Arrhythmia classification of LSTM autoencoder based on time series anomaly detection

•This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model has simple structure and principle and high accuracy.•The effectiveness of this method is proved by comparative experiments. Electrocardiogra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 71; s. 103228
Hlavní autoři: Liu, Pengfei, Sun, Xiaoming, Han, Yang, He, Zhishuai, Zhang, Weifeng, Wu, Chenxu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2022
Témata:
ISSN:1746-8094, 1746-8108
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model has simple structure and principle and high accuracy.•The effectiveness of this method is proved by comparative experiments. Electrocardiogram (ECG) is widely used in the diagnosis of heart disease because of its noninvasiveness and simplicity. The time series signals contained in the signal are usually obtained by the professional medical staff and used for the classification of heartbeat diagnosis. Professional physicians can use the electrocardiogram to know whether the patient has serious congenital heart disease and whether there is an abnormal heart structure. A lot of work has been done to achieve automatic classification of arrhythmia types. For example, Autoencoder can obtain the time series characteristics of ECG signals and be used for ECG signal classification. However, some traditional methods are abstruse and difficult to understand in principle. In the classification of arrhythmias carried out in recent years, some researchers only use Autoencoder to provide structural characteristics, without giving too much explanation to the design reasons. Therefore, we optimized a new network layer design based on LSTM to obtain the autoencoder structure. This structure can cooperate with the ECG preprocessing process designed by us to obtain better arrhythmia classification effect. This method enables direct input of ECG signals into the model without complicated preprocessing such as manual parameter input. Also, it eliminates the gradient vanishing problem existing in traditional convolutional neural network. We used five different types of ECG data in MIT-BIH arrhythmia database and MIT-BIH supraventricular arrhythmia database: atrial premature beats (APB), left bundle branch block (LBBB), normal heartbeat (NSR), right bundle branch block (RBBB) and ventricular premature beats (PVC). High accuracy, precision and recall were obtained. Compared with traditional methods, this method has better performance in arrhythmia classification.
AbstractList •This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model has simple structure and principle and high accuracy.•The effectiveness of this method is proved by comparative experiments. Electrocardiogram (ECG) is widely used in the diagnosis of heart disease because of its noninvasiveness and simplicity. The time series signals contained in the signal are usually obtained by the professional medical staff and used for the classification of heartbeat diagnosis. Professional physicians can use the electrocardiogram to know whether the patient has serious congenital heart disease and whether there is an abnormal heart structure. A lot of work has been done to achieve automatic classification of arrhythmia types. For example, Autoencoder can obtain the time series characteristics of ECG signals and be used for ECG signal classification. However, some traditional methods are abstruse and difficult to understand in principle. In the classification of arrhythmias carried out in recent years, some researchers only use Autoencoder to provide structural characteristics, without giving too much explanation to the design reasons. Therefore, we optimized a new network layer design based on LSTM to obtain the autoencoder structure. This structure can cooperate with the ECG preprocessing process designed by us to obtain better arrhythmia classification effect. This method enables direct input of ECG signals into the model without complicated preprocessing such as manual parameter input. Also, it eliminates the gradient vanishing problem existing in traditional convolutional neural network. We used five different types of ECG data in MIT-BIH arrhythmia database and MIT-BIH supraventricular arrhythmia database: atrial premature beats (APB), left bundle branch block (LBBB), normal heartbeat (NSR), right bundle branch block (RBBB) and ventricular premature beats (PVC). High accuracy, precision and recall were obtained. Compared with traditional methods, this method has better performance in arrhythmia classification.
ArticleNumber 103228
Author Wu, Chenxu
Han, Yang
Sun, Xiaoming
He, Zhishuai
Liu, Pengfei
Zhang, Weifeng
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Liu
  fullname: Liu, Pengfei
– sequence: 2
  givenname: Xiaoming
  surname: Sun
  fullname: Sun, Xiaoming
  email: sunxiaoming@hrbust.edu.cn
– sequence: 3
  givenname: Yang
  surname: Han
  fullname: Han, Yang
– sequence: 4
  givenname: Zhishuai
  surname: He
  fullname: He, Zhishuai
– sequence: 5
  givenname: Weifeng
  surname: Zhang
  fullname: Zhang, Weifeng
– sequence: 6
  givenname: Chenxu
  surname: Wu
  fullname: Wu, Chenxu
BookMark eNp9kMtKAzEUhoNUsK2-gKu8wNRkMpMm4KYUb1BxYV2HTHKGpsxMShKFvr0ZqxsXXZ0b34H_m6HJ4AdA6JaSBSWU3-0XTTyYRUlKmhesLMUFmtJlxQtBiZj89URWV2gW456QSixpNUXbVQi7Y9r1TmPT6Rhd64xOzg_Yt3jzvn3F-jN5GIy3EHCjI1icj8n1gCMEBxHrwfe6O2ILCcyIXqPLVncRbn7rHH08PmzXz8Xm7ellvdoUhhGSitYwrSmDhvGlkZLXNZdlrfMkpaCSNJzUoqnbikFZEQq84pTa2raMGgsM2ByVp78m-BgDtOoQXK_DUVGiRi9qr0YvavSiTl4yJP5BxqWfxClo151H708o5FBfDoKKxmU1YF3IyZX17hz-DeBagHY
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108597
crossref_primary_10_1109_TPEL_2023_3278716
crossref_primary_10_3390_asi6050095
crossref_primary_10_3390_app122010444
crossref_primary_10_1109_ACCESS_2024_3378730
crossref_primary_10_1109_JBHI_2025_3547531
crossref_primary_10_1109_ACCESS_2024_3406413
crossref_primary_10_1109_THMS_2023_3244938
crossref_primary_10_1007_s13534_025_00486_4
crossref_primary_10_1016_j_procs_2024_09_153
crossref_primary_10_1109_ACCESS_2023_3339500
crossref_primary_10_1016_j_bspc_2024_106968
crossref_primary_10_3390_bioengineering10040405
crossref_primary_10_1109_JSEN_2022_3230361
crossref_primary_10_1109_TIM_2022_3232646
crossref_primary_10_1007_s10489_023_04642_0
crossref_primary_10_1109_TIM_2024_3376017
crossref_primary_10_1007_s10489_024_06204_4
crossref_primary_10_1007_s11227_022_04792_x
crossref_primary_10_1088_1361_6579_ac6aa2
crossref_primary_10_1016_j_jnca_2025_104216
crossref_primary_10_3233_HIS_240017
crossref_primary_10_1016_j_compositesb_2024_111802
crossref_primary_10_1109_ACCESS_2024_3426675
crossref_primary_10_3390_w16182631
crossref_primary_10_1109_ACCESS_2025_3572484
crossref_primary_10_1016_j_cmpb_2024_108455
crossref_primary_10_1016_j_compag_2023_108252
crossref_primary_10_1038_s41598_025_93906_5
crossref_primary_10_1186_s12911_025_03127_z
crossref_primary_10_1155_2022_5490779
crossref_primary_10_1186_s12874_024_02223_4
crossref_primary_10_1109_ACCESS_2023_3241013
crossref_primary_10_1109_TNNLS_2024_3369064
crossref_primary_10_1088_1742_6596_2449_1_012033
crossref_primary_10_3390_s22228981
crossref_primary_10_1109_ACCESS_2023_3305473
crossref_primary_10_1063_5_0219409
crossref_primary_10_1016_j_bspc_2022_103686
crossref_primary_10_1016_j_bspc_2025_108535
crossref_primary_10_3389_frai_2024_1381921
crossref_primary_10_1007_s10489_023_04985_8
crossref_primary_10_1016_j_bspc_2022_103910
crossref_primary_10_1016_j_asoc_2023_111148
crossref_primary_10_1109_ACCESS_2024_3402359
crossref_primary_10_54392_irjmt2539
crossref_primary_10_1016_j_neucom_2024_128368
crossref_primary_10_1016_j_neunet_2024_106395
crossref_primary_10_1016_j_heliyon_2023_e13601
crossref_primary_10_1016_j_procs_2023_01_009
crossref_primary_10_1016_j_inffus_2022_10_008
crossref_primary_10_1016_j_ins_2024_121516
crossref_primary_10_1109_JAS_2025_125117
crossref_primary_10_1109_TIM_2022_3204316
crossref_primary_10_3233_AIC_230064
crossref_primary_10_1007_s10489_023_05029_x
crossref_primary_10_1007_s11760_023_02737_2
crossref_primary_10_1016_j_ipm_2023_103383
crossref_primary_10_1109_ACCESS_2023_3325896
crossref_primary_10_1016_j_bspc_2024_106328
crossref_primary_10_1016_j_medengphy_2024_104267
crossref_primary_10_1016_j_cmpb_2025_108898
crossref_primary_10_1016_j_knosys_2025_113346
crossref_primary_10_1093_comjnl_bxac087
crossref_primary_10_1007_s00170_025_15069_x
crossref_primary_10_1515_bmt_2022_0406
crossref_primary_10_3390_su15129289
crossref_primary_10_1007_s11042_023_18009_7
crossref_primary_10_1016_j_eswa_2025_129425
crossref_primary_10_1063_5_0221722
Cites_doi 10.1007/s12204-018-2027-5
10.1016/j.measurement.2013.05.021
10.1016/j.bspc.2016.07.010
10.1016/j.measurement.2009.01.004
10.1016/j.cmpb.2019.01.010
10.1016/j.compbiomed.2017.08.022
10.1186/1475-925X-3-30
10.1007/978-1-4419-1153-7_200378
10.1007/978-3-030-71051-4_67
10.1109/IEMBS.2002.1106452
10.1109/TBME.2015.2468589
10.1016/j.bspc.2018.05.014
10.1016/j.cmpb.2020.105479
10.1016/j.future.2017.08.039
10.1007/978-3-540-72613-5_8
10.1016/j.ins.2017.04.012
10.1109/IEMBS.1997.754471
10.1007/978-981-33-4062-6_5
10.3906/elk-2004-68
10.1007/978-3-030-03243-2_862-1
10.1109/JBHI.2019.2931395
10.1007/978-3-030-75680-2_43
10.1109/51.932724
10.1016/j.eswa.2007.05.008
10.1016/j.measurement.2017.05.022
10.1109/72.279181
10.3390/s16101744
10.1007/s11741-008-0606-2
10.1007/s00521-019-04650-7
10.1016/j.cmpb.2015.12.008
10.1162/neco.1997.9.8.1735
10.18201/ijisae.2016SpecialIssue-146978
10.1016/j.cmpb.2015.12.024
10.1007/s42452-020-2584-8
10.1109/10.959322
10.1007/978-1-4612-4978-8_5
10.1109/ICCV.2015.123
10.1016/j.eswa.2012.04.072
10.1007/978-3-540-45216-4_15
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.103228
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_103228
S1746809421008259
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-fc3aa13eb367c996556925a367998190b6058b5f43e2401e64611d5df31cde3e3
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 22:23:33 EST 2025
Sat Nov 29 07:04:13 EST 2025
Fri Feb 23 02:42:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
LSTM
Arrhythmia
Autoencoder
Heartbeat classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-fc3aa13eb367c996556925a367998190b6058b5f43e2401e64611d5df31cde3e3
ParticipantIDs crossref_primary_10_1016_j_bspc_2021_103228
crossref_citationtrail_10_1016_j_bspc_2021_103228
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103228
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Amin, Sharif, Raza, Saba, Sial, Shad (b0210) 2020; 32
(2013) Laplace Transform. In: Gass S.I., Fu M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_200378.
Luz, Schwartz, Cámara-Chávez, Menotti (b0090) 2016; 127
Altan G, Yayk A, Kutlu Y. Deep Learning with ConvNet Predicts Imagery Tasks Through EEG. Neural Processing Letters, 2021:1-16.Kiranyaz, S., T. Ince, and M. Gabbouj, Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 2016. 63 (3): p. 664-675.
Chen, Wang, Liu, Chang, Wang, He, Huang (b0235) 2020; 193
Elhaj, Salim, Harris, Swee, Ahmed (b0170) 2016; 127
Chen, Hua, Li, Li, Gao (b0080) 2017; 31
Faust, O., Acharya U, R., Krishnan, S. et al. Analysis of cardiac signals using spatial filling index and time-frequency domain. BioMed Eng OnLine 3, 30 (2004). https://doi.org/10.1186/1475-925X-3-30.
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (b0005) 2017; 89
N. Srinivasan, D.F. Ge, S.M. Krishnan, ”Autoregressive modeling and classification of cardiac arrhythmias”, in Proceedings of the Second Joint Conference Houston