06.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2014_06_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon