EEG generalizable representations learning via masked fractional fourier domain modeling
Deep learning methods currently represent the state-of-the-art (SOTA) in electroencephalography (EEG) decoding, primarily focusing on the development of supervised models. However, most supervised methods are task-specific and lack the ability to generate generalizable latent features for use across...
Saved in:
| Published in: | Applied soft computing Vol. 170; p. 112731 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.02.2025
|
| Subjects: | |
| ISSN: | 1568-4946 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!