A multi-objective particle swarm optimization algorithm based on two-archive mechanism

As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well in terms of convergence and diversity simultaneously is still a challenging task for most existing algorithms. In this paper, a multi-objecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 119; S. 108532
Hauptverfasser: Cui, Yingying, Meng, Xi, Qiao, Junfei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2022
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well in terms of convergence and diversity simultaneously is still a challenging task for most existing algorithms. In this paper, a multi-objective particle swarm optimization algorithm based on two-archive mechanism (MOPSO_TA) is proposed for the above challenge. First, two archives, including convergence archive (CA) and diversity archive (DA) are designed to emphasize convergence and diversity separately. On one hand, particles are updated by indicator-based scheme to provide selection pressure toward the optimal direction in CA. On the other hand, shift-based density estimation and similarity measure are adopted to preserve diverse candidate solutions in DA. Second, the genetic operators are conducted on particles from CA and DA to further enhance the quality of solutions as global leaders. Then the search ability of MOPSO_TA can be improved by performing hybrid operators. Furthermore, to balance global exploration and local exploitation of MOPSO_TA, a flight parameters adjustment mechanism is developed based on the evolutionary information. Finally, the proposed algorithm is compared experimentally with several representative multi-objective optimization algorithms on 21 benchmark functions. The experimental results demonstrate the competitiveness and effectiveness of the proposed method. •The two-archive mechanism is incorporated into multi-objective particle swarm optimization algorithm.•The global leader is selected from candidate solutions generated by performing genetic operators between CA and DA.•An improved self-adaptive flight parameters strategy is utilized to balance exploitation and exploration of MOPSO_TA.•The experimental results verify the competitiveness and effectiveness of the proposed MOPSO_TA.
AbstractList As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well in terms of convergence and diversity simultaneously is still a challenging task for most existing algorithms. In this paper, a multi-objective particle swarm optimization algorithm based on two-archive mechanism (MOPSO_TA) is proposed for the above challenge. First, two archives, including convergence archive (CA) and diversity archive (DA) are designed to emphasize convergence and diversity separately. On one hand, particles are updated by indicator-based scheme to provide selection pressure toward the optimal direction in CA. On the other hand, shift-based density estimation and similarity measure are adopted to preserve diverse candidate solutions in DA. Second, the genetic operators are conducted on particles from CA and DA to further enhance the quality of solutions as global leaders. Then the search ability of MOPSO_TA can be improved by performing hybrid operators. Furthermore, to balance global exploration and local exploitation of MOPSO_TA, a flight parameters adjustment mechanism is developed based on the evolutionary information. Finally, the proposed algorithm is compared experimentally with several representative multi-objective optimization algorithms on 21 benchmark functions. The experimental results demonstrate the competitiveness and effectiveness of the proposed method. •The two-archive mechanism is incorporated into multi-objective particle swarm optimization algorithm.•The global leader is selected from candidate solutions generated by performing genetic operators between CA and DA.•An improved self-adaptive flight parameters strategy is utilized to balance exploitation and exploration of MOPSO_TA.•The experimental results verify the competitiveness and effectiveness of the proposed MOPSO_TA.
ArticleNumber 108532
Author Cui, Yingying
Qiao, Junfei
Meng, Xi
Author_xml – sequence: 1
  givenname: Yingying
  surname: Cui
  fullname: Cui, Yingying
  email: yycui@emails.bjut.edu.cn
– sequence: 2
  givenname: Xi
  surname: Meng
  fullname: Meng, Xi
  email: mengxi@bjut.edu.cn
– sequence: 3
  givenname: Junfei
  orcidid: 0000-0002-1707-6074
  surname: Qiao
  fullname: Qiao, Junfei
  email: adqiao@bjut.edu.cn
BookMark eNp9kMtOwzAQRS1UJNrCD7DKD6TYTuw4Epuq4iUhsQG21tixqaMkrmzTCr6ehLJi0dWMrnSuZs4CzQY_GISuCV4RTPhNu4Lo9YpiSsdAsIKeoTkRFc1rLshs3BkXeVmX_AItYmzxCNVUzNH7Ous_u-Ryr1qjk9ubbAchOd2ZLB4g9JnfJde7b0jODxl0Hz64tO0zBdE02Rilg88h6O2E9kZvYXCxv0TnFrporv7mEr3d371uHvPnl4enzfo51wXGKbdNKSzTIDQTosLW0oroomks5prjqjagFAbgSjfGKmJZwZiyNWe1IqWtqmKJxLFXBx9jMFZql35PTQFcJwmWkx_ZysmPnPzIo58Rpf_QXXA9hK_T0O0RMuNTe2eCjNqZQZvGhVGfbLw7hf8AgeSDtA
CitedBy_id crossref_primary_10_1080_01605682_2024_2385467
crossref_primary_10_1016_j_eswa_2025_126644
crossref_primary_10_1088_1742_6596_2465_1_012022
crossref_primary_10_3389_fphy_2023_1240555
crossref_primary_10_3390_app14125043
crossref_primary_10_1109_ACCESS_2024_3426104
crossref_primary_10_1038_s41598_025_01010_5
crossref_primary_10_1007_s11071_023_09189_w
crossref_primary_10_3390_pr12020406
crossref_primary_10_3390_biomimetics9090510
crossref_primary_10_1016_j_geoen_2023_211431
crossref_primary_10_1007_s10668_023_04123_x
crossref_primary_10_1016_j_engappai_2025_111519
crossref_primary_10_3390_jmse13081518
crossref_primary_10_3390_sym14122619
crossref_primary_10_1016_j_compstruc_2025_107647
crossref_primary_10_3390_a17020053
crossref_primary_10_1016_j_eswa_2024_125300
crossref_primary_10_1155_2022_9244890
crossref_primary_10_1016_j_knosys_2023_110529
crossref_primary_10_1016_j_swevo_2025_101890
crossref_primary_10_1007_s11431_021_2018_x
crossref_primary_10_1016_j_eswa_2025_127505
crossref_primary_10_1093_jcde_qwae081
crossref_primary_10_1016_j_apr_2023_101880
crossref_primary_10_1007_s40032_024_01104_5
crossref_primary_10_3390_sym17010014
crossref_primary_10_3390_pr13041079
crossref_primary_10_1016_j_sasc_2025_200198
crossref_primary_10_3390_app12115505
crossref_primary_10_3390_electronics11121834
crossref_primary_10_1016_j_asoc_2024_111755
crossref_primary_10_1016_j_renene_2023_119406
crossref_primary_10_1093_jcde_qwac101
crossref_primary_10_1007_s40747_023_01128_x
crossref_primary_10_1016_j_energy_2024_134054
crossref_primary_10_3390_su16031158
crossref_primary_10_1016_j_eswa_2023_123069
crossref_primary_10_1016_j_swevo_2022_101225
crossref_primary_10_1080_2573234X_2023_2202691
crossref_primary_10_1016_j_eswa_2025_127587
crossref_primary_10_1016_j_enconman_2025_120432
crossref_primary_10_1007_s11227_025_07517_y
crossref_primary_10_1016_j_asoc_2024_112442
crossref_primary_10_1016_j_ocecoaman_2023_106816
crossref_primary_10_1016_j_compstruct_2025_118921
crossref_primary_10_1016_j_eswa_2023_119970
crossref_primary_10_1109_ACCESS_2025_3525850
crossref_primary_10_1093_jcde_qwac139
crossref_primary_10_1155_2023_1792918
crossref_primary_10_3389_fbioe_2025_1619411
crossref_primary_10_1002_cjce_25417
crossref_primary_10_1016_j_ins_2024_121032
crossref_primary_10_1007_s12008_023_01464_9
crossref_primary_10_1016_j_engappai_2025_111650
crossref_primary_10_1016_j_swevo_2024_101533
crossref_primary_10_1038_s41598_022_26142_w
crossref_primary_10_1016_j_eswa_2024_125372
crossref_primary_10_1016_j_eswa_2025_128120
crossref_primary_10_1155_2023_1348624
crossref_primary_10_3390_ijgi11030183
crossref_primary_10_1109_ACCESS_2022_3218691
crossref_primary_10_1007_s11760_024_03638_8
crossref_primary_10_1007_s41939_023_00307_0
crossref_primary_10_1016_j_rser_2024_115264
crossref_primary_10_1002_fld_5346
crossref_primary_10_1016_j_advengsoft_2022_103191
crossref_primary_10_1109_ACCESS_2024_3448464
crossref_primary_10_1007_s40747_024_01447_7
crossref_primary_10_1016_j_jenvman_2024_120417
crossref_primary_10_1109_TASE_2024_3505846
crossref_primary_10_1007_s11424_023_2406_3
crossref_primary_10_1177_10996362231222553
crossref_primary_10_3390_pr12010189
crossref_primary_10_1016_j_asoc_2023_110101
crossref_primary_10_1109_ACCESS_2024_3426614
crossref_primary_10_1007_s00500_024_09814_9
crossref_primary_10_3390_drones9020118
crossref_primary_10_1016_j_asoc_2024_112306
crossref_primary_10_1109_ACCESS_2024_3404407
crossref_primary_10_3390_en17174473
crossref_primary_10_1080_15376494_2023_2214915
crossref_primary_10_1016_j_jenvman_2024_121430
crossref_primary_10_1016_j_eswa_2023_121783
crossref_primary_10_1016_j_ins_2022_12_077
crossref_primary_10_3390_app131810247
crossref_primary_10_1016_j_swevo_2022_101201
Cites_doi 10.1109/ACCESS.2019.2917899
10.1109/MCDM.2009.4938830
10.1109/CEC.2002.1007032
10.1080/01621459.1937.10503522
10.1109/TEVC.2012.2227145
10.1016/j.ejor.2015.06.071
10.1016/j.ins.2020.11.040
10.1137/S1052623496307510
10.1016/j.asoc.2021.107299
10.1109/TEVC.2020.2991040
10.1109/CEC.2007.4424867
10.1145/2001576.2001587
10.1162/106365600568202
10.1109/TEVC.2005.861417
10.1109/TEVC.2016.2592479
10.1016/j.asoc.2020.106968
10.1109/TEVC.2014.2373386
10.1145/1068009.1068047
10.1109/TEVC.2013.2296151
10.1109/TCYB.2016.2548239
10.1016/j.energy.2019.116478
10.1016/j.ins.2016.01.046
10.1109/TCYB.2014.2322602
10.1109/TSMC.2018.2875043
10.1109/TEVC.2018.2882166
10.1109/TEVC.2016.2631279
10.1109/TCYB.2014.2360923
10.1109/TEVC.2014.2339823
10.1109/TCYB.2017.2756874
10.1109/TEVC.2018.2879406
10.1109/TEVC.2014.2350987
10.1016/j.ins.2021.05.075
10.1109/ICNN.1995.488968
10.1109/TEVC.2016.2587749
10.1016/j.asoc.2018.03.020
10.1109/TEVC.2018.2855411
10.1109/TCYB.2019.2943928
10.1109/TEVC.2013.2262178
10.1016/j.swevo.2021.100910
10.1109/TCYB.2019.2922287
10.1007/s00500-011-0704-5
10.1109/4235.996017
10.1109/MCI.2017.2742868
10.1109/CEC.2002.1004388
10.1109/TCYB.2019.2949204
10.1016/j.asoc.2020.106947
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.108532
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_108532
S1568494622000680
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-fd48f5ca8c58870ff271c3ddf06c6079eabb0aa6bcdefb1f5355bf9659b14f773
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791330600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 21:42:03 EST 2025
Sat Nov 29 06:59:09 EST 2025
Fri Feb 23 02:40:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective particle swarm optimization
Evolutionary information
Genetic operator
Two-archive mechanism
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-fd48f5ca8c58870ff271c3ddf06c6079eabb0aa6bcdefb1f5355bf9659b14f773
ORCID 0000-0002-1707-6074
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2022_108532
crossref_primary_10_1016_j_asoc_2022_108532
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108532
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Hu, Hu, Yen (b7) 2021; 51
Wang, Dong, Tang (b8) 2020; 50
C.R. Raquel, P.C. Naval, An effective use of crowding distance in multiobjective particle swarm optimization, in: GECCO 2005 - Genet. Evol. Comput. Conf., 2005, pp. 257–264.
Hu, Yen (b18) 2013
Hu, Yen, Luo (b20) 2017; 47
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 - Int. Conf. Neural Networks, 1995, pp. 1942–1948.
Friedman (b56) 1937; 32
Yang, Ding, Jin, Chai (b10) 2020; 24
Hu, Yen (b19) 2015; 19
Cheng, Zhan, Yao, Fan, Liu (b11) 2021; 99
M. Basseur, E.K. Burke, Indicator-based multi-objective local search, in: 2007 IEEE Congr. Evol. Comput., 2007, pp. 3100–3107.
Li, Chen, Fu, Yao (b33) 2019; 23
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: 2002 Congr. Evol. Comput., 2002, pp. 825–830.
Huband, Hingston, Barone, While (b51) 2006; 10
Jiang, Yang (b47) 2017; 21
Sharma, Vats, Saurabh (b25) 2021; 65
Wang, Pan, Shen, Zhao, Qiu (b26) 2021; 100
Kukkonen, Deb (b17) 2006
Zheng, Wang, Yang, Zhang (b6) 2020; 191
Han, Liu, Lu, Hou, Qiao (b4) 2019
Li, Yang, Liu (b21) 2014; 18
Li, Li, Tang, Yao (b29) 2014
S.Z. Martínez, C.A.C. Coello, A multi-objective particle swarm optimizer based on decomposition, in: Genet. Evol. Comput. Conf. GECCO’11, 2011, pp. 69–76.
X.H. Zhang, H.Y. Meng, L.C. Jiao, Intelligent particle swarm optimization in multiobjective optimization, in: 2005 IEEE Congr. Evol. Comput., 2005, pp. 714–719.
Ishibuchi, Setoguchi, Masuda, Nojima (b54) 2017; 21
Asafuddoula, Ray, Sarker (b48) 2015; 19
Cui, Qiao, Meng (b42) 2020
Lin, Li, Du, Chen, Ming (b15) 2015; 247
C.A. Coello Coello, M.S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, in: 2002 Congr. Evol. Comput., 2002, pp. 1051–1056.
Dai (b30) 2019; 7
Das, Dennis (b52) 1998; 8
Li, Deb, Zhang, Kwong (b46) 2015; 19
Liu, Yen, Gong (b34) 2019; 23
Palakonda, Mallipeddi, Suganthan (b1) 2021; 555
Han, Zhang, Liu, Qiao (b5) 2018; 67
Li, Chang, Gu, Sheng, Wang (b23) 2021; 51
Zhu, Lin, Du, Liang, Wang, Zhu, Chen, Huang, Ming (b39) 2016; 345
Wang, Jiao, Yao (b31) 2015; 19
Zitzler, Deb, Thiele (b49) 2000; 8
Chen, Chen, Gong, Zhan, Zhang, Li, Tan (b53) 2015; 45
Lin, Liu, Zhu, Tang, Song, Chen, Coello, Wong, Zhang (b37) 2018; 22
Li, Zou, Yang, Zheng (b35) 2021; 574
Tian, Cheng, Zhang, Jin (b55) 2017; 12
Han, Lu, Zhang, Qiao (b22) 2018; 48
Cheng, Jin (b9) 2015; 45
Yang, Hu, Li (b24) 2021; 106
Yuan, Sun, Zhou (b13) 2016
Cai, Xiao, Li, Hu, Ishibuchi, Li (b3) 2021; 25
Sindhya, Ruuska, Haanpää, Miettinen (b40) 2011; 15
Praditwong, Yao (b28) 2006
A.J. Nebro, J.J. Durillo, G. Nieto, C.A.C. Coello, F. Luna, E. Alba, SMPSO: A new pso-based metaheuristic for multi-objective optimization, in: 2009 IEEE Symp. Comput. Intell. Multi-Criteria Decis., 2009, pp. 66–73.
Yang, Li, Liu, Zheng (b16) 2013; 17
Deb, Pratap, Agarwal, Meyarivan (b45) 2002; 6
Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b38) 2020; 50
Wang, Wang, Liu, Guo, Liu (b32) 2018
Sun, Xue, Zhang, Yen (b2) 2019; 23
Li (10.1016/j.asoc.2022.108532_b23) 2021; 51
Li (10.1016/j.asoc.2022.108532_b33) 2019; 23
Wang (10.1016/j.asoc.2022.108532_b31) 2015; 19
10.1016/j.asoc.2022.108532_b36
Friedman (10.1016/j.asoc.2022.108532_b56) 1937; 32
Cai (10.1016/j.asoc.2022.108532_b3) 2021; 25
Cheng (10.1016/j.asoc.2022.108532_b9) 2015; 45
Cheng (10.1016/j.asoc.2022.108532_b11) 2021; 99
Zitzler (10.1016/j.asoc.2022.108532_b49) 2000; 8
Han (10.1016/j.asoc.2022.108532_b5) 2018; 67
Asafuddoula (10.1016/j.asoc.2022.108532_b48) 2015; 19
Tian (10.1016/j.asoc.2022.108532_b55) 2017; 12
Palakonda (10.1016/j.asoc.2022.108532_b1) 2021; 555
Sun (10.1016/j.asoc.2022.108532_b2) 2019; 23
Li (10.1016/j.asoc.2022.108532_b46) 2015; 19
Praditwong (10.1016/j.asoc.2022.108532_b28) 2006
Wang (10.1016/j.asoc.2022.108532_b8) 2020; 50
Wu (10.1016/j.asoc.2022.108532_b7) 2021; 51
Wang (10.1016/j.asoc.2022.108532_b26) 2021; 100
Wang (10.1016/j.asoc.2022.108532_b32) 2018
Cui (10.1016/j.asoc.2022.108532_b42) 2020
Jiang (10.1016/j.asoc.2022.108532_b47) 2017; 21
10.1016/j.asoc.2022.108532_b27
Das (10.1016/j.asoc.2022.108532_b52) 1998; 8
Chen (10.1016/j.asoc.2022.108532_b53) 2015; 45
Sindhya (10.1016/j.asoc.2022.108532_b40) 2011; 15
Ishibuchi (10.1016/j.asoc.2022.108532_b54) 2017; 21
Hu (10.1016/j.asoc.2022.108532_b18) 2013
Lin (10.1016/j.asoc.2022.108532_b37) 2018; 22
Li (10.1016/j.asoc.2022.108532_b21) 2014; 18
Han (10.1016/j.asoc.2022.108532_b22) 2018; 48
Hu (10.1016/j.asoc.2022.108532_b20) 2017; 47
Yang (10.1016/j.asoc.2022.108532_b24) 2021; 106
Han (10.1016/j.asoc.2022.108532_b4) 2019
10.1016/j.asoc.2022.108532_b14
Yang (10.1016/j.asoc.2022.108532_b16) 2013; 17
10.1016/j.asoc.2022.108532_b12
10.1016/j.asoc.2022.108532_b50
Li (10.1016/j.asoc.2022.108532_b35) 2021; 574
Hu (10.1016/j.asoc.2022.108532_b19) 2015; 19
Yang (10.1016/j.asoc.2022.108532_b10) 2020; 24
Xia (10.1016/j.asoc.2022.108532_b38) 2020; 50
Huband (10.1016/j.asoc.2022.108532_b51) 2006; 10
Sharma (10.1016/j.asoc.2022.108532_b25) 2021; 65
Liu (10.1016/j.asoc.2022.108532_b34) 2019; 23
Zhu (10.1016/j.asoc.2022.108532_b39) 2016; 345
Dai (10.1016/j.asoc.2022.108532_b30) 2019; 7
Li (10.1016/j.asoc.2022.108532_b29) 2014
10.1016/j.asoc.2022.108532_b44
Deb (10.1016/j.asoc.2022.108532_b45) 2002; 6
Kukkonen (10.1016/j.asoc.2022.108532_b17) 2006
10.1016/j.asoc.2022.108532_b43
Yuan (10.1016/j.asoc.2022.108532_b13) 2016
Lin (10.1016/j.asoc.2022.108532_b15) 2015; 247
10.1016/j.asoc.2022.108532_b41
Zheng (10.1016/j.asoc.2022.108532_b6) 2020; 191
References_xml – volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b49
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol. Comput.
– volume: 50
  start-page: 4862
  year: 2020
  end-page: 4875
  ident: b38
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans. Cybern.
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: b46
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 21
  year: 2021
  end-page: 34
  ident: b3
  article-title: A grid-based inverted generational distance for multi/many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 48
  start-page: 3067
  year: 2018
  end-page: 3079
  ident: b22
  article-title: Adaptive gradient multiobjective particle swarm optimization
  publication-title: IEEE Trans. Cybern.
– reference: A.J. Nebro, J.J. Durillo, G. Nieto, C.A.C. Coello, F. Luna, E. Alba, SMPSO: A new pso-based metaheuristic for multi-objective optimization, in: 2009 IEEE Symp. Comput. Intell. Multi-Criteria Decis., 2009, pp. 66–73.
– volume: 19
  start-page: 445
  year: 2015
  end-page: 460
  ident: b48
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: M. Basseur, E.K. Burke, Indicator-based multi-objective local search, in: 2007 IEEE Congr. Evol. Comput., 2007, pp. 3100–3107.
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b56
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
– volume: 22
  start-page: 32
  year: 2018
  end-page: 46
  ident: b37
  article-title: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 191
  year: 2020
  ident: b6
  article-title: Multi-objective combustion optimization based on data-driven hybrid strategy
  publication-title: Energy
– start-page: 3412
  year: 2020
  end-page: 3417
  ident: b42
  article-title: Multi-stage multi-objective particle swarm optimization algorithm based on the evolutionary information of population
  publication-title: 2020 Chinese Autom. Congr
– volume: 247
  start-page: 732
  year: 2015
  end-page: 744
  ident: b15
  article-title: A novel multi-objective particle swarm optimization with multiple search strategies
  publication-title: European J. Oper. Res.
– reference: X.H. Zhang, H.Y. Meng, L.C. Jiao, Intelligent particle swarm optimization in multiobjective optimization, in: 2005 IEEE Congr. Evol. Comput., 2005, pp. 714–719.
– volume: 45
  start-page: 1851
  year: 2015
  end-page: 1863
  ident: b53
  article-title: An evolutionary algorithm with double-level archives for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b51
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b45
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b55
  article-title: PlatEMO: A Matlab platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: b16
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 660
  year: 2019
  end-page: 674
  ident: b34
  article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2869
  year: 2014
  end-page: 2876
  ident: b29
  article-title: An improved two archive algorithm for many-objective optimization
  publication-title: 2014 IEEE Congr. Evol. Comput
– volume: 7
  start-page: 79277
  year: 2019
  end-page: 79286
  ident: b30
  article-title: Two-archive evolutionary algorithm based on multi-search strategy for many-objective optimization
  publication-title: IEEE Access.
– volume: 45
  start-page: 191
  year: 2015
  end-page: 204
  ident: b9
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
– volume: 51
  start-page: 3738
  year: 2021
  end-page: 3751
  ident: b7
  article-title: Adaptive multiobjective particle swarm optimization based on evolutionary state estimation
  publication-title: IEEE Trans. Cybern.
– volume: 67
  start-page: 467
  year: 2018
  end-page: 478
  ident: b5
  article-title: Multiobjective design of fuzzy neural network controller for wastewater treatment process
  publication-title: Appl. Soft Comput.
– start-page: 181
  year: 2013
  end-page: 188
  ident: b18
  article-title: Density estimation for selecting leaders and mantaining archive in MOPSO
  publication-title: 2013 IEEE Congr. Evol. Comput
– reference: S.Z. Martínez, C.A.C. Coello, A multi-objective particle swarm optimizer based on decomposition, in: Genet. Evol. Comput. Conf. GECCO’11, 2011, pp. 69–76.
– volume: 345
  start-page: 177
  year: 2016
  end-page: 198
  ident: b39
  article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm
  publication-title: Inf. Sci. (Ny).
– start-page: 1179
  year: 2006
  end-page: 1186
  ident: b17
  article-title: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems
  publication-title: 2006 IEEE Congr. Evol. Comput
– volume: 100
  year: 2021
  ident: b26
  article-title: Balancing convergence and diversity in resource allocation strategy for decomposition-based multi-objective evolutionary algorithm
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 748
  year: 2019
  end-page: 761
  ident: b2
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 574
  start-page: 413
  year: 2021
  end-page: 430
  ident: b35
  article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization
  publication-title: Inf. Sci. (Ny).
– volume: 555
  start-page: 164
  year: 2021
  end-page: 197
  ident: b1
  article-title: An ensemble approach with external archive for multi- and many-objective optimization with adaptive mating mechanism and two-level environmental selection
  publication-title: Inf. Sci. (Ny).
– start-page: 2064
  year: 2016
  end-page: 2070
  ident: b13
  article-title: Multi-objective random drift particle swarm optimization algorithm with adaptive grids
  publication-title: 2016 IEEE Congr. Evol. Comput
– volume: 51
  start-page: 2055
  year: 2021
  end-page: 2067
  ident: b23
  article-title: On the norm of dominant difference for many-objective particle swarm optimization
  publication-title: IEEE Trans. Cybern.
– volume: 21
  start-page: 169
  year: 2017
  end-page: 190
  ident: b54
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: b52
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 19
  start-page: 1
  year: 2015
  end-page: 18
  ident: b19
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 286
  year: 2006
  end-page: 291
  ident: b28
  article-title: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm
  publication-title: 2006 Int. Conf. Comput. Intell. Secur
– volume: 65
  year: 2021
  ident: b25
  article-title: Diversity preference-based many-objective particle swarm optimization using reference-lines-based framework
  publication-title: Swarm Evol. Comput.
– reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: 2002 Congr. Evol. Comput., 2002, pp. 825–830.
– volume: 50
  start-page: 5338
  year: 2020
  end-page: 5350
  ident: b8
  article-title: Multiobjective differential evolution with personal archive and biased self-adaptive mutation selection
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– volume: 15
  start-page: 2041
  year: 2011
  end-page: 2055
  ident: b40
  article-title: A new hybrid mutation operator for multiobjective optimization with differential evolution
  publication-title: Soft Comput.
– volume: 21
  start-page: 329
  year: 2017
  end-page: 346
  ident: b47
  article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 1446
  year: 2017
  end-page: 1459
  ident: b20
  article-title: Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system
  publication-title: IEEE Trans. Cybern.
– volume: 24
  start-page: 409
  year: 2020
  end-page: 423
  ident: b10
  article-title: Offline data-driven multiobjective optimization: Knowledge transfer between surrogates and generation of final solutions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 99
  year: 2021
  ident: b11
  article-title: Large-scale many-objective particle swarm optimizer with fast convergence based on alpha-stable mutation and logistic function
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 348
  year: 2014
  end-page: 365
  ident: b21
  article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 106
  year: 2021
  ident: b24
  article-title: A vector angles-based many-objective particle swarm optimization algorithm using archive
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: b31
  article-title: Two_Arch2: AN improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 303
  year: 2019
  end-page: 315
  ident: b33
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 20
  year: 2018
  end-page: 24
  ident: b32
  article-title: Two-archive based evolutionary algorithm using adaptive reference direction and decomposition for many-objective optimization
  publication-title: 14th Int. Conf. Comput. Intell. Secur
– start-page: 1
  year: 2019
  end-page: 11
  ident: b4
  article-title: Dynamic MOPSO-based optimal control for wastewater treatment process
  publication-title: IEEE Trans. Cybern.
– reference: C.A. Coello Coello, M.S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, in: 2002 Congr. Evol. Comput., 2002, pp. 1051–1056.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 - Int. Conf. Neural Networks, 1995, pp. 1942–1948.
– reference: C.R. Raquel, P.C. Naval, An effective use of crowding distance in multiobjective particle swarm optimization, in: GECCO 2005 - Genet. Evol. Comput. Conf., 2005, pp. 257–264.
– volume: 7
  start-page: 79277
  year: 2019
  ident: 10.1016/j.asoc.2022.108532_b30
  article-title: Two-archive evolutionary algorithm based on multi-search strategy for many-objective optimization
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2917899
– ident: 10.1016/j.asoc.2022.108532_b12
  doi: 10.1109/MCDM.2009.4938830
– ident: 10.1016/j.asoc.2022.108532_b50
  doi: 10.1109/CEC.2002.1007032
– volume: 32
  start-page: 675
  year: 1937
  ident: 10.1016/j.asoc.2022.108532_b56
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1937.10503522
– volume: 24
  start-page: 409
  year: 2020
  ident: 10.1016/j.asoc.2022.108532_b10
  article-title: Offline data-driven multiobjective optimization: Knowledge transfer between surrogates and generation of final solutions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 17
  start-page: 721
  year: 2013
  ident: 10.1016/j.asoc.2022.108532_b16
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– volume: 247
  start-page: 732
  year: 2015
  ident: 10.1016/j.asoc.2022.108532_b15
  article-title: A novel multi-objective particle swarm optimization with multiple search strategies
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.06.071
– volume: 555
  start-page: 164
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b1
  article-title: An ensemble approach with external archive for multi- and many-objective optimization with adaptive mating mechanism and two-level environmental selection
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2020.11.040
– volume: 8
  start-page: 631
  year: 1998
  ident: 10.1016/j.asoc.2022.108532_b52
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 106
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b24
  article-title: A vector angles-based many-objective particle swarm optimization algorithm using archive
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107299
– volume: 25
  start-page: 21
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b3
  article-title: A grid-based inverted generational distance for multi/many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2991040
– ident: 10.1016/j.asoc.2022.108532_b36
  doi: 10.1109/CEC.2007.4424867
– ident: 10.1016/j.asoc.2022.108532_b43
  doi: 10.1145/2001576.2001587
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/j.asoc.2022.108532_b49
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– volume: 10
  start-page: 477
  year: 2006
  ident: 10.1016/j.asoc.2022.108532_b51
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 21
  start-page: 329
  year: 2017
  ident: 10.1016/j.asoc.2022.108532_b47
  article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2592479
– volume: 100
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b26
  article-title: Balancing convergence and diversity in resource allocation strategy for decomposition-based multi-objective evolutionary algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106968
– start-page: 1179
  year: 2006
  ident: 10.1016/j.asoc.2022.108532_b17
  article-title: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems
– start-page: 2064
  year: 2016
  ident: 10.1016/j.asoc.2022.108532_b13
  article-title: Multi-objective random drift particle swarm optimization algorithm with adaptive grids
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.108532_b4
  article-title: Dynamic MOPSO-based optimal control for wastewater treatment process
  publication-title: IEEE Trans. Cybern.
– volume: 19
  start-page: 694
  year: 2015
  ident: 10.1016/j.asoc.2022.108532_b46
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– ident: 10.1016/j.asoc.2022.108532_b14
  doi: 10.1145/1068009.1068047
– volume: 19
  start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2022.108532_b19
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2296151
– volume: 47
  start-page: 1446
  year: 2017
  ident: 10.1016/j.asoc.2022.108532_b20
  article-title: Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2548239
– volume: 191
  year: 2020
  ident: 10.1016/j.asoc.2022.108532_b6
  article-title: Multi-objective combustion optimization based on data-driven hybrid strategy
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116478
– volume: 345
  start-page: 177
  year: 2016
  ident: 10.1016/j.asoc.2022.108532_b39
  article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2016.01.046
– volume: 45
  start-page: 191
  year: 2015
  ident: 10.1016/j.asoc.2022.108532_b9
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2322602
– volume: 50
  start-page: 5338
  year: 2020
  ident: 10.1016/j.asoc.2022.108532_b8
  article-title: Multiobjective differential evolution with personal archive and biased self-adaptive mutation selection
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2018.2875043
– volume: 23
  start-page: 748
  year: 2019
  ident: 10.1016/j.asoc.2022.108532_b2
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2882166
– volume: 22
  start-page: 32
  year: 2018
  ident: 10.1016/j.asoc.2022.108532_b37
  article-title: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2631279
– volume: 45
  start-page: 1851
  year: 2015
  ident: 10.1016/j.asoc.2022.108532_b53
  article-title: An evolutionary algorithm with double-level archives for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2360923
– ident: 10.1016/j.asoc.2022.108532_b41
– start-page: 3412
  year: 2020
  ident: 10.1016/j.asoc.2022.108532_b42
  article-title: Multi-stage multi-objective particle swarm optimization algorithm based on the evolutionary information of population
– start-page: 20
  year: 2018
  ident: 10.1016/j.asoc.2022.108532_b32
  article-title: Two-archive based evolutionary algorithm using adaptive reference direction and decomposition for many-objective optimization
– volume: 19
  start-page: 445
  year: 2015
  ident: 10.1016/j.asoc.2022.108532_b48
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2339823
– start-page: 2869
  year: 2014
  ident: 10.1016/j.asoc.2022.108532_b29
  article-title: An improved two archive algorithm for many-objective optimization
– volume: 48
  start-page: 3067
  year: 2018
  ident: 10.1016/j.asoc.2022.108532_b22
  article-title: Adaptive gradient multiobjective particle swarm optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2756874
– volume: 23
  start-page: 660
  year: 2019
  ident: 10.1016/j.asoc.2022.108532_b34
  article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2879406
– volume: 19
  start-page: 524
  year: 2015
  ident: 10.1016/j.asoc.2022.108532_b31
  article-title: Two_Arch2: AN improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– start-page: 181
  year: 2013
  ident: 10.1016/j.asoc.2022.108532_b18
  article-title: Density estimation for selecting leaders and mantaining archive in MOPSO
– volume: 574
  start-page: 413
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b35
  article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2021.05.075
– ident: 10.1016/j.asoc.2022.108532_b27
  doi: 10.1109/ICNN.1995.488968
– volume: 21
  start-page: 169
  year: 2017
  ident: 10.1016/j.asoc.2022.108532_b54
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587749
– volume: 67
  start-page: 467
  year: 2018
  ident: 10.1016/j.asoc.2022.108532_b5
  article-title: Multiobjective design of fuzzy neural network controller for wastewater treatment process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.020
– volume: 23
  start-page: 303
  year: 2019
  ident: 10.1016/j.asoc.2022.108532_b33
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2855411
– volume: 50
  start-page: 4862
  year: 2020
  ident: 10.1016/j.asoc.2022.108532_b38
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2943928
– volume: 18
  start-page: 348
  year: 2014
  ident: 10.1016/j.asoc.2022.108532_b21
  article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262178
– volume: 65
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b25
  article-title: Diversity preference-based many-objective particle swarm optimization using reference-lines-based framework
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100910
– volume: 51
  start-page: 2055
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b23
  article-title: On the norm of dominant difference for many-objective particle swarm optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2922287
– volume: 15
  start-page: 2041
  year: 2011
  ident: 10.1016/j.asoc.2022.108532_b40
  article-title: A new hybrid mutation operator for multiobjective optimization with differential evolution
  publication-title: Soft Comput.
  doi: 10.1007/s00500-011-0704-5
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.asoc.2022.108532_b45
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– start-page: 286
  year: 2006
  ident: 10.1016/j.asoc.2022.108532_b28
  article-title: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm
– volume: 12
  start-page: 73
  year: 2017
  ident: 10.1016/j.asoc.2022.108532_b55
  article-title: PlatEMO: A Matlab platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– ident: 10.1016/j.asoc.2022.108532_b44
  doi: 10.1109/CEC.2002.1004388
– volume: 51
  start-page: 3738
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b7
  article-title: Adaptive multiobjective particle swarm optimization based on evolutionary state estimation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2949204
– volume: 99
  year: 2021
  ident: 10.1016/j.asoc.2022.108532_b11
  article-title: Large-scale many-objective particle swarm optimizer with fast convergence based on alpha-stable mutation and logistic function
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106947
SSID ssj0016928
Score 2.6149728
Snippet As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108532
SubjectTerms Evolutionary information
Genetic operator
Multi-objective particle swarm optimization
Two-archive mechanism
Title A multi-objective particle swarm optimization algorithm based on two-archive mechanism
URI https://dx.doi.org/10.1016/j.asoc.2022.108532
Volume 119
WOSCitedRecordID wos000791330600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuUF6ihSIfuEWukmwSx8dVVcRLFRIFLafIdmzIajdZ7Wb7-PcdP5KGFlWAxCWKRvF6NZ81Ho-_mUHojYhTGWVcEtj8JEkoj4lIVURKagoWqYjnwnYt-URPTvLZjH0ejT52uTBnC1rX-cUFW_1XqEEGYJvU2b-Au_9REMA7gA5PgB2efwT81JEESSPmzpgFK_9VsDnn62XQgJVY-vTLgC9-NOuq_bkMzH5W2ruD84ZwV5A2WCqTGdyVGeyq1XrPdQMm3HLSt223AVqytSUIfAfR5UBs6LNGPqv6WGvF3bXPttaqGoYf4OR6zVqxMbFbeTHOjGY5SZgPLiony2lMWOYatPS219nLW3bchRTmhxyW6KGZ1nAhUx8J_bU-9hczmZkrtllHeXgP7cQ0ZfkY7UzfH88-9JdKGbOtdvs_53OoHN3v5ky_91MGvsfpLnroDw146mB8jEaqfoIedQ05sLfPT9G3Kb6BPe6wxxZ7PMQe99hjiz0G0QB73GP_DH19e3x69I74xhlETsKwJbpMcp1KnssU9pBQ65hGclKWOsxkFlKmuBAh55mQpdIi0ik4nUKb0pIiSjSlk-doXDe1eoEw-DdwouGcaqqTlJWMcVXCq9ZUqIxleyjq1FRIX1XeNDdZFB19cF4Y1RZGtYVT7R4K-jErV1Plzq_TTvuF9wqdt1fAYrlj3P4_jnuJHlyv81do3K636gDdl2dttVm_9mvqCoMFiY8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+particle+swarm+optimization+algorithm+based+on+two-archive+mechanism&rft.jtitle=Applied+soft+computing&rft.au=Cui%2C+Yingying&rft.au=Meng%2C+Xi&rft.au=Qiao%2C+Junfei&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=119&rft_id=info:doi/10.1016%2Fj.asoc.2022.108532&rft.externalDocID=S1568494622000680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon