Arrhythmia classification of LSTM autoencoder based on time series anomaly detection
•This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model has simple structure and principle and high accuracy.•The effectiveness of this method is proved by comparative experiments. Electrocardiogra...
Uloženo v:
| Vydáno v: | Biomedical signal processing and control Ročník 71; s. 103228 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2022
|
| Témata: | |
| ISSN: | 1746-8094, 1746-8108 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model has simple structure and principle and high accuracy.•The effectiveness of this method is proved by comparative experiments.
Electrocardiogram (ECG) is widely used in the diagnosis of heart disease because of its noninvasiveness and simplicity. The time series signals contained in the signal are usually obtained by the professional medical staff and used for the classification of heartbeat diagnosis. Professional physicians can use the electrocardiogram to know whether the patient has serious congenital heart disease and whether there is an abnormal heart structure. A lot of work has been done to achieve automatic classification of arrhythmia types. For example, Autoencoder can obtain the time series characteristics of ECG signals and be used for ECG signal classification. However, some traditional methods are abstruse and difficult to understand in principle. In the classification of arrhythmias carried out in recent years, some researchers only use Autoencoder to provide structural characteristics, without giving too much explanation to the design reasons. Therefore, we optimized a new network layer design based on LSTM to obtain the autoencoder structure. This structure can cooperate with the ECG preprocessing process designed by us to obtain better arrhythmia classification effect. This method enables direct input of ECG signals into the model without complicated preprocessing such as manual parameter input. Also, it eliminates the gradient vanishing problem existing in traditional convolutional neural network. We used five different types of ECG data in MIT-BIH arrhythmia database and MIT-BIH supraventricular arrhythmia database: atrial premature beats (APB), left bundle branch block (LBBB), normal heartbeat (NSR), right bundle branch block (RBBB) and ventricular premature beats (PVC). High accuracy, precision and recall were obtained. Compared with traditional methods, this method has better performance in arrhythmia classification. |
|---|---|
| AbstractList | •This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model has simple structure and principle and high accuracy.•The effectiveness of this method is proved by comparative experiments.
Electrocardiogram (ECG) is widely used in the diagnosis of heart disease because of its noninvasiveness and simplicity. The time series signals contained in the signal are usually obtained by the professional medical staff and used for the classification of heartbeat diagnosis. Professional physicians can use the electrocardiogram to know whether the patient has serious congenital heart disease and whether there is an abnormal heart structure. A lot of work has been done to achieve automatic classification of arrhythmia types. For example, Autoencoder can obtain the time series characteristics of ECG signals and be used for ECG signal classification. However, some traditional methods are abstruse and difficult to understand in principle. In the classification of arrhythmias carried out in recent years, some researchers only use Autoencoder to provide structural characteristics, without giving too much explanation to the design reasons. Therefore, we optimized a new network layer design based on LSTM to obtain the autoencoder structure. This structure can cooperate with the ECG preprocessing process designed by us to obtain better arrhythmia classification effect. This method enables direct input of ECG signals into the model without complicated preprocessing such as manual parameter input. Also, it eliminates the gradient vanishing problem existing in traditional convolutional neural network. We used five different types of ECG data in MIT-BIH arrhythmia database and MIT-BIH supraventricular arrhythmia database: atrial premature beats (APB), left bundle branch block (LBBB), normal heartbeat (NSR), right bundle branch block (RBBB) and ventricular premature beats (PVC). High accuracy, precision and recall were obtained. Compared with traditional methods, this method has better performance in arrhythmia classification. |
| ArticleNumber | 103228 |
| Author | Wu, Chenxu Han, Yang Sun, Xiaoming He, Zhishuai Liu, Pengfei Zhang, Weifeng |
| Author_xml | – sequence: 1 givenname: Pengfei surname: Liu fullname: Liu, Pengfei – sequence: 2 givenname: Xiaoming surname: Sun fullname: Sun, Xiaoming email: sunxiaoming@hrbust.edu.cn – sequence: 3 givenname: Yang surname: Han fullname: Han, Yang – sequence: 4 givenname: Zhishuai surname: He fullname: He, Zhishuai – sequence: 5 givenname: Weifeng surname: Zhang fullname: Zhang, Weifeng – sequence: 6 givenname: Chenxu surname: Wu fullname: Wu, Chenxu |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKu8wNRkMpMm4KYUb1BxYV2HTHKGpsxMShKFvr0ZqxsXXZ0b34H_m6HJ4AdA6JaSBSWU3-0XTTyYRUlKmhesLMUFmtJlxQtBiZj89URWV2gW456QSixpNUXbVQi7Y9r1TmPT6Rhd64xOzg_Yt3jzvn3F-jN5GIy3EHCjI1icj8n1gCMEBxHrwfe6O2ILCcyIXqPLVncRbn7rHH08PmzXz8Xm7ellvdoUhhGSitYwrSmDhvGlkZLXNZdlrfMkpaCSNJzUoqnbikFZEQq84pTa2raMGgsM2ByVp78m-BgDtOoQXK_DUVGiRi9qr0YvavSiTl4yJP5BxqWfxClo151H708o5FBfDoKKxmU1YF3IyZX17hz-DeBagHY |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108597 crossref_primary_10_1109_TPEL_2023_3278716 crossref_primary_10_3390_asi6050095 crossref_primary_10_3390_app122010444 crossref_primary_10_1109_ACCESS_2024_3378730 crossref_primary_10_1109_JBHI_2025_3547531 crossref_primary_10_1109_ACCESS_2024_3406413 crossref_primary_10_1109_THMS_2023_3244938 crossref_primary_10_1007_s13534_025_00486_4 crossref_primary_10_1016_j_procs_2024_09_153 crossref_primary_10_1109_ACCESS_2023_3339500 crossref_primary_10_1016_j_bspc_2024_106968 crossref_primary_10_3390_bioengineering10040405 crossref_primary_10_1109_JSEN_2022_3230361 crossref_primary_10_1109_TIM_2022_3232646 crossref_primary_10_1007_s10489_023_04642_0 crossref_primary_10_1109_TIM_2024_3376017 crossref_primary_10_1007_s10489_024_06204_4 crossref_primary_10_1007_s11227_022_04792_x crossref_primary_10_1088_1361_6579_ac6aa2 crossref_primary_10_1016_j_jnca_2025_104216 crossref_primary_10_3233_HIS_240017 crossref_primary_10_1016_j_compositesb_2024_111802 crossref_primary_10_1109_ACCESS_2024_3426675 crossref_primary_10_3390_w16182631 crossref_primary_10_1109_ACCESS_2025_3572484 crossref_primary_10_1016_j_cmpb_2024_108455 crossref_primary_10_1016_j_compag_2023_108252 crossref_primary_10_1038_s41598_025_93906_5 crossref_primary_10_1186_s12911_025_03127_z crossref_primary_10_1155_2022_5490779 crossref_primary_10_1186_s12874_024_02223_4 crossref_primary_10_1109_ACCESS_2023_3241013 crossref_primary_10_1109_TNNLS_2024_3369064 crossref_primary_10_1088_1742_6596_2449_1_012033 crossref_primary_10_3390_s22228981 crossref_primary_10_1109_ACCESS_2023_3305473 crossref_primary_10_1063_5_0219409 crossref_primary_10_1016_j_bspc_2022_103686 crossref_primary_10_1016_j_bspc_2025_108535 crossref_primary_10_3389_frai_2024_1381921 crossref_primary_10_1007_s10489_023_04985_8 crossref_primary_10_1016_j_bspc_2022_103910 crossref_primary_10_1016_j_asoc_2023_111148 crossref_primary_10_1109_ACCESS_2024_3402359 crossref_primary_10_54392_irjmt2539 crossref_primary_10_1016_j_neucom_2024_128368 crossref_primary_10_1016_j_neunet_2024_106395 crossref_primary_10_1016_j_heliyon_2023_e13601 crossref_primary_10_1016_j_procs_2023_01_009 crossref_primary_10_1016_j_inffus_2022_10_008 crossref_primary_10_1016_j_ins_2024_121516 crossref_primary_10_1109_JAS_2025_125117 crossref_primary_10_1109_TIM_2022_3204316 crossref_primary_10_3233_AIC_230064 crossref_primary_10_1007_s10489_023_05029_x crossref_primary_10_1007_s11760_023_02737_2 crossref_primary_10_1016_j_ipm_2023_103383 crossref_primary_10_1109_ACCESS_2023_3325896 crossref_primary_10_1016_j_bspc_2024_106328 crossref_primary_10_1016_j_medengphy_2024_104267 crossref_primary_10_1016_j_cmpb_2025_108898 crossref_primary_10_1016_j_knosys_2025_113346 crossref_primary_10_1093_comjnl_bxac087 crossref_primary_10_1007_s00170_025_15069_x crossref_primary_10_1515_bmt_2022_0406 crossref_primary_10_3390_su15129289 crossref_primary_10_1007_s11042_023_18009_7 crossref_primary_10_1016_j_eswa_2025_129425 crossref_primary_10_1063_5_0221722 |
| Cites_doi | 10.1007/s12204-018-2027-5 10.1016/j.measurement.2013.05.021 10.1016/j.bspc.2016.07.010 10.1016/j.measurement.2009.01.004 10.1016/j.cmpb.2019.01.010 10.1016/j.compbiomed.2017.08.022 10.1186/1475-925X-3-30 10.1007/978-1-4419-1153-7_200378 10.1007/978-3-030-71051-4_67 10.1109/IEMBS.2002.1106452 10.1109/TBME.2015.2468589 10.1016/j.bspc.2018.05.014 10.1016/j.cmpb.2020.105479 10.1016/j.future.2017.08.039 10.1007/978-3-540-72613-5_8 10.1016/j.ins.2017.04.012 10.1109/IEMBS.1997.754471 10.1007/978-981-33-4062-6_5 10.3906/elk-2004-68 10.1007/978-3-030-03243-2_862-1 10.1109/JBHI.2019.2931395 10.1007/978-3-030-75680-2_43 10.1109/51.932724 10.1016/j.eswa.2007.05.008 10.1016/j.measurement.2017.05.022 10.1109/72.279181 10.3390/s16101744 10.1007/s11741-008-0606-2 10.1007/s00521-019-04650-7 10.1016/j.cmpb.2015.12.008 10.1162/neco.1997.9.8.1735 10.18201/ijisae.2016SpecialIssue-146978 10.1016/j.cmpb.2015.12.024 10.1007/s42452-020-2584-8 10.1109/10.959322 10.1007/978-1-4612-4978-8_5 10.1109/ICCV.2015.123 10.1016/j.eswa.2012.04.072 10.1007/978-3-540-45216-4_15 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2021.103228 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2021_103228 S1746809421008259 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-fc3aa13eb367c996556925a367998190b6058b5f43e2401e64611d5df31cde3e3 |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 22:23:33 EST 2025 Sat Nov 29 07:04:13 EST 2025 Fri Feb 23 02:42:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning LSTM Arrhythmia Autoencoder Heartbeat classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-fc3aa13eb367c996556925a367998190b6058b5f43e2401e64611d5df31cde3e3 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2021_103228 crossref_citationtrail_10_1016_j_bspc_2021_103228 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103228 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Amin, Sharif, Raza, Saba, Sial, Shad (b0210) 2020; 32 (2013) Laplace Transform. In: Gass S.I., Fu M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_200378. Luz, Schwartz, Cámara-Chávez, Menotti (b0090) 2016; 127 Altan G, Yayk A, Kutlu Y. Deep Learning with ConvNet Predicts Imagery Tasks Through EEG. Neural Processing Letters, 2021:1-16.Kiranyaz, S., T. Ince, and M. Gabbouj, Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 2016. 63 (3): p. 664-675. Chen, Wang, Liu, Chang, Wang, He, Huang (b0235) 2020; 193 Elhaj, Salim, Harris, Swee, Ahmed (b0170) 2016; 127 Chen, Hua, Li, Li, Gao (b0080) 2017; 31 Faust, O., Acharya U, R., Krishnan, S. et al. Analysis of cardiac signals using spatial filling index and time-frequency domain. BioMed Eng OnLine 3, 30 (2004). https://doi.org/10.1186/1475-925X-3-30. Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (b0005) 2017; 89 N. Srinivasan, D.F. Ge, S.M. Krishnan, ”Autoregressive modeling and classification of cardiac arrhythmias”, in Proceedings of the Second Joint Conference Houston, TX, USA, October 2326, 2002. Yang, Xue (b0200) 2008; 12 Saxe A M, Mcclelland J L, Ganguli S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. 2013. Sahoo, Kanungo, Behera, Sabut (b0155) 2017; 108 Li, Yuan, Wang, Cui, Cao (b0160) 2016; 16 Malhotra, Vig, Shroff, Agarwal (b0050) 2015; vol 23 Yeh, Wang, Chiou (b0165) 2009; 42 Apolloni B , Marinaro M , R Tagliaferri. [Lecture Notes in Computer Science] Neural Nets Volume 2859 || An Adaptive Learning Algorithm for ECG Noise and Baseline Drift Removal. 2003, 10.1007/b13826(Chapter 15):139-147. Moody, Mark (b0075) 2001; 20 Alexander S.T. (1986) The Least Mean Squares (LMS) Algorithm. In: Adaptive Signal Processing. Texts and Monographs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4978-8_5. Gómez J., Quispe A., Kemper G. (2021) A Comparative Study of Deep Learning Techniques Aimed at Detection of Arrhythmias from ECG Signals. In: Iano Y., Saotome O., Kemper G., Mendes de Seixas A.C., Gomes de Oliveira G. (eds) Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). BTSym 2020. Smart Innovation, Systems and Technologies, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75680-2_43. O.S. Lih E.Y.K. Ng T.R. San et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Computers in Biology and Medicine 2018:S0010482518301446-. (2007) Adaptive Filters. In: Digital Signal Processing with Field Programmable Gate Arrays. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72613-5_8. Acharya, Fujita, Lih, Hagiwara, Tan, Adam (b0185) 2017; 405 Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (b0035) 2018; 79 Yang, Pan, Bai (b0145) 2019; 46 He K, Zhang X, Ren S, et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015. Rui, Zhang, Ren (b0055) 2017 Song, Shi, Chen, Huang, Xia (b0140) 2018; 23 Risk, Marcel0 R and Sobh, Jamil F and Saul, J Philip, ”Beat detection and classification of ECG using self organizing maps”, Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, vol 1, pp. 89-91, IEEE, Chicago, IL. USA. Greenwald (b0230) 1990 Altan, Kutlu, Gken (b0265) 2020; 28 Tavakoli, Siami-Namini, Adl Khanghah, Mirza Soltani, Siami Namin (b0215) 2020; 2 Altan, Kutlu, Allahverdi (b0260) 2020; 24 Rajpurkar P , Hannun A Y , Haghpanahi M, et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017.Rajpurkar P , Hannun A Y , Haghpanahi M , et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017. Turnip M, Dharma A , Andrian, et al. Integration of FIR and Butterworth Algorithm for Real-Time Extraction of Recorded ECG Signals[M]. 2021. Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, Wavelet Toolbox for use with MATLAB, vol. 1, March 1996. Hammad, Iliyasu, Subasi (b0240) 2020 Hochreiter, Schmidhuber (b0130) 1997; 9 Lempitsky V. (2020) Autoencoder. In: Ikeuchi K. (eds) Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_862-1. LIN, DU, CHEN (b0015) 2008; 34 Altan G, Kutlu Y, Allahverdi N. A Multistage Deep Belief Networks Application on Arrhythmia Classification. 2016. Altan, Kutlu, Yeniad (b0275) 2019; 170 Tang S., Tang J. (2021) c. In: Arabnia H.R., Deligiannidis L., Shouno H., Tinetti F.G., Tran QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_67. Braunwald E. (Editor), Heart Disease,”A Textbook of Cardiovascular Medicine”, Fifth Edition, p. 108, Philadelphia, W.B. Saunders Co., 1997. ISBN 0-7216-5666-8. Rai, Trivedi, Shukla (b0025) 2013; 46 Altan, Kutlu, Pekmezci, Nural (b0250) 2018; 45 Martis, Acharya, Mandana, Ray, Chakraborty (b0175) 2012; 39 Wang, Fan, Li (b0245) 2020 Osowski, Linh (b0105) 2001; 48 Bengio, Simard, Frasconi (b0060) 1994; 5 Zubair, Kim, Yoon (b0190) 2016 Kiranyaz, Ince, Gabbouj (b0195) 2016; 63 10.1016/j.bspc.2021.103228_b0220 10.1016/j.bspc.2021.103228_b0100 10.1016/j.bspc.2021.103228_b0020 10.1016/j.bspc.2021.103228_b0065 Chen (10.1016/j.bspc.2021.103228_b0080) 2017; 31 10.1016/j.bspc.2021.103228_b0180 Rui (10.1016/j.bspc.2021.103228_b0055) 2017 Martis (10.1016/j.bspc.2021.103228_b0175) 2012; 39 Tavakoli (10.1016/j.bspc.2021.103228_b0215) 2020; 2 Hochreiter (10.1016/j.bspc.2021.103228_b0130) 1997; 9 Elhaj (10.1016/j.bspc.2021.103228_b0170) 2016; 127 10.1016/j.bspc.2021.103228_b0225 Luz (10.1016/j.bspc.2021.103228_b0090) 2016; 127 Altan (10.1016/j.bspc.2021.103228_b0265) 2020; 28 Kiranyaz (10.1016/j.bspc.2021.103228_b0195) 2016; 63 Wang (10.1016/j.bspc.2021.103228_b0245) 2020 10.1016/j.bspc.2021.103228_b0095 Li (10.1016/j.bspc.2021.103228_b0160) 2016; 16 Yang (10.1016/j.bspc.2021.103228_b0200) 2008; 12 Bengio (10.1016/j.bspc.2021.103228_b0060) 1994; 5 Song (10.1016/j.bspc.2021.103228_b0140) 2018; 23 Greenwald (10.1016/j.bspc.2021.103228_b0230) 1990 Acharya (10.1016/j.bspc.2021.103228_b0005) 2017; 89 Zubair (10.1016/j.bspc.2021.103228_b0190) 2016 Altan (10.1016/j.bspc.2021.103228_b0250) 2018; 45 Rai (10.1016/j.bspc.2021.103228_b0025) 2013; 46 Sahoo (10.1016/j.bspc.2021.103228_b0155) 2017; 108 10.1016/j.bspc.2021.103228_b0255 10.1016/j.bspc.2021.103228_b0135 Acharya (10.1016/j.bspc.2021.103228_b0185) 2017; 405 10.1016/j.bspc.2021.103228_b0045 Osowski (10.1016/j.bspc.2021.103228_b0105) 2001; 48 10.1016/j.bspc.2021.103228_b0120 10.1016/j.bspc.2021.103228_b0040 10.1016/j.bspc.2021.103228_b0085 Acharya (10.1016/j.bspc.2021.103228_b0035) 2018; 79 Altan (10.1016/j.bspc.2021.103228_b0275) 2019; 170 Moody (10.1016/j.bspc.2021.103228_b0075) 2001; 20 Hammad (10.1016/j.bspc.2021.103228_b0240) 2020 Amin (10.1016/j.bspc.2021.103228_b0210) 2020; 32 Yeh (10.1016/j.bspc.2021.103228_b0165) 2009; 42 10.1016/j.bspc.2021.103228_b0205 10.1016/j.bspc.2021.103228_b0125 10.1016/j.bspc.2021.103228_b0030 10.1016/j.bspc.2021.103228_b0270 10.1016/j.bspc.2021.103228_b0070 Chen (10.1016/j.bspc.2021.103228_b0235) 2020; 193 LIN (10.1016/j.bspc.2021.103228_b0015) 2008; 34 Yang (10.1016/j.bspc.2021.103228_b0145) 2019; 46 Altan (10.1016/j.bspc.2021.103228_b0260) 2020; 24 Malhotra (10.1016/j.bspc.2021.103228_b0050) 2015; vol 23 10.1016/j.bspc.2021.103228_b0115 |
