A multi-objective particle swarm optimization algorithm based on two-archive mechanism
As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well in terms of convergence and diversity simultaneously is still a challenging task for most existing algorithms. In this paper, a multi-objecti...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 119; S. 108532 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.04.2022
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well in terms of convergence and diversity simultaneously is still a challenging task for most existing algorithms. In this paper, a multi-objective particle swarm optimization algorithm based on two-archive mechanism (MOPSO_TA) is proposed for the above challenge. First, two archives, including convergence archive (CA) and diversity archive (DA) are designed to emphasize convergence and diversity separately. On one hand, particles are updated by indicator-based scheme to provide selection pressure toward the optimal direction in CA. On the other hand, shift-based density estimation and similarity measure are adopted to preserve diverse candidate solutions in DA. Second, the genetic operators are conducted on particles from CA and DA to further enhance the quality of solutions as global leaders. Then the search ability of MOPSO_TA can be improved by performing hybrid operators. Furthermore, to balance global exploration and local exploitation of MOPSO_TA, a flight parameters adjustment mechanism is developed based on the evolutionary information. Finally, the proposed algorithm is compared experimentally with several representative multi-objective optimization algorithms on 21 benchmark functions. The experimental results demonstrate the competitiveness and effectiveness of the proposed method.
•The two-archive mechanism is incorporated into multi-objective particle swarm optimization algorithm.•The global leader is selected from candidate solutions generated by performing genetic operators between CA and DA.•An improved self-adaptive flight parameters strategy is utilized to balance exploitation and exploration of MOPSO_TA.•The experimental results verify the competitiveness and effectiveness of the proposed MOPSO_TA. |
|---|---|
| AbstractList | As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well in terms of convergence and diversity simultaneously is still a challenging task for most existing algorithms. In this paper, a multi-objective particle swarm optimization algorithm based on two-archive mechanism (MOPSO_TA) is proposed for the above challenge. First, two archives, including convergence archive (CA) and diversity archive (DA) are designed to emphasize convergence and diversity separately. On one hand, particles are updated by indicator-based scheme to provide selection pressure toward the optimal direction in CA. On the other hand, shift-based density estimation and similarity measure are adopted to preserve diverse candidate solutions in DA. Second, the genetic operators are conducted on particles from CA and DA to further enhance the quality of solutions as global leaders. Then the search ability of MOPSO_TA can be improved by performing hybrid operators. Furthermore, to balance global exploration and local exploitation of MOPSO_TA, a flight parameters adjustment mechanism is developed based on the evolutionary information. Finally, the proposed algorithm is compared experimentally with several representative multi-objective optimization algorithms on 21 benchmark functions. The experimental results demonstrate the competitiveness and effectiveness of the proposed method.
•The two-archive mechanism is incorporated into multi-objective particle swarm optimization algorithm.•The global leader is selected from candidate solutions generated by performing genetic operators between CA and DA.•An improved self-adaptive flight parameters strategy is utilized to balance exploitation and exploration of MOPSO_TA.•The experimental results verify the competitiveness and effectiveness of the proposed MOPSO_TA. |
| ArticleNumber | 108532 |
| Author | Cui, Yingying Qiao, Junfei Meng, Xi |
| Author_xml | – sequence: 1 givenname: Yingying surname: Cui fullname: Cui, Yingying email: yycui@emails.bjut.edu.cn – sequence: 2 givenname: Xi surname: Meng fullname: Meng, Xi email: mengxi@bjut.edu.cn – sequence: 3 givenname: Junfei orcidid: 0000-0002-1707-6074 surname: Qiao fullname: Qiao, Junfei email: adqiao@bjut.edu.cn |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DKD6TYTuw4Epuq4iUhsQG21tixqaMkrmzTCr6ehLJi0dWMrnSuZs4CzQY_GISuCV4RTPhNu4Lo9YpiSsdAsIKeoTkRFc1rLshs3BkXeVmX_AItYmzxCNVUzNH7Ous_u-Ryr1qjk9ubbAchOd2ZLB4g9JnfJde7b0jODxl0Hz64tO0zBdE02Rilg88h6O2E9kZvYXCxv0TnFrporv7mEr3d371uHvPnl4enzfo51wXGKbdNKSzTIDQTosLW0oroomks5prjqjagFAbgSjfGKmJZwZiyNWe1IqWtqmKJxLFXBx9jMFZql35PTQFcJwmWkx_ZysmPnPzIo58Rpf_QXXA9hK_T0O0RMuNTe2eCjNqZQZvGhVGfbLw7hf8AgeSDtA |
| CitedBy_id | crossref_primary_10_1080_01605682_2024_2385467 crossref_primary_10_1016_j_eswa_2025_126644 crossref_primary_10_1088_1742_6596_2465_1_012022 crossref_primary_10_3389_fphy_2023_1240555 crossref_primary_10_3390_app14125043 crossref_primary_10_1109_ACCESS_2024_3426104 crossref_primary_10_1038_s41598_025_01010_5 crossref_primary_10_1007_s11071_023_09189_w crossref_primary_10_3390_pr12020406 crossref_primary_10_3390_biomimetics9090510 crossref_primary_10_1016_j_geoen_2023_211431 crossref_primary_10_1007_s10668_023_04123_x crossref_primary_10_1016_j_engappai_2025_111519 crossref_primary_10_3390_jmse13081518 crossref_primary_10_3390_sym14122619 crossref_primary_10_1016_j_compstruc_2025_107647 crossref_primary_10_3390_a17020053 crossref_primary_10_1016_j_eswa_2024_125300 crossref_primary_10_1155_2022_9244890 crossref_primary_10_1016_j_knosys_2023_110529 crossref_primary_10_1016_j_swevo_2025_101890 crossref_primary_10_1007_s11431_021_2018_x crossref_primary_10_1016_j_eswa_2025_127505 crossref_primary_10_1093_jcde_qwae081 crossref_primary_10_1016_j_apr_2023_101880 crossref_primary_10_1007_s40032_024_01104_5 crossref_primary_10_3390_sym17010014 crossref_primary_10_3390_pr13041079 crossref_primary_10_1016_j_sasc_2025_200198 crossref_primary_10_3390_app12115505 crossref_primary_10_3390_electronics11121834 crossref_primary_10_1016_j_asoc_2024_111755 crossref_primary_10_1016_j_renene_2023_119406 crossref_primary_10_1093_jcde_qwac101 crossref_primary_10_1007_s40747_023_01128_x crossref_primary_10_1016_j_energy_2024_134054 crossref_primary_10_3390_su16031158 crossref_primary_10_1016_j_eswa_2023_123069 crossref_primary_10_1016_j_swevo_2022_101225 crossref_primary_10_1080_2573234X_2023_2202691 crossref_primary_10_1016_j_eswa_2025_127587 crossref_primary_10_1016_j_enconman_2025_120432 crossref_primary_10_1007_s11227_025_07517_y crossref_primary_10_1016_j_asoc_2024_112442 crossref_primary_10_1016_j_ocecoaman_2023_106816 crossref_primary_10_1016_j_compstruct_2025_118921 crossref_primary_10_1016_j_eswa_2023_119970 crossref_primary_10_1109_ACCESS_2025_3525850 crossref_primary_10_1093_jcde_qwac139 crossref_primary_10_1155_2023_1792918 crossref_primary_10_3389_fbioe_2025_1619411 crossref_primary_10_1002_cjce_25417 crossref_primary_10_1016_j_ins_2024_121032 crossref_primary_10_1007_s12008_023_01464_9 crossref_primary_10_1016_j_engappai_2025_111650 crossref_primary_10_1016_j_swevo_2024_101533 crossref_primary_10_1038_s41598_022_26142_w crossref_primary_10_1016_j_eswa_2024_125372 crossref_primary_10_1016_j_eswa_2025_128120 crossref_primary_10_1155_2023_1348624 crossref_primary_10_3390_ijgi11030183 crossref_primary_10_1109_ACCESS_2022_3218691 crossref_primary_10_1007_s11760_024_03638_8 crossref_primary_10_1007_s41939_023_00307_0 crossref_primary_10_1016_j_rser_2024_115264 crossref_primary_10_1002_fld_5346 crossref_primary_10_1016_j_advengsoft_2022_103191 crossref_primary_10_1109_ACCESS_2024_3448464 crossref_primary_10_1007_s40747_024_01447_7 crossref_primary_10_1016_j_jenvman_2024_120417 crossref_primary_10_1109_TASE_2024_3505846 crossref_primary_10_1007_s11424_023_2406_3 crossref_primary_10_1177_10996362231222553 crossref_primary_10_3390_pr12010189 crossref_primary_10_1016_j_asoc_2023_110101 crossref_primary_10_1109_ACCESS_2024_3426614 crossref_primary_10_1007_s00500_024_09814_9 crossref_primary_10_3390_drones9020118 crossref_primary_10_1016_j_asoc_2024_112306 crossref_primary_10_1109_ACCESS_2024_3404407 crossref_primary_10_3390_en17174473 crossref_primary_10_1080_15376494_2023_2214915 crossref_primary_10_1016_j_jenvman_2024_121430 crossref_primary_10_1016_j_eswa_2023_121783 crossref_primary_10_1016_j_ins_2022_12_077 crossref_primary_10_3390_app131810247 crossref_primary_10_1016_j_swevo_2022_101201 |
| Cites_doi | 10.1109/ACCESS.2019.2917899 10.1109/MCDM.2009.4938830 10.1109/CEC.2002.1007032 10.1080/01621459.1937.10503522 10.1109/TEVC.2012.2227145 10.1016/j.ejor.2015.06.071 10.1016/j.ins.2020.11.040 10.1137/S1052623496307510 10.1016/j.asoc.2021.107299 10.1109/TEVC.2020.2991040 10.1109/CEC.2007.4424867 10.1145/2001576.2001587 10.1162/106365600568202 10.1109/TEVC.2005.861417 10.1109/TEVC.2016.2592479 10.1016/j.asoc.2020.106968 10.1109/TEVC.2014.2373386 10.1145/1068009.1068047 10.1109/TEVC.2013.2296151 10.1109/TCYB.2016.2548239 10.1016/j.energy.2019.116478 10.1016/j.ins.2016.01.046 10.1109/TCYB.2014.2322602 10.1109/TSMC.2018.2875043 10.1109/TEVC.2018.2882166 10.1109/TEVC.2016.2631279 10.1109/TCYB.2014.2360923 10.1109/TEVC.2014.2339823 10.1109/TCYB.2017.2756874 10.1109/TEVC.2018.2879406 10.1109/TEVC.2014.2350987 10.1016/j.ins.2021.05.075 10.1109/ICNN.1995.488968 10.1109/TEVC.2016.2587749 10.1016/j.asoc.2018.03.020 10.1109/TEVC.2018.2855411 10.1109/TCYB.2019.2943928 10.1109/TEVC.2013.2262178 10.1016/j.swevo.2021.100910 10.1109/TCYB.2019.2922287 10.1007/s00500-011-0704-5 10.1109/4235.996017 10.1109/MCI.2017.2742868 10.1109/CEC.2002.1004388 10.1109/TCYB.2019.2949204 10.1016/j.asoc.2020.106947 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2022.108532 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2022_108532 S1568494622000680 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-fd48f5ca8c58870ff271c3ddf06c6079eabb0aa6bcdefb1f5355bf9659b14f773 |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791330600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 21:42:03 EST 2025 Sat Nov 29 06:59:09 EST 2025 Fri Feb 23 02:40:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective particle swarm optimization Evolutionary information Genetic operator Two-archive mechanism |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-fd48f5ca8c58870ff271c3ddf06c6079eabb0aa6bcdefb1f5355bf9659b14f773 |
| ORCID | 0000-0002-1707-6074 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2022_108532 crossref_primary_10_1016_j_asoc_2022_108532 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108532 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wu, Hu, Hu, Yen (b7) 2021; 51 Wang, Dong, Tang (b8) 2020; 50 C.R. Raquel, P.C. Naval, An effective use of crowding distance in multiobjective particle swarm optimization, in: GECCO 2005 - Genet. Evol. Comput. Conf., 2005, pp. 257–264. Hu, Yen (b18) 2013 Hu, Yen, Luo (b20) 2017; 47 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 - Int. Conf. Neural Networks, 1995, pp. 1942–1948. Friedman (b56) 1937; 32 Yang, Ding, Jin, Chai (b10) 2020; 24 Hu, Yen (b19) 2015; 19 Cheng, Zhan, Yao, Fan, Liu (b11) 2021; 99 M. Basseur, E.K. Burke, Indicator-based multi-objective local search, in: 2007 IEEE Congr. Evol. Comput., 2007, pp. 3100–3107. Li, Chen, Fu, Yao (b33) 2019; 23 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: 2002 Congr. Evol. Comput., 2002, pp. 825–830. Huband, Hingston, Barone, While (b51) 2006; 10 Jiang, Yang (b47) 2017; 21 Sharma, Vats, Saurabh (b25) 2021; 65 Wang, Pan, Shen, Zhao, Qiu (b26) 2021; 100 Kukkonen, Deb (b17) 2006 Zheng, Wang, Yang, Zhang (b6) 2020; 191 Han, Liu, Lu, Hou, Qiao (b4) 2019 Li, Yang, Liu (b21) 2014; 18 Li, Li, Tang, Yao (b29) 2014 S.Z. Martínez, C.A.C. Coello, A multi-objective particle swarm optimizer based on decomposition, in: Genet. Evol. Comput. Conf. GECCO’11, 2011, pp. 69–76. X.H. Zhang, H.Y. Meng, L.C. Jiao, Intelligent particle swarm optimization in multiobjective optimization, in: 2005 IEEE Congr. Evol. Comput., 2005, pp. 714–719. Ishibuchi, Setoguchi, Masuda, Nojima (b54) 2017; 21 Asafuddoula, Ray, Sarker (b48) 2015; 19 Cui, Qiao, Meng (b42) 2020 Lin, Li, Du, Chen, Ming (b15) 2015; 247 C.A. Coello Coello, M.S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, in: 2002 Congr. Evol. Comput., 2002, pp. 1051–1056. Dai (b30) 2019; 7 Das, Dennis (b52) 1998; 8 Li, Deb, Zhang, Kwong (b46) 2015; 19 Liu, Yen, Gong (b34) 2019; 23 Palakonda, Mallipeddi, Suganthan (b1) 2021; 555 Han, Zhang, Liu, Qiao (b5) 2018; 67 Li, Chang, Gu, Sheng, Wang (b23) 2021; 51 Zhu, Lin, Du, Liang, Wang, Zhu, Chen, Huang, Ming (b39) 2016; 345 Wang, Jiao, Yao (b31) 2015; 19 Zitzler, Deb, Thiele (b49) 2000; 8 Chen, Chen, Gong, Zhan, Zhang, Li, Tan (b53) 2015; 45 Lin, Liu, Zhu, Tang, Song, Chen, Coello, Wong, Zhang (b37) 2018; 22 Li, Zou, Yang, Zheng (b35) 2021; 574 Tian, Cheng, Zhang, Jin (b55) 2017; 12 Han, Lu, Zhang, Qiao (b22) 2018; 48 Cheng, Jin (b9) 2015; 45 Yang, Hu, Li (b24) 2021; 106 Yuan, Sun, Zhou (b13) 2016 Cai, Xiao, Li, Hu, Ishibuchi, Li (b3) 2021; 25 Sindhya, Ruuska, Haanpää, Miettinen (b40) 2011; 15 Praditwong, Yao (b28) 2006 A.J. Nebro, J.J. Durillo, G. Nieto, C.A.C. Coello, F. Luna, E. Alba, SMPSO: A new pso-based metaheuristic for multi-objective optimization, in: 2009 IEEE Symp. Comput. Intell. Multi-Criteria Decis., 2009, pp. 66–73. Yang, Li, Liu, Zheng (b16) 2013; 17 Deb, Pratap, Agarwal, Meyarivan (b45) 2002; 6 Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b38) 2020; 50 Wang, Wang, Liu, Guo, Liu (b32) 2018 Sun, Xue, Zhang, Yen (b2) 2019; 23 Li (10.1016/j.asoc.2022.108532_b23) 2021; 51 Li (10.1016/j.asoc.2022.108532_b33) 2019; 23 Wang (10.1016/j.asoc.2022.108532_b31) 2015; 19 10.1016/j.asoc.2022.108532_b36 Friedman (10.1016/j.asoc.2022.108532_b56) 1937; 32 Cai (10.1016/j.asoc.2022.108532_b3) 2021; 25 Cheng (10.1016/j.asoc.2022.108532_b9) 2015; 45 Cheng (10.1016/j.asoc.2022.108532_b11) 2021; 99 Zitzler (10.1016/j.asoc.2022.108532_b49) 2000; 8 Han (10.1016/j.asoc.2022.108532_b5) 2018; 67 Asafuddoula (10.1016/j.asoc.2022.108532_b48) 2015; 19 Tian (10.1016/j.asoc.2022.108532_b55) 2017; 12 Palakonda (10.1016/j.asoc.2022.108532_b1) 2021; 555 Sun (10.1016/j.asoc.2022.108532_b2) 2019; 23 Li (10.1016/j.asoc.2022.108532_b46) 2015; 19 Praditwong (10.1016/j.asoc.2022.108532_b28) 2006 Wang (10.1016/j.asoc.2022.108532_b8) 2020; 50 Wu (10.1016/j.asoc.2022.108532_b7) 2021; 51 Wang (10.1016/j.asoc.2022.108532_b26) 2021; 100 Wang (10.1016/j.asoc.2022.108532_b32) 2018 Cui (10.1016/j.asoc.2022.108532_b42) 2020 Jiang (10.1016/j.asoc.2022.108532_b47) 2017; 21 10.1016/j.asoc.2022.108532_b27 Das (10.1016/j.asoc.2022.108532_b52) 1998; 8 Chen (10.1016/j.asoc.2022.108532_b53) 2015; 45 Sindhya (10.1016/j.asoc.2022.108532_b40) 2011; 15 Ishibuchi (10.1016/j.asoc.2022.108532_b54) 2017; 21 Hu (10.1016/j.asoc.2022.108532_b18) 2013 Lin (10.1016/j.asoc.2022.108532_b37) 2018; 22 Li (10.1016/j.asoc.2022.108532_b21) 2014; 18 Han (10.1016/j.asoc.2022.108532_b22) 2018; 48 Hu (10.1016/j.asoc.2022.108532_b20) 2017; 47 Yang (10.1016/j.asoc.2022.108532_b24) 2021; 106 Han (10.1016/j.asoc.2022.108532_b4) 2019 10.1016/j.asoc.2022.108532_b14 Yang (10.1016/j.asoc.2022.108532_b16) 2013; 17 10.1016/j.asoc.2022.108532_b12 10.1016/j.asoc.2022.108532_b50 Li (10.1016/j.asoc.2022.108532_b35) 2021; 574 Hu (10.1016/j.asoc.2022.108532_b19) 2015; 19 Yang (10.1016/j.asoc.2022.108532_b10) 2020; 24 Xia (10.1016/j.asoc.2022.108532_b38) 2020; 50 Huband (10.1016/j.asoc.2022.108532_b51) 2006; 10 Sharma (10.1016/j.asoc.2022.108532_b25) 2021; 65 Liu (10.1016/j.asoc.2022.108532_b34) 2019; 23 Zhu (10.1016/j.asoc.2022.108532_b39) 2016; 345 Dai (10.1016/j.asoc.2022.108532_b30) 2019; 7 Li (10.1016/j.asoc.2022.108532_b29) 2014 10.1016/j.asoc.2022.108532_b44 Deb (10.1016/j.asoc.2022.108532_b45) 2002; 6 Kukkonen (10.1016/j.asoc.2022.108532_b17) 2006 10.1016/j.asoc.2022.108532_b43 Yuan (10.1016/j.asoc.2022.108532_b13) 2016 Lin (10.1016/j.asoc.2022.108532_b15) 2015; 247 10.1016/j.asoc.2022.108532_b41 Zheng (10.1016/j.asoc.2022.108532_b6) 2020; 191 |
| References_xml | – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b49 article-title: Comparison of multiobjective evolutionary algorithms: empirical results publication-title: Evol. Comput. – volume: 50 start-page: 4862 year: 2020 end-page: 4875 ident: b38 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans. Cybern. – volume: 19 start-page: 694 year: 2015 end-page: 716 ident: b46 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 21 year: 2021 end-page: 34 ident: b3 article-title: A grid-based inverted generational distance for multi/many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 48 start-page: 3067 year: 2018 end-page: 3079 ident: b22 article-title: Adaptive gradient multiobjective particle swarm optimization publication-title: IEEE Trans. Cybern. – reference: A.J. Nebro, J.J. Durillo, G. Nieto, C.A.C. Coello, F. Luna, E. Alba, SMPSO: A new pso-based metaheuristic for multi-objective optimization, in: 2009 IEEE Symp. Comput. Intell. Multi-Criteria Decis., 2009, pp. 66–73. – volume: 19 start-page: 445 year: 2015 end-page: 460 ident: b48 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. – reference: M. Basseur, E.K. Burke, Indicator-based multi-objective local search, in: 2007 IEEE Congr. Evol. Comput., 2007, pp. 3100–3107. – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: b56 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Amer. Statist. Assoc. – volume: 22 start-page: 32 year: 2018 end-page: 46 ident: b37 article-title: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 191 year: 2020 ident: b6 article-title: Multi-objective combustion optimization based on data-driven hybrid strategy publication-title: Energy – start-page: 3412 year: 2020 end-page: 3417 ident: b42 article-title: Multi-stage multi-objective particle swarm optimization algorithm based on the evolutionary information of population publication-title: 2020 Chinese Autom. Congr – volume: 247 start-page: 732 year: 2015 end-page: 744 ident: b15 article-title: A novel multi-objective particle swarm optimization with multiple search strategies publication-title: European J. Oper. Res. – reference: X.H. Zhang, H.Y. Meng, L.C. Jiao, Intelligent particle swarm optimization in multiobjective optimization, in: 2005 IEEE Congr. Evol. Comput., 2005, pp. 714–719. – volume: 45 start-page: 1851 year: 2015 end-page: 1863 ident: b53 article-title: An evolutionary algorithm with double-level archives for multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: b51 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b45 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b55 article-title: PlatEMO: A Matlab platform for evolutionary multi-objective optimization publication-title: IEEE Comput. Intell. Mag. – volume: 17 start-page: 721 year: 2013 end-page: 736 ident: b16 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 660 year: 2019 end-page: 674 ident: b34 article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies publication-title: IEEE Trans. Evol. Comput. – start-page: 2869 year: 2014 end-page: 2876 ident: b29 article-title: An improved two archive algorithm for many-objective optimization publication-title: 2014 IEEE Congr. Evol. Comput – volume: 7 start-page: 79277 year: 2019 end-page: 79286 ident: b30 article-title: Two-archive evolutionary algorithm based on multi-search strategy for many-objective optimization publication-title: IEEE Access. – volume: 45 start-page: 191 year: 2015 end-page: 204 ident: b9 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. – volume: 51 start-page: 3738 year: 2021 end-page: 3751 ident: b7 article-title: Adaptive multiobjective particle swarm optimization based on evolutionary state estimation publication-title: IEEE Trans. Cybern. – volume: 67 start-page: 467 year: 2018 end-page: 478 ident: b5 article-title: Multiobjective design of fuzzy neural network controller for wastewater treatment process publication-title: Appl. Soft Comput. – start-page: 181 year: 2013 end-page: 188 ident: b18 article-title: Density estimation for selecting leaders and mantaining archive in MOPSO publication-title: 2013 IEEE Congr. Evol. Comput – reference: S.Z. Martínez, C.A.C. Coello, A multi-objective particle swarm optimizer based on decomposition, in: Genet. Evol. Comput. Conf. GECCO’11, 2011, pp. 69–76. – volume: 345 start-page: 177 year: 2016 end-page: 198 ident: b39 article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm publication-title: Inf. Sci. (Ny). – start-page: 1179 year: 2006 end-page: 1186 ident: b17 article-title: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems publication-title: 2006 IEEE Congr. Evol. Comput – volume: 100 year: 2021 ident: b26 article-title: Balancing convergence and diversity in resource allocation strategy for decomposition-based multi-objective evolutionary algorithm publication-title: Appl. Soft Comput. – volume: 23 start-page: 748 year: 2019 end-page: 761 ident: b2 article-title: A new two-stage evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 574 start-page: 413 year: 2021 end-page: 430 ident: b35 article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization publication-title: Inf. Sci. (Ny). – volume: 555 start-page: 164 year: 2021 end-page: 197 ident: b1 article-title: An ensemble approach with external archive for multi- and many-objective optimization with adaptive mating mechanism and two-level environmental selection publication-title: Inf. Sci. (Ny). – start-page: 2064 year: 2016 end-page: 2070 ident: b13 article-title: Multi-objective random drift particle swarm optimization algorithm with adaptive grids publication-title: 2016 IEEE Congr. Evol. Comput – volume: 51 start-page: 2055 year: 2021 end-page: 2067 ident: b23 article-title: On the norm of dominant difference for many-objective particle swarm optimization publication-title: IEEE Trans. Cybern. – volume: 21 start-page: 169 year: 2017 end-page: 190 ident: b54 article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 631 year: 1998 end-page: 657 ident: b52 article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. – volume: 19 start-page: 1 year: 2015 end-page: 18 ident: b19 article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system publication-title: IEEE Trans. Evol. Comput. – start-page: 286 year: 2006 end-page: 291 ident: b28 article-title: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm publication-title: 2006 Int. Conf. Comput. Intell. Secur – volume: 65 year: 2021 ident: b25 article-title: Diversity preference-based many-objective particle swarm optimization using reference-lines-based framework publication-title: Swarm Evol. Comput. – reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: 2002 Congr. Evol. Comput., 2002, pp. 825–830. – volume: 50 start-page: 5338 year: 2020 end-page: 5350 ident: b8 article-title: Multiobjective differential evolution with personal archive and biased self-adaptive mutation selection publication-title: IEEE Trans. Syst. Man, Cybern. Syst. – volume: 15 start-page: 2041 year: 2011 end-page: 2055 ident: b40 article-title: A new hybrid mutation operator for multiobjective optimization with differential evolution publication-title: Soft Comput. – volume: 21 start-page: 329 year: 2017 end-page: 346 ident: b47 article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 47 start-page: 1446 year: 2017 end-page: 1459 ident: b20 article-title: Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system publication-title: IEEE Trans. Cybern. – volume: 24 start-page: 409 year: 2020 end-page: 423 ident: b10 article-title: Offline data-driven multiobjective optimization: Knowledge transfer between surrogates and generation of final solutions publication-title: IEEE Trans. Evol. Comput. – volume: 99 year: 2021 ident: b11 article-title: Large-scale many-objective particle swarm optimizer with fast convergence based on alpha-stable mutation and logistic function publication-title: Appl. Soft Comput. – volume: 18 start-page: 348 year: 2014 end-page: 365 ident: b21 article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 106 year: 2021 ident: b24 article-title: A vector angles-based many-objective particle swarm optimization algorithm using archive publication-title: Appl. Soft Comput. – volume: 19 start-page: 524 year: 2015 end-page: 541 ident: b31 article-title: Two_Arch2: AN improved two-archive algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 303 year: 2019 end-page: 315 ident: b33 article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 20 year: 2018 end-page: 24 ident: b32 article-title: Two-archive based evolutionary algorithm using adaptive reference direction and decomposition for many-objective optimization publication-title: 14th Int. Conf. Comput. Intell. Secur – start-page: 1 year: 2019 end-page: 11 ident: b4 article-title: Dynamic MOPSO-based optimal control for wastewater treatment process publication-title: IEEE Trans. Cybern. – reference: C.A. Coello Coello, M.S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, in: 2002 Congr. Evol. Comput., 2002, pp. 1051–1056. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 - Int. Conf. Neural Networks, 1995, pp. 1942–1948. – reference: C.R. Raquel, P.C. Naval, An effective use of crowding distance in multiobjective particle swarm optimization, in: GECCO 2005 - Genet. Evol. Comput. Conf., 2005, pp. 257–264. – volume: 7 start-page: 79277 year: 2019 ident: 10.1016/j.asoc.2022.108532_b30 article-title: Two-archive evolutionary algorithm based on multi-search strategy for many-objective optimization publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2917899 – ident: 10.1016/j.asoc.2022.108532_b12 doi: 10.1109/MCDM.2009.4938830 – ident: 10.1016/j.asoc.2022.108532_b50 doi: 10.1109/CEC.2002.1007032 – volume: 32 start-page: 675 year: 1937 ident: 10.1016/j.asoc.2022.108532_b56 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1937.10503522 – volume: 24 start-page: 409 year: 2020 ident: 10.1016/j.asoc.2022.108532_b10 article-title: Offline data-driven multiobjective optimization: Knowledge transfer between surrogates and generation of final solutions publication-title: IEEE Trans. Evol. Comput. – volume: 17 start-page: 721 year: 2013 ident: 10.1016/j.asoc.2022.108532_b16 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2227145 – volume: 247 start-page: 732 year: 2015 ident: 10.1016/j.asoc.2022.108532_b15 article-title: A novel multi-objective particle swarm optimization with multiple search strategies publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2015.06.071 – volume: 555 start-page: 164 year: 2021 ident: 10.1016/j.asoc.2022.108532_b1 article-title: An ensemble approach with external archive for multi- and many-objective optimization with adaptive mating mechanism and two-level environmental selection publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2020.11.040 – volume: 8 start-page: 631 year: 1998 ident: 10.1016/j.asoc.2022.108532_b52 article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623496307510 – volume: 106 year: 2021 ident: 10.1016/j.asoc.2022.108532_b24 article-title: A vector angles-based many-objective particle swarm optimization algorithm using archive publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107299 – volume: 25 start-page: 21 year: 2021 ident: 10.1016/j.asoc.2022.108532_b3 article-title: A grid-based inverted generational distance for multi/many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2991040 – ident: 10.1016/j.asoc.2022.108532_b36 doi: 10.1109/CEC.2007.4424867 – ident: 10.1016/j.asoc.2022.108532_b43 doi: 10.1145/2001576.2001587 – volume: 8 start-page: 173 year: 2000 ident: 10.1016/j.asoc.2022.108532_b49 article-title: Comparison of multiobjective evolutionary algorithms: empirical results publication-title: Evol. Comput. doi: 10.1162/106365600568202 – volume: 10 start-page: 477 year: 2006 ident: 10.1016/j.asoc.2022.108532_b51 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.861417 – volume: 21 start-page: 329 year: 2017 ident: 10.1016/j.asoc.2022.108532_b47 article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2592479 – volume: 100 year: 2021 ident: 10.1016/j.asoc.2022.108532_b26 article-title: Balancing convergence and diversity in resource allocation strategy for decomposition-based multi-objective evolutionary algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106968 – start-page: 1179 year: 2006 ident: 10.1016/j.asoc.2022.108532_b17 article-title: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems – start-page: 2064 year: 2016 ident: 10.1016/j.asoc.2022.108532_b13 article-title: Multi-objective random drift particle swarm optimization algorithm with adaptive grids – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2022.108532_b4 article-title: Dynamic MOPSO-based optimal control for wastewater treatment process publication-title: IEEE Trans. Cybern. – volume: 19 start-page: 694 year: 2015 ident: 10.1016/j.asoc.2022.108532_b46 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – ident: 10.1016/j.asoc.2022.108532_b14 doi: 10.1145/1068009.1068047 – volume: 19 start-page: 1 year: 2015 ident: 10.1016/j.asoc.2022.108532_b19 article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2296151 – volume: 47 start-page: 1446 year: 2017 ident: 10.1016/j.asoc.2022.108532_b20 article-title: Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2548239 – volume: 191 year: 2020 ident: 10.1016/j.asoc.2022.108532_b6 article-title: Multi-objective combustion optimization based on data-driven hybrid strategy publication-title: Energy doi: 10.1016/j.energy.2019.116478 – volume: 345 start-page: 177 year: 2016 ident: 10.1016/j.asoc.2022.108532_b39 article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2016.01.046 – volume: 45 start-page: 191 year: 2015 ident: 10.1016/j.asoc.2022.108532_b9 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2322602 – volume: 50 start-page: 5338 year: 2020 ident: 10.1016/j.asoc.2022.108532_b8 article-title: Multiobjective differential evolution with personal archive and biased self-adaptive mutation selection publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2018.2875043 – volume: 23 start-page: 748 year: 2019 ident: 10.1016/j.asoc.2022.108532_b2 article-title: A new two-stage evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2882166 – volume: 22 start-page: 32 year: 2018 ident: 10.1016/j.asoc.2022.108532_b37 article-title: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2631279 – volume: 45 start-page: 1851 year: 2015 ident: 10.1016/j.asoc.2022.108532_b53 article-title: An evolutionary algorithm with double-level archives for multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2360923 – ident: 10.1016/j.asoc.2022.108532_b41 – start-page: 3412 year: 2020 ident: 10.1016/j.asoc.2022.108532_b42 article-title: Multi-stage multi-objective particle swarm optimization algorithm based on the evolutionary information of population – start-page: 20 year: 2018 ident: 10.1016/j.asoc.2022.108532_b32 article-title: Two-archive based evolutionary algorithm using adaptive reference direction and decomposition for many-objective optimization – volume: 19 start-page: 445 year: 2015 ident: 10.1016/j.asoc.2022.108532_b48 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2339823 – start-page: 2869 year: 2014 ident: 10.1016/j.asoc.2022.108532_b29 article-title: An improved two archive algorithm for many-objective optimization – volume: 48 start-page: 3067 year: 2018 ident: 10.1016/j.asoc.2022.108532_b22 article-title: Adaptive gradient multiobjective particle swarm optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2756874 – volume: 23 start-page: 660 year: 2019 ident: 10.1016/j.asoc.2022.108532_b34 article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2879406 – volume: 19 start-page: 524 year: 2015 ident: 10.1016/j.asoc.2022.108532_b31 article-title: Two_Arch2: AN improved two-archive algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2350987 – start-page: 181 year: 2013 ident: 10.1016/j.asoc.2022.108532_b18 article-title: Density estimation for selecting leaders and mantaining archive in MOPSO – volume: 574 start-page: 413 year: 2021 ident: 10.1016/j.asoc.2022.108532_b35 article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2021.05.075 – ident: 10.1016/j.asoc.2022.108532_b27 doi: 10.1109/ICNN.1995.488968 – volume: 21 start-page: 169 year: 2017 ident: 10.1016/j.asoc.2022.108532_b54 article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2587749 – volume: 67 start-page: 467 year: 2018 ident: 10.1016/j.asoc.2022.108532_b5 article-title: Multiobjective design of fuzzy neural network controller for wastewater treatment process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.020 – volume: 23 start-page: 303 year: 2019 ident: 10.1016/j.asoc.2022.108532_b33 article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2855411 – volume: 50 start-page: 4862 year: 2020 ident: 10.1016/j.asoc.2022.108532_b38 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2943928 – volume: 18 start-page: 348 year: 2014 ident: 10.1016/j.asoc.2022.108532_b21 article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2262178 – volume: 65 year: 2021 ident: 10.1016/j.asoc.2022.108532_b25 article-title: Diversity preference-based many-objective particle swarm optimization using reference-lines-based framework publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100910 – volume: 51 start-page: 2055 year: 2021 ident: 10.1016/j.asoc.2022.108532_b23 article-title: On the norm of dominant difference for many-objective particle swarm optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2922287 – volume: 15 start-page: 2041 year: 2011 ident: 10.1016/j.asoc.2022.108532_b40 article-title: A new hybrid mutation operator for multiobjective optimization with differential evolution publication-title: Soft Comput. doi: 10.1007/s00500-011-0704-5 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.asoc.2022.108532_b45 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – start-page: 286 year: 2006 ident: 10.1016/j.asoc.2022.108532_b28 article-title: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm – volume: 12 start-page: 73 year: 2017 ident: 10.1016/j.asoc.2022.108532_b55 article-title: PlatEMO: A Matlab platform for evolutionary multi-objective optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – ident: 10.1016/j.asoc.2022.108532_b44 doi: 10.1109/CEC.2002.1004388 – volume: 51 start-page: 3738 year: 2021 ident: 10.1016/j.asoc.2022.108532_b7 article-title: Adaptive multiobjective particle swarm optimization based on evolutionary state estimation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2949204 – volume: 99 year: 2021 ident: 10.1016/j.asoc.2022.108532_b11 article-title: Large-scale many-objective particle swarm optimizer with fast convergence based on alpha-stable mutation and logistic function publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106947 |
| SSID | ssj0016928 |
| Score | 2.6149728 |
| Snippet | As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108532 |
| SubjectTerms | Evolutionary information Genetic operator Multi-objective particle swarm optimization Two-archive mechanism |
| Title | A multi-objective particle swarm optimization algorithm based on two-archive mechanism |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.108532 |
| Volume | 119 |
| WOSCitedRecordID | wos000791330600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuUF6ihSIfuEWukmwSx8dVVcRLFRIFLafIdmzIajdZ7Wb7-PcdP5KGFlWAxCWKRvF6NZ81Ho-_mUHojYhTGWVcEtj8JEkoj4lIVURKagoWqYjnwnYt-URPTvLZjH0ejT52uTBnC1rX-cUFW_1XqEEGYJvU2b-Au_9REMA7gA5PgB2efwT81JEESSPmzpgFK_9VsDnn62XQgJVY-vTLgC9-NOuq_bkMzH5W2ruD84ZwV5A2WCqTGdyVGeyq1XrPdQMm3HLSt223AVqytSUIfAfR5UBs6LNGPqv6WGvF3bXPttaqGoYf4OR6zVqxMbFbeTHOjGY5SZgPLiony2lMWOYatPS219nLW3bchRTmhxyW6KGZ1nAhUx8J_bU-9hczmZkrtllHeXgP7cQ0ZfkY7UzfH88-9JdKGbOtdvs_53OoHN3v5ky_91MGvsfpLnroDw146mB8jEaqfoIedQ05sLfPT9G3Kb6BPe6wxxZ7PMQe99hjiz0G0QB73GP_DH19e3x69I74xhlETsKwJbpMcp1KnssU9pBQ65hGclKWOsxkFlKmuBAh55mQpdIi0ik4nUKb0pIiSjSlk-doXDe1eoEw-DdwouGcaqqTlJWMcVXCq9ZUqIxleyjq1FRIX1XeNDdZFB19cF4Y1RZGtYVT7R4K-jErV1Plzq_TTvuF9wqdt1fAYrlj3P4_jnuJHlyv81do3K636gDdl2dttVm_9mvqCoMFiY8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+particle+swarm+optimization+algorithm+based+on+two-archive+mechanism&rft.jtitle=Applied+soft+computing&rft.au=Cui%2C+Yingying&rft.au=Meng%2C+Xi&rft.au=Qiao%2C+Junfei&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=119&rft_id=info:doi/10.1016%2Fj.asoc.2022.108532&rft.externalDocID=S1568494622000680 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |