EEG generalizable representations learning via masked fractional fourier domain modeling
Deep learning methods currently represent the state-of-the-art (SOTA) in electroencephalography (EEG) decoding, primarily focusing on the development of supervised models. However, most supervised methods are task-specific and lack the ability to generate generalizable latent features for use across...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 170; s. 112731 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2025
|
| Témata: | |
| ISSN: | 1568-4946 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!