| References_xml | – volume: 46 start-page: 21 year: 2019 end-page: 28 ident: b0145 article-title: Summary of time series prediction methods publication-title: computer science – volume: 63 start-page: 664 year: 2016 end-page: 675 ident: b0195 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. – volume: 45 start-page: 58 year: 2018 end-page: 69 ident: b0250 article-title: Deep learning with 3D-second order difference plot on respiratory sounds publication-title: Biomed. Signal Process. Control – reference: Apolloni B , Marinaro M , R Tagliaferri. [Lecture Notes in Computer Science] Neural Nets Volume 2859 || An Adaptive Learning Algorithm for ECG Noise and Baseline Drift Removal. 2003, 10.1007/b13826(Chapter 15):139-147. – reference: N. Srinivasan, D.F. Ge, S.M. Krishnan, ”Autoregressive modeling and classification of cardiac arrhythmias”, in Proceedings of the Second Joint Conference Houston, TX, USA, October 2326, 2002. – reference: Altan G, Yayk A, Kutlu Y. Deep Learning with ConvNet Predicts Imagery Tasks Through EEG. Neural Processing Letters, 2021:1-16.Kiranyaz, S., T. Ince, and M. Gabbouj, Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 2016. 63 (3): p. 664-675. – volume: 23 start-page: 85 year: 2018 end-page: 94 ident: b0140 article-title: Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory publication-title: J. Shanghai Jiaotong Univ. (Sci.) – reference: Altan G, Kutlu Y, Allahverdi N. A Multistage Deep Belief Networks Application on Arrhythmia Classification. 2016. – reference: Lempitsky V. (2020) Autoencoder. In: Ikeuchi K. (eds) Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_862-1. – reference: Gómez J., Quispe A., Kemper G. (2021) A Comparative Study of Deep Learning Techniques Aimed at Detection of Arrhythmias from ECG Signals. In: Iano Y., Saotome O., Kemper G., Mendes de Seixas A.C., Gomes de Oliveira G. (eds) Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). BTSym 2020. Smart Innovation, Systems and Technologies, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75680-2_43. – reference: (2013) Laplace Transform. In: Gass S.I., Fu M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_200378. – volume: 79 start-page: 952 year: 2018 end-page: 959 ident: b0035 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Generation Computer Systems – reference: Rajpurkar P , Hannun A Y , Haghpanahi M, et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017.Rajpurkar P , Hannun A Y , Haghpanahi M , et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017. – start-page: 99 year: 2020 ident: b0245 article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection publication-title: IEEE J. Biomed. Health. Inf. – volume: 16 start-page: 1744 year: 2016 ident: b0160 article-title: Arrhythmia classification based on multi-domain feature extraction for an ECG recognition system publication-title: Sensors – volume: 170 start-page: 81 year: 2019 end-page: 93 ident: b0275 article-title: ECG based human identification using Second Order Difference Plots publication-title: Comput. Methods Programs Biomed. – volume: 32 start-page: 15965 year: 2020 end-page: 15973 ident: b0210 article-title: Brain tumor detection: a long short-term memory (LSTM)-based learning model publication-title: Neural Comput & Applic – volume: 42 start-page: 778 year: 2009 end-page: 789 ident: b0165 article-title: Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals publication-title: Measurement – volume: 24 start-page: 1344 year: 2020 end-page: 1350 ident: b0260 article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease publication-title: IEEE J. Biomed. Health. Inf. – reference: Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, Wavelet Toolbox for use with MATLAB, vol. 1, March 1996. – volume: 127 start-page: 144 year: 2016 end-page: 164 ident: b0090 article-title: ECG-based heartbeat classification for arrhythmia detection: A survey publication-title: Comput. Methods Programs Biomed. – volume: 20 year: 2001 ident: b0075 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng in Med and Biol – volume: 108 start-page: 55 year: 2017 end-page: 66 ident: b0155 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement – volume: 127 start-page: 52 year: 2016 end-page: 63 ident: b0170 article-title: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. publication-title: Comput. Methods Programs Biomed. – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: b0005 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – reference: Braunwald E. (Editor), Heart Disease,”A Textbook of Cardiovascular Medicine”, Fifth Edition, p. 108, Philadelphia, W.B. Saunders Co., 1997. ISBN 0-7216-5666-8. – start-page: 99 year: 2020 ident: b0240 article-title: A multi-tier deep learning model for arrhythmia detection publication-title: IEEE Trans. Instrum. Meas. – reference: He K, Zhang X, Ren S, et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015. – reference: Risk, Marcel0 R and Sobh, Jamil F and Saul, J Philip, ”Beat detection and classification of ECG using self organizing maps”, Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, vol 1, pp. 89-91, IEEE, Chicago, IL. USA. – volume: 193 start-page: 105479 year: 2020 ident: b0235 article-title: Multi-information fusion neural networks for arrhythmia automatic detection publication-title: Comput. Methods Programs Biomed. – volume: 28 start-page: 2979 year: 2020 end-page: 2996 ident: b0265 article-title: Chronic obstructive pulmonary disease severity analysis using deep learning on multi-channel lung sounds publication-title: Turkish J. Electric. Eng. Comput. Sci. – reference: O.S. Lih E.Y.K. Ng T.R. San et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Computers in Biology and Medicine 2018:S0010482518301446-. – year: 2017 ident: b0055 article-title: Data Reconstruction Based on Supervised Deep Auto-Encoder[C]// Pacific Rim Conference on Multimedia – volume: 46 start-page: 3238 year: 2013 end-page: 3246 ident: b0025 article-title: ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier publication-title: Measurement – reference: (2007) Adaptive Filters. In: Digital Signal Processing with Field Programmable Gate Arrays. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72613-5_8. – reference: Turnip M, Dharma A , Andrian, et al. Integration of FIR and Butterworth Algorithm for Real-Time Extraction of Recorded ECG Signals[M]. 2021. – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: b0060 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Networks – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: b0185 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. – volume: 2 year: 2020 ident: b0215 article-title: An autoencoder-based deep learning approach for clustering time series data publication-title: SN Appl. Sci. – volume: 48 start-page: 1265 year: 2001 end-page: 1271 ident: b0105 article-title: ECG beat recognition using fuzzy hybrid neural network publication-title: IEEE Trans. Biomed. Eng. – year: 1990 ident: b0230 article-title: Improved Detection And Classification Of Arrhythmias In Noise-Corrupted Electrocardiograms Using Contextual Information – volume: vol 23 year: 2015 ident: b0050 article-title: Long Short Term Memory Networks for Anomaly Detection in Time Series publication-title: European Symposium on Artificial Neural Networks – reference: Alexander S.T. (1986) The Least Mean Squares (LMS) Algorithm. In: Adaptive Signal Processing. Texts and Monographs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4978-8_5. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0130 article-title: Long short-term memory publication-title: Neural Comput. – volume: 34 start-page: 2601 year: 2008 end-page: 2611 ident: b0015 article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition publication-title: Expert Syst. Appl. – volume: 31 start-page: 165 year: 2017 end-page: 173 ident: b0080 article-title: Heartbeat classification using projected and dynamic features of ECG signal publication-title: Biomed. Signal Process. Control – volume: 12 start-page: 495 year: 2008 end-page: 497 ident: b0200 article-title: Design of a compact low-pass filter with wide stopband publication-title: J. Shanghai Univ. (Engl.) – reference: Faust, O., Acharya U, R., Krishnan, S. et al. Analysis of cardiac signals using spatial filling index and time-frequency domain. BioMed Eng OnLine 3, 30 (2004). https://doi.org/10.1186/1475-925X-3-30. – reference: Tang S., Tang J. (2021) c. In: Arabnia H.R., Deligiannidis L., Shouno H., Tinetti F.G., Tran QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_67. – year: 2016 ident: b0190 article-title: An automated ECG beat classification system using convolutional neural networks publication-title: 2016 6th International Conference on IT Convergence and Security (ICITCS) – reference: Saxe A M, Mcclelland J L, Ganguli S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. 2013. – volume: 39 start-page: 11792 year: 2012 end-page: 11800 ident: b0175 article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health publication-title: Expert Syst. Appl. – volume: 23 start-page: 85 issue: S1 year: 2018 ident: 10.1016/j.bspc.2021.103228_b0140 article-title: Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory publication-title: J. Shanghai Jiaotong Univ. (Sci.) doi: 10.1007/s12204-018-2027-5 – year: 1990 ident: 10.1016/j.bspc.2021.103228_b0230 – volume: 46 start-page: 3238 issue: 9 year: 2013 ident: 10.1016/j.bspc.2021.103228_b0025 article-title: ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier publication-title: Measurement doi: 10.1016/j.measurement.2013.05.021 – volume: 31 start-page: 165 year: 2017 ident: 10.1016/j.bspc.2021.103228_b0080 article-title: Heartbeat classification using projected and dynamic features of ECG signal publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.07.010 – volume: 42 start-page: 778 issue: 5 year: 2009 ident: 10.1016/j.bspc.2021.103228_b0165 article-title: Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals publication-title: Measurement doi: 10.1016/j.measurement.2009.01.004 – volume: 170 start-page: 81 year: 2019 ident: 10.1016/j.bspc.2021.103228_b0275 article-title: ECG based human identification using Second Order Difference Plots publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.01.010 – volume: 89 start-page: 389 year: 2017 ident: 10.1016/j.bspc.2021.103228_b0005 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – ident: 10.1016/j.bspc.2021.103228_b0205 doi: 10.1186/1475-925X-3-30 – ident: 10.1016/j.bspc.2021.103228_b0115 doi: 10.1007/978-1-4419-1153-7_200378 – year: 2016 ident: 10.1016/j.bspc.2021.103228_b0190 article-title: An automated ECG beat classification system using convolutional neural networks – ident: 10.1016/j.bspc.2021.103228_b0030 – volume: 46 start-page: 21 issue: 01 year: 2019 ident: 10.1016/j.bspc.2021.103228_b0145 article-title: Summary of time series prediction methods publication-title: computer science – ident: 10.1016/j.bspc.2021.103228_b0225 doi: 10.1007/978-3-030-71051-4_67 – ident: 10.1016/j.bspc.2021.103228_b0040 doi: 10.1109/IEMBS.2002.1106452 – volume: 63 start-page: 664 issue: 3 year: 2016 ident: 10.1016/j.bspc.2021.103228_b0195 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 45 start-page: 58 year: 2018 ident: 10.1016/j.bspc.2021.103228_b0250 article-title: Deep learning with 3D-second order difference plot on respiratory sounds publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.05.014 – volume: 193 start-page: 105479 year: 2020 ident: 10.1016/j.bspc.2021.103228_b0235 article-title: Multi-information fusion neural networks for arrhythmia automatic detection publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105479 – volume: 79 start-page: 952 issue: 3 year: 2018 ident: 10.1016/j.bspc.2021.103228_b0035 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.08.039 – ident: 10.1016/j.bspc.2021.103228_b0120 doi: 10.1007/978-3-540-72613-5_8 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.bspc.2021.103228_b0185 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – ident: 10.1016/j.bspc.2021.103228_b0045 doi: 10.1109/IEMBS.1997.754471 – ident: 10.1016/j.bspc.2021.103228_b0180 – ident: 10.1016/j.bspc.2021.103228_b0095 doi: 10.1007/978-981-33-4062-6_5 – volume: 28 start-page: 2979 issue: 5 year: 2020 ident: 10.1016/j.bspc.2021.103228_b0265 article-title: Chronic obstructive pulmonary disease severity analysis using deep learning on multi-channel lung sounds publication-title: Turkish J. Electric. Eng. Comput. Sci. doi: 10.3906/elk-2004-68 – ident: 10.1016/j.bspc.2021.103228_b0085 – ident: 10.1016/j.bspc.2021.103228_b0135 doi: 10.1007/978-3-030-03243-2_862-1 – ident: 10.1016/j.bspc.2021.103228_b0070 – volume: 24 start-page: 1344 issue: 5 year: 2020 ident: 10.1016/j.bspc.2021.103228_b0260 article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2019.2931395 – ident: 10.1016/j.bspc.2021.103228_b0220 doi: 10.1007/978-3-030-75680-2_43 – volume: 20 issue: 3 year: 2001 ident: 10.1016/j.bspc.2021.103228_b0075 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng in Med and Biol doi: 10.1109/51.932724 – volume: 34 start-page: 2601 issue: 4 year: 2008 ident: 10.1016/j.bspc.2021.103228_b0015 article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.05.008 – year: 2017 ident: 10.1016/j.bspc.2021.103228_b0055 – volume: 108 start-page: 55 year: 2017 ident: 10.1016/j.bspc.2021.103228_b0155 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement doi: 10.1016/j.measurement.2017.05.022 – start-page: 99 year: 2020 ident: 10.1016/j.bspc.2021.103228_b0245 article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection publication-title: IEEE J. Biomed. Health. Inf. – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 10.1016/j.bspc.2021.103228_b0060 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.279181 – volume: 16 start-page: 1744 issue: 10 year: 2016 ident: 10.1016/j.bspc.2021.103228_b0160 article-title: Arrhythmia classification based on multi-domain feature extraction for an ECG recognition system publication-title: Sensors doi: 10.3390/s16101744 – volume: 12 start-page: 495 issue: 6 year: 2008 ident: 10.1016/j.bspc.2021.103228_b0200 article-title: Design of a compact low-pass filter with wide stopband publication-title: J. Shanghai Univ. (Engl.) doi: 10.1007/s11741-008-0606-2 – volume: 32 start-page: 15965 issue: 20 year: 2020 ident: 10.1016/j.bspc.2021.103228_b0210 article-title: Brain tumor detection: a long short-term memory (LSTM)-based learning model publication-title: Neural Comput & Applic doi: 10.1007/s00521-019-04650-7 – volume: 127 start-page: 144 year: 2016 ident: 10.1016/j.bspc.2021.103228_b0090 article-title: ECG-based heartbeat classification for arrhythmia detection: A survey publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.12.008 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.bspc.2021.103228_b0130 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 99 year: 2020 ident: 10.1016/j.bspc.2021.103228_b0240 article-title: A multi-tier deep learning model for arrhythmia detection publication-title: IEEE Trans. Instrum. Meas. – ident: 10.1016/j.bspc.2021.103228_b0270 doi: 10.18201/ijisae.2016SpecialIssue-146978 – volume: 127 start-page: 52 year: 2016 ident: 10.1016/j.bspc.2021.103228_b0170 article-title: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.12.024 – volume: vol 23 year: 2015 ident: 10.1016/j.bspc.2021.103228_b0050 article-title: Long Short Term Memory Networks for Anomaly Detection in Time Series – volume: 2 issue: 5 year: 2020 ident: 10.1016/j.bspc.2021.103228_b0215 article-title: An autoencoder-based deep learning approach for clustering time series data publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2584-8 – volume: 48 start-page: 1265 year: 2001 ident: 10.1016/j.bspc.2021.103228_b0105 article-title: ECG beat recognition using fuzzy hybrid neural network publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.959322 – ident: 10.1016/j.bspc.2021.103228_b0125 doi: 10.1007/978-1-4612-4978-8_5 – ident: 10.1016/j.bspc.2021.103228_b0065 doi: 10.1109/ICCV.2015.123 – volume: 39 start-page: 11792 issue: 14 year: 2012 ident: 10.1016/j.bspc.2021.103228_b0175 article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.072 – ident: 10.1016/j.bspc.2021.103228_b0100 doi: 10.1007/978-3-540-45216-4_15 – ident: 10.1016/j.bspc.2021.103228_b0020 – ident: 10.1016/j.bspc.2021.103228_b0255 doi: 10.1109/TBME.2015.2468589 |
| SSID | ssj0048714 |
| Score | 2.584372 |
| Snippet | •This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103228 |
| SubjectTerms | Arrhythmia Autoencoder Deep learning Heartbeat classification LSTM |
| Title | Arrhythmia classification of LSTM autoencoder based on time series anomaly detection |
| URI | https://dx.doi.org/10.1016/j.bspc.2021.103228 |
| Volume | 71 |
| WOSCitedRecordID | wos000710785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOaPzSBhvygVuVqYnzozlWaBOgMSFRUDlFju2sntqkatNp_e95z3bSdMDEDlyi1k1cK-_T82e_9z4T8n7IU8UHEnfcWeCFPC68YShirwiByjFZiMhETH9cJJeXw8kk_drrbZpamJtZUpbD29t08V9NDW1gbCydfYC5206hAT6D0eEKZofrPxl-tFxON_V0rrHsEagx5gK1vPDi2_hLn6_rCvUrUUYCZzFpIgZ6rvo4QIWqzdWczzZ9qWqTqVXuhH5Nwb6tptRXSGYXttigKXd02e9tqo9e20Tg8qpQehuEMu5uonk1b2ZP4whN80_eabIBlKleTddcd3cpgqCzS2EdaxKi8LE90LjxvPbwFec6UdnP1on_5tXtBsP1ab5aoOpk4J9ub96V0L4ztbUJh00u23WGfWTYR2b7eET2gyRKwafvjz6dTT430zgs5IwwfDtwV3FlkwPvjuTPrKbDVMYH5JlbYtCRhcZz0lPlC_K0Izz5koy3IKG7IKFVQREktAMSakBC4UcECbUgoQ4ktAXJK_L9_Gz84aPnztfwBBsMaq8QjHOfqZzFiYB1bxTFaRBx-AZrcCCKOYbM86gImQLe56s4jH1fRrJgvpCKKfaa7JVVqQ4JZaLw85yxEHoESpqnqZLAbVWYwoJAhsER8Zv3kwknPo9noMyyv1vmiPTbZxZWeuXeu6PmtWeOPFpSmAGK7nnuzYP-5S15skX3Mdmrl2t1Qh6Lm1qvlu8chH4BuuWQUA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arrhythmia+classification+of+LSTM+autoencoder+based+on+time+series+anomaly+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Liu%2C+Pengfei&rft.au=Sun%2C+Xiaoming&rft.au=Han%2C+Yang&rft.au=He%2C+Zhishuai&rft.date=2022-01-01&rft.issn=1746-8094&rft.volume=71&rft.spage=103228&rft_id=info:doi/10.1016%2Fj.bspc.2021.103228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103228 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |