Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information

Deep learning-based process monitoring has achieved remarkable progress. Generally, a deep model is empirically selected before the data features are learned. In this study, the interpretability and suitability of stacked denoising autoencoder (SDAE) in process monitoring territory are theoretically...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 95; s. 106525
Hlavní autoři: Yu, Jianbo, Yan, Xuefeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2020
Témata:
ISSN:1568-4946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep learning-based process monitoring has achieved remarkable progress. Generally, a deep model is empirically selected before the data features are learned. In this study, the interpretability and suitability of stacked denoising autoencoder (SDAE) in process monitoring territory are theoretically analyzed and validated. Considering that the data will show different feature representations at different scales, such as overall outline, local information, and microscopic details, this study utilizes the concept of multiscale analysis to mine the feature information of raw data deeply in different scales. The multiscale analysis is performed on the basis of agglomerative hierarchical clustering and silhouette coefficient, which makes the analysis data characteristics-based and intelligently abandons the intervention of manual prior knowledge. Then, the SDAE models are established under each scale to learn the high-order and robust features from the data with noise and fluctuation, and all monitoring results of the different scales are integrated using the Bayesian inference. Finally, given the temporal information in sequence data, the state representation of previous events is embedded into the current decision through a sliding window. The numerical process, benchmark Tennessee Eastman and real steel plate process are used to analyze the superiority of the proposed method (MSDAE-TP) over other deep learning-based monitoring methods. •SDAE is employed after theoretically analysis to establish a robust model to perform fault detection.•Multiscale analysis is employed based on agglomerative hierarchical clustering to achieve a more reasonable decomposition.•Temporal information is considered into the current statistical indicator to provide a comprehensive judgment.
AbstractList Deep learning-based process monitoring has achieved remarkable progress. Generally, a deep model is empirically selected before the data features are learned. In this study, the interpretability and suitability of stacked denoising autoencoder (SDAE) in process monitoring territory are theoretically analyzed and validated. Considering that the data will show different feature representations at different scales, such as overall outline, local information, and microscopic details, this study utilizes the concept of multiscale analysis to mine the feature information of raw data deeply in different scales. The multiscale analysis is performed on the basis of agglomerative hierarchical clustering and silhouette coefficient, which makes the analysis data characteristics-based and intelligently abandons the intervention of manual prior knowledge. Then, the SDAE models are established under each scale to learn the high-order and robust features from the data with noise and fluctuation, and all monitoring results of the different scales are integrated using the Bayesian inference. Finally, given the temporal information in sequence data, the state representation of previous events is embedded into the current decision through a sliding window. The numerical process, benchmark Tennessee Eastman and real steel plate process are used to analyze the superiority of the proposed method (MSDAE-TP) over other deep learning-based monitoring methods. •SDAE is employed after theoretically analysis to establish a robust model to perform fault detection.•Multiscale analysis is employed based on agglomerative hierarchical clustering to achieve a more reasonable decomposition.•Temporal information is considered into the current statistical indicator to provide a comprehensive judgment.
ArticleNumber 106525
Author Yan, Xuefeng
Yu, Jianbo
Author_xml – sequence: 1
  givenname: Jianbo
  surname: Yu
  fullname: Yu, Jianbo
– sequence: 2
  givenname: Xuefeng
  orcidid: 0000-0001-5622-8686
  surname: Yan
  fullname: Yan, Xuefeng
  email: xfyan@ecust.edu.cn
BookMark eNp9kEtOwzAQhr0oEm3hAqx8gZTYadxEYoMqXlIRG1hbjj1ppyR2ZbtFvQqnxaGsWHTjx2i-f-xvQkbWWSDkhuUzljNxu52p4PSM53woiJKXIzJmpaiyeT0Xl2QSwjZPjTWvxuT7dd9FDFp1QNFG6Dpcg420ValODUTQEZ2l4Rgi9LRRAQxNd7Ved64HryIegG4wnbzeYMqhutunXo92TfdhWENU-jNhBqzD34raRwdWOwOefmHc0JS9cz7BaFvnezXMvCIXreoCXP_tU_Lx-PC-fM5Wb08vy_tVpos8j1mry1aYeW3qRglV8lYIUwpeGF5CUQk256qBpii4Zo1gzDTaVE29SJ2iKHWxKKaEn3K1dyF4aOXOY6_8UbJcDkblVg5G5WBUnowmqPoHaYy_z45eYXcevTuhkD51SOZk0JhsgEGfbEvj8Bz-A-XQm-c
CitedBy_id crossref_primary_10_3390_act13110440
crossref_primary_10_1016_j_ins_2021_12_106
crossref_primary_10_1109_ACCESS_2025_3596859
crossref_primary_10_1016_j_conengprac_2022_105156
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_1016_j_asoc_2024_111594
crossref_primary_10_1007_s42243_024_01197_3
crossref_primary_10_1016_j_jii_2021_100216
crossref_primary_10_1016_j_asoc_2025_113407
crossref_primary_10_3390_machines13060507
crossref_primary_10_1109_JIOT_2024_3496927
crossref_primary_10_1007_s10845_023_02103_6
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1016_j_ins_2022_05_024
crossref_primary_10_3390_electronics13234622
crossref_primary_10_1016_j_compind_2021_103394
crossref_primary_10_1016_j_psep_2021_07_002
crossref_primary_10_1109_ACCESS_2023_3299852
crossref_primary_10_1109_TIM_2025_3574904
crossref_primary_10_1016_j_ijrefrig_2023_09_002
crossref_primary_10_1016_j_artint_2023_104012
crossref_primary_10_1016_j_asoc_2024_111896
crossref_primary_10_1016_j_asoc_2021_107382
crossref_primary_10_1155_2022_1507630
crossref_primary_10_1177_10775463231217530
crossref_primary_10_3390_app11167733
crossref_primary_10_1109_TCYB_2022_3185588
Cites_doi 10.1109/TII.2019.2896665
10.1016/j.compchemeng.2019.106515
10.1109/TII.2017.2690940
10.1016/j.neucom.2018.12.041
10.1016/j.jprocont.2015.06.007
10.1016/j.isatra.2018.10.011
10.1016/0098-1354(93)80018-I
10.1016/S0169-7439(03)00063-7
10.1109/TIE.2017.2745452
10.1021/acs.iecr.9b02391
10.1016/S0959-1524(97)80001-7
10.1109/TNNLS.2018.2889776
10.1016/j.asoc.2013.09.024
10.1016/j.asoc.2019.105526
10.1016/j.asoc.2018.12.029
10.1021/acs.iecr.7b00949
10.1002/cjce.23249
10.1109/TII.2019.2902274
10.1016/j.asoc.2017.09.019
10.1109/TASE.2012.2230628
10.1016/j.jprocont.2016.01.001
10.1016/j.chemolab.2019.03.012
10.1016/S0098-1354(01)00683-4
10.1109/TPAMI.2017.2700381
10.1016/j.jprocont.2006.11.002
10.1016/j.arcontrol.2012.09.004
10.1021/acs.iecr.7b01721
10.1109/TIE.2018.2873100
10.1109/TIE.2018.2844805
10.1038/nature14539
10.1016/j.jprocont.2015.04.014
10.1109/TIE.2015.2466557
10.1016/j.asoc.2019.106060
10.1016/0377-0427(87)90125-7
10.1126/science.1127647
10.1109/NAFIPS.2010.5548298
10.1016/j.chemolab.2017.09.021
10.1016/j.ces.2003.09.012
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106525
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2020_106525
S1568494620304646
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-fc5f6d49d9ba6a52f66d5623d25e386142abeb332c1b611dbcd8b97a52635c373
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576772600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:07:00 EST 2025
Tue Nov 18 22:42:29 EST 2025
Sun Apr 06 06:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Process monitoring
Stacked denoising autoencoder
Robust features
Multiscale analysis
Temporal information
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-fc5f6d49d9ba6a52f66d5623d25e386142abeb332c1b611dbcd8b97a52635c373
ORCID 0000-0001-5622-8686
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106525
crossref_citationtrail_10_1016_j_asoc_2020_106525
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106525
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Krizhevsky, Sutskever, Hinton (b23) 2013; 60
Kim, Lee (b11) 2003; 67
Md Nor, Hussain, Che Hassan (b18) 2017; 61
M. Buscema, S. Terzi, W. Tastle, A new meta-classifier, in: 2010 Annual Meeting of the North American Fuzzy Information Processing Society, 2010, pp. 1–7.
Jiang, Yan (b41) 2015; 32
Park, Kim, Kim (b24) 2018; 40
Pan, Chen, Zhou, Wang, He (b39) 2019; 15
Wang, Si, Huang, Lou (b1) 2018; 96
Yu, Yan (b32) 2018; 57
Zhang, Hao, Chen, Ding, Peng (b3) 2015; 33
Zhu, Cheng, Zhang, Wu, Shao (b27) 2020; 88
Liu, Jia, Vong, Bu, Han, Tang (b28) 2017; 13
Yu, Yan (b30) 2019
Lecun, Bengio, Hinton (b43) 2015; 521
Qin, Yu (b5) 2007; 17
Wang, Mao (b16) 2019; 76
Huang, Yan (b42) 2016; 39
Vincent, Larochelle, Bengio, Manzagol (b37) 2008
Ge (b4) 2017; 171
Ma, Sun, Chen (b25) 2018
Li, Zhao, Gao (b19) 2018; 65
Cheng, He, Zhao (b33) 2019; 129
Yu, Zhao (b17) 2018
Haidong, Junsheng, Hongkai, Yu, Zhantao (b36) 2019
Lee, Yoo, Sang, Vanrolleghem, Lee (b12) 2004; 59
Liu, Qin, Chai (b14) 2013; 10
Iqbal, Maniak, Doctor, Karyotis (b35) 2019; 15
Jiang, He, Yan, Xie (b40) 2019; 66
Ruder (b44) 2016
Xiao, Yan, Farajtabar, Song, Yang, Zha (b22) 2019; 30
Lou, Wang (b13) 2017; 56
Jiang, Yan, Huang (b6) 2019; 58
Qin (b7) 2012; 36
Deng, Tian, Chen, Harris (b10) 2018
Jiang, Song, Ge, Chen (b45) 2017; 56
Zhou, Guo, Celler, Su (b15) 2014; 14
Yan, Yan (b31) 2019; 81
Chen, Yang, Peng, Dan, Li, Gui (b20) 2019; 66
Hinton, Salakhutdinov (b21) 2006; 313
Plakias, Boutalis (b34) 2019; 332
Kutyniok, Labate (b38) 2012
Jiang, Yan, Huang (b47) 2015; 63
Downs, Vogel (b48) 1993; 17
Kano, Hasebe, Hashimoto, Ohno (b8) 2001; 25
Yu, Yan (b26) 2018; 84
Quiñones Grueiro, Prieto-Moreno, Verde, Llanes-Santiago (b2) 2019; 189
Rousseeuw (b46) 1987; 20
Costilla-Reyes, Scully, Ozanyan (b29) 2017
Dayal, Macgregor (b9) 1997; 7
Wang (10.1016/j.asoc.2020.106525_b16) 2019; 76
Jiang (10.1016/j.asoc.2020.106525_b40) 2019; 66
Ruder (10.1016/j.asoc.2020.106525_b44) 2016
Yu (10.1016/j.asoc.2020.106525_b32) 2018; 57
Chen (10.1016/j.asoc.2020.106525_b20) 2019; 66
Quiñones Grueiro (10.1016/j.asoc.2020.106525_b2) 2019; 189
Lou (10.1016/j.asoc.2020.106525_b13) 2017; 56
Ma (10.1016/j.asoc.2020.106525_b25) 2018
Pan (10.1016/j.asoc.2020.106525_b39) 2019; 15
Vincent (10.1016/j.asoc.2020.106525_b37) 2008
Ge (10.1016/j.asoc.2020.106525_b4) 2017; 171
Deng (10.1016/j.asoc.2020.106525_b10) 2018
Lee (10.1016/j.asoc.2020.106525_b12) 2004; 59
Kano (10.1016/j.asoc.2020.106525_b8) 2001; 25
Downs (10.1016/j.asoc.2020.106525_b48) 1993; 17
Kim (10.1016/j.asoc.2020.106525_b11) 2003; 67
Yu (10.1016/j.asoc.2020.106525_b26) 2018; 84
Yan (10.1016/j.asoc.2020.106525_b31) 2019; 81
Md Nor (10.1016/j.asoc.2020.106525_b18) 2017; 61
Wang (10.1016/j.asoc.2020.106525_b1) 2018; 96
Zhang (10.1016/j.asoc.2020.106525_b3) 2015; 33
10.1016/j.asoc.2020.106525_b49
Costilla-Reyes (10.1016/j.asoc.2020.106525_b29) 2017
Yu (10.1016/j.asoc.2020.106525_b17) 2018
Liu (10.1016/j.asoc.2020.106525_b28) 2017; 13
Jiang (10.1016/j.asoc.2020.106525_b45) 2017; 56
Cheng (10.1016/j.asoc.2020.106525_b33) 2019; 129
Zhou (10.1016/j.asoc.2020.106525_b15) 2014; 14
Qin (10.1016/j.asoc.2020.106525_b5) 2007; 17
Jiang (10.1016/j.asoc.2020.106525_b41) 2015; 32
Park (10.1016/j.asoc.2020.106525_b24) 2018; 40
Yu (10.1016/j.asoc.2020.106525_b30) 2019
Lecun (10.1016/j.asoc.2020.106525_b43) 2015; 521
Zhu (10.1016/j.asoc.2020.106525_b27) 2020; 88
Jiang (10.1016/j.asoc.2020.106525_b47) 2015; 63
Dayal (10.1016/j.asoc.2020.106525_b9) 1997; 7
Rousseeuw (10.1016/j.asoc.2020.106525_b46) 1987; 20
Qin (10.1016/j.asoc.2020.106525_b7) 2012; 36
Plakias (10.1016/j.asoc.2020.106525_b34) 2019; 332
Xiao (10.1016/j.asoc.2020.106525_b22) 2019; 30
Huang (10.1016/j.asoc.2020.106525_b42) 2016; 39
Jiang (10.1016/j.asoc.2020.106525_b6) 2019; 58
Kutyniok (10.1016/j.asoc.2020.106525_b38) 2012
Liu (10.1016/j.asoc.2020.106525_b14) 2013; 10
Li (10.1016/j.asoc.2020.106525_b19) 2018; 65
Haidong (10.1016/j.asoc.2020.106525_b36) 2019
Iqbal (10.1016/j.asoc.2020.106525_b35) 2019; 15
Krizhevsky (10.1016/j.asoc.2020.106525_b23) 2013; 60
Hinton (10.1016/j.asoc.2020.106525_b21) 2006; 313
References_xml – volume: 59
  start-page: 223
  year: 2004
  end-page: 234
  ident: b12
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: b48
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
– year: 2019
  ident: b30
  article-title: Whole process monitoring based on unstable neuron output information in hidden layers of deep belief network
  publication-title: IEEE Trans. Cybern.
– volume: 33
  start-page: 112
  year: 2015
  end-page: 126
  ident: b3
  article-title: A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches
  publication-title: J. Process Control
– volume: 171
  start-page: 16
  year: 2017
  end-page: 25
  ident: b4
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 15
  start-page: 5119
  year: 2019
  end-page: 5128
  ident: b39
  article-title: A novel deep learning network via multiscale inner product with locally connected feature extraction for intelligent fault detection
  publication-title: IEEE Trans. Ind. Inf.
– volume: 313
  start-page: 504
  year: 2006
  ident: b21
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 10
  start-page: 687
  year: 2013
  end-page: 698
  ident: b14
  article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 20
  year: 1987
  ident: b46
  article-title: Silhouettes : A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– volume: 30
  start-page: 3124
  year: 2019
  end-page: 3136
  ident: b22
  article-title: Learning time series associated event sequences with recurrent point process networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 63
  start-page: 377
  year: 2015
  end-page: 386
  ident: b47
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Trans. Ind. Electron.
– volume: 40
  start-page: 945
  year: 2018
  end-page: 957
  ident: b24
  article-title: Retrieval of sentence sequences for an image stream via coherence recurrent convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 1103
  year: 2001
  end-page: 1113
  ident: b8
  article-title: A new multivariate statistical process monitoring method using principal component analysis
  publication-title: Comput. Chem. Eng.
– volume: 88
  year: 2020
  ident: b27
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
– year: 2012
  ident: b38
  article-title: Shearlets: Multiscale Analysis for Multivariate Data
– reference: M. Buscema, S. Terzi, W. Tastle, A new meta-classifier, in: 2010 Annual Meeting of the North American Fuzzy Information Processing Society, 2010, pp. 1–7.
– start-page: 1
  year: 2017
  ident: b29
  article-title: Deep neural networks for learning spatio-temporal features from tomography sensors
  publication-title: IEEE Trans. Ind. Electron.
– volume: 332
  start-page: 396
  year: 2019
  end-page: 405
  ident: b34
  article-title: Exploiting the generative adversarial framework for one-class multi-dimensional fault detection
  publication-title: Neurocomputing
– volume: 521
  start-page: 436
  year: 2015
  ident: b43
  article-title: Deep learning
  publication-title: Nature
– volume: 65
  start-page: 2683
  year: 2018
  end-page: 2692
  ident: b19
  article-title: Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring
  publication-title: IEEE Trans. Ind. Electron.
– volume: 76
  start-page: 505
  year: 2019
  end-page: 516
  ident: b16
  article-title: Outlier detection based on Gaussian process with application to industrial processes
  publication-title: Appl. Soft Comput.
– volume: 67
  start-page: 109
  year: 2003
  end-page: 123
  ident: b11
  article-title: Process monitoring based on probabilistic PCA
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 66
  start-page: 3196
  year: 2019
  end-page: 3207
  ident: b40
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Ind. Electron.
– volume: 189
  start-page: 56
  year: 2019
  end-page: 71
  ident: b2
  article-title: Data-driven monitoring of multimode continuous processes: A review
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 13
  start-page: 1213
  year: 2017
  end-page: 1226
  ident: b28
  article-title: Capturing high-discriminative fault features for electronics-rich analog system via deep learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 15
  start-page: 3077
  year: 2019
  end-page: 3084
  ident: b35
  article-title: Fault detection and isolation in industrial processes using deep learning approaches
  publication-title: IEEE Trans. Ind. Inf.
– volume: 14
  start-page: 4
  year: 2014
  end-page: 11
  ident: b15
  article-title: Fault detection and identification spanning multiple processes by integrating PCA with neural network
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: b36
  article-title: Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing
  publication-title: Knowl.-Based Syst.
– volume: 56
  start-page: 7503
  year: 2017
  end-page: 7515
  ident: b45
  article-title: Robust self-supervised model and its application for fault detection
  publication-title: Ind. Eng. Chem. Res.
– year: 2018
  ident: b10
  article-title: Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 56
  year: 2017
  ident: b13
  article-title: Multimode continuous processes monitoring based on hidden semi-Markov model and principle component analysis
  publication-title: Ind. Eng. Chem. Res.
– volume: 60
  start-page: 2012
  year: 2013
  ident: b23
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 66
  start-page: 6321
  year: 2019
  end-page: 6330
  ident: b20
  article-title: A cumulative canonical correlation analysis-based sensor precision degradation detection method
  publication-title: IEEE Trans. Ind. Electron.
– volume: 81
  year: 2019
  ident: b31
  article-title: Design teacher and supervised dual stacked auto-encoders for quality-relevant fault detection in industrial process
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 169
  year: 1997
  end-page: 179
  ident: b9
  article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction
  publication-title: J. Process Control
– year: 2018
  ident: b17
  article-title: Recursive exponential slow feature analysis for fine-scale adaptive processes monitoring with comprehensive operation status identification
  publication-title: IEEE Trans. Ind. Inf.
– volume: 57
  start-page: 15479
  year: 2018
  end-page: 15490
  ident: b32
  article-title: Layer-by-layer enhancement strategy of favorable features of the deep belief network for industrial process monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 17
  start-page: 221
  year: 2007
  end-page: 227
  ident: b5
  article-title: Recent developments in multivariable controller performance monitoring
  publication-title: J. Process Control
– volume: 39
  start-page: 88
  year: 2016
  end-page: 99
  ident: b42
  article-title: Related and independent variable fault detection based on KPCA and SVDD
  publication-title: J. Process Control
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b37
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 96
  start-page: 2073
  year: 2018
  end-page: 2085
  ident: b1
  article-title: Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017
  publication-title: Can. J. Chem. Eng.
– volume: 32
  start-page: 38
  year: 2015
  end-page: 50
  ident: b41
  article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA
  publication-title: J. Process Control
– volume: 58
  start-page: 12899
  year: 2019
  end-page: 12912
  ident: b6
  article-title: Review and perspectives of data-driven distributed monitoring for industrial plant-wide processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 129
  year: 2019
  ident: b33
  article-title: A novel process monitoring approach based on variational recurrent autoencoder
  publication-title: Comput. Chem. Eng.
– volume: 61
  start-page: 959
  year: 2017
  end-page: 972
  ident: b18
  article-title: Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system
  publication-title: Appl. Soft Comput.
– year: 2016
  ident: b44
  article-title: An overview of gradient descent optimization algorithms
– volume: 36
  start-page: 220
  year: 2012
  end-page: 234
  ident: b7
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
– start-page: 1
  year: 2018
  ident: b25
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Trans. Ind. Inf.
– volume: 84
  start-page: 247
  year: 2018
  end-page: 261
  ident: b26
  article-title: Active features extracted by deep belief network for process monitoring
  publication-title: ISA Trans.
– volume: 15
  start-page: 5119
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b39
  article-title: A novel deep learning network via multiscale inner product with locally connected feature extraction for intelligent fault detection
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2896665
– volume: 129
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b33
  article-title: A novel process monitoring approach based on variational recurrent autoencoder
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106515
– volume: 13
  start-page: 1213
  year: 2017
  ident: 10.1016/j.asoc.2020.106525_b28
  article-title: Capturing high-discriminative fault features for electronics-rich analog system via deep learning
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2690940
– volume: 332
  start-page: 396
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b34
  article-title: Exploiting the generative adversarial framework for one-class multi-dimensional fault detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.041
– volume: 57
  start-page: 15479
  year: 2018
  ident: 10.1016/j.asoc.2020.106525_b32
  article-title: Layer-by-layer enhancement strategy of favorable features of the deep belief network for industrial process monitoring
  publication-title: Ind. Eng. Chem. Res.
– year: 2018
  ident: 10.1016/j.asoc.2020.106525_b17
  article-title: Recursive exponential slow feature analysis for fine-scale adaptive processes monitoring with comprehensive operation status identification
  publication-title: IEEE Trans. Ind. Inf.
– volume: 33
  start-page: 112
  year: 2015
  ident: 10.1016/j.asoc.2020.106525_b3
  article-title: A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.06.007
– volume: 84
  start-page: 247
  year: 2018
  ident: 10.1016/j.asoc.2020.106525_b26
  article-title: Active features extracted by deep belief network for process monitoring
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.10.011
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1016/j.asoc.2020.106525_b48
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 67
  start-page: 109
  year: 2003
  ident: 10.1016/j.asoc.2020.106525_b11
  article-title: Process monitoring based on probabilistic PCA
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(03)00063-7
– volume: 65
  start-page: 2683
  year: 2018
  ident: 10.1016/j.asoc.2020.106525_b19
  article-title: Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2745452
– start-page: 1096
  year: 2008
  ident: 10.1016/j.asoc.2020.106525_b37
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 58
  start-page: 12899
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b6
  article-title: Review and perspectives of data-driven distributed monitoring for industrial plant-wide processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b02391
– volume: 7
  start-page: 169
  year: 1997
  ident: 10.1016/j.asoc.2020.106525_b9
  article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(97)80001-7
– volume: 30
  start-page: 3124
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b22
  article-title: Learning time series associated event sequences with recurrent point process networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2889776
– volume: 14
  start-page: 4
  year: 2014
  ident: 10.1016/j.asoc.2020.106525_b15
  article-title: Fault detection and identification spanning multiple processes by integrating PCA with neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.024
– volume: 81
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b31
  article-title: Design teacher and supervised dual stacked auto-encoders for quality-relevant fault detection in industrial process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105526
– volume: 76
  start-page: 505
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b16
  article-title: Outlier detection based on Gaussian process with application to industrial processes
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.12.029
– volume: 56
  start-page: 7503
  year: 2017
  ident: 10.1016/j.asoc.2020.106525_b45
  article-title: Robust self-supervised model and its application for fault detection
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00949
– volume: 96
  start-page: 2073
  year: 2018
  ident: 10.1016/j.asoc.2020.106525_b1
  article-title: Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23249
– volume: 15
  start-page: 3077
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b35
  article-title: Fault detection and isolation in industrial processes using deep learning approaches
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2902274
– year: 2018
  ident: 10.1016/j.asoc.2020.106525_b10
  article-title: Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2019
  ident: 10.1016/j.asoc.2020.106525_b36
  article-title: Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing
  publication-title: Knowl.-Based Syst.
– volume: 61
  start-page: 959
  year: 2017
  ident: 10.1016/j.asoc.2020.106525_b18
  article-title: Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.019
– volume: 10
  start-page: 687
  year: 2013
  ident: 10.1016/j.asoc.2020.106525_b14
  article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2230628
– volume: 39
  start-page: 88
  year: 2016
  ident: 10.1016/j.asoc.2020.106525_b42
  article-title: Related and independent variable fault detection based on KPCA and SVDD
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.01.001
– volume: 189
  start-page: 56
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b2
  article-title: Data-driven monitoring of multimode continuous processes: A review
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.03.012
– volume: 25
  start-page: 1103
  year: 2001
  ident: 10.1016/j.asoc.2020.106525_b8
  article-title: A new multivariate statistical process monitoring method using principal component analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(01)00683-4
– volume: 40
  start-page: 945
  year: 2018
  ident: 10.1016/j.asoc.2020.106525_b24
  article-title: Retrieval of sentence sequences for an image stream via coherence recurrent convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2700381
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106525_b25
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Trans. Ind. Inf.
– volume: 17
  start-page: 221
  year: 2007
  ident: 10.1016/j.asoc.2020.106525_b5
  article-title: Recent developments in multivariable controller performance monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2006.11.002
– volume: 36
  start-page: 220
  year: 2012
  ident: 10.1016/j.asoc.2020.106525_b7
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.004
– volume: 56
  year: 2017
  ident: 10.1016/j.asoc.2020.106525_b13
  article-title: Multimode continuous processes monitoring based on hidden semi-Markov model and principle component analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01721
– volume: 66
  start-page: 6321
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b20
  article-title: A cumulative canonical correlation analysis-based sensor precision degradation detection method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2873100
– volume: 66
  start-page: 3196
  year: 2019
  ident: 10.1016/j.asoc.2020.106525_b40
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2844805
– year: 2019
  ident: 10.1016/j.asoc.2020.106525_b30
  article-title: Whole process monitoring based on unstable neuron output information in hidden layers of deep belief network
  publication-title: IEEE Trans. Cybern.
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.asoc.2020.106525_b43
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 32
  start-page: 38
  year: 2015
  ident: 10.1016/j.asoc.2020.106525_b41
  article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.04.014
– volume: 63
  start-page: 377
  year: 2015
  ident: 10.1016/j.asoc.2020.106525_b47
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2466557
– year: 2012
  ident: 10.1016/j.asoc.2020.106525_b38
– volume: 60
  start-page: 2012
  year: 2013
  ident: 10.1016/j.asoc.2020.106525_b23
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 88
  year: 2020
  ident: 10.1016/j.asoc.2020.106525_b27
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106060
– volume: 20
  year: 1987
  ident: 10.1016/j.asoc.2020.106525_b46
  article-title: Silhouettes : A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– year: 2016
  ident: 10.1016/j.asoc.2020.106525_b44
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.asoc.2020.106525_b21
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106525_b29
  article-title: Deep neural networks for learning spatio-temporal features from tomography sensors
  publication-title: IEEE Trans. Ind. Electron.
– ident: 10.1016/j.asoc.2020.106525_b49
  doi: 10.1109/NAFIPS.2010.5548298
– volume: 171
  start-page: 16
  year: 2017
  ident: 10.1016/j.asoc.2020.106525_b4
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.021
– volume: 59
  start-page: 223
  year: 2004
  ident: 10.1016/j.asoc.2020.106525_b12
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.012
SSID ssj0016928
Score 2.4419405
Snippet Deep learning-based process monitoring has achieved remarkable progress. Generally, a deep model is empirically selected before the data features are learned....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106525
SubjectTerms Multiscale analysis
Process monitoring
Robust features
Stacked denoising autoencoder
Temporal information
Title Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information
URI https://dx.doi.org/10.1016/j.asoc.2020.106525
Volume 95
WOSCitedRecordID wos000576772600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9RAEF4dCQVNCC8RXtqC7uSTH-e1t4xQEKSIKIJ0nbUvR0QnO8rZUVr-Rn4tM_s6J0BEChrrbrUeW57Ps7PjmW8I-Si0ElKkIlFY1oOU5kmtdJZUZmmYhB2REMI2m6hOTurVin-bzX6GWpirddV19fU1v_ivqoYxUDaWzj5A3VEoDMBvUDocQe1w_CfF25LaDTx6Y7kgHN_mMG8FjM-1GYxrDu4onOe4imn8YiDOztY9RqhsLhF2yLbfGCx_yHpEOgUMKowbH3-Al1-DtK7_YUfEOPRIiYnMFC606yivkNEj1kdOHeHg_W5gGbB57eMQFlHbJsyiC6Ar-zjmQrWr0bTGz_TRCtiahry3aGAREtyHHb0F5uXEhMIetXS10L9ZdxdoOF8IAO4CpS-2k29Tad9Z4mLiYchpO29QRoMyGifjEdnNq5KDYdw9_Hq0Oo6fohi3DXrjjfvKK5ckePdO_uzdTDyW032y57ca9NBB5BmZme45eRraeFBv1V-Qmy1i6AQx1CKGRsRQhxhqEUPh_y3E0Cli6BYx1CKGesTQiBg6QQxFxNCAGDpBzEvy_fPR6acviW_ZkagiTYekVWXL9JJrLgUTZd4yptHD1nlpihpcwVxII4siV5lkWaal0rXkFcwEx1cVVfGK7HR9Z14Tmqaq1EIoybRetrqqVc6XhRSKCdhm5MUBycKjbpTns8e2Kuvm70o-IPN4zoVjc7l3dhk02Hh_1PmZDQDynvPePOgqb8mT7YvyjuwMl6N5Tx6rK9D85QePxl9D9Le9
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+intelligent+fault+detection+system+based+on+agglomerative+hierarchical+clustering+using+stacked+denoising+autoencoder+with+temporal+information&rft.jtitle=Applied+soft+computing&rft.au=Yu%2C+Jianbo&rft.au=Yan%2C+Xuefeng&rft.date=2020-10-01&rft.issn=1568-4946&rft.volume=95&rft.spage=106525&rft_id=info:doi/10.1016%2Fj.asoc.2020.106525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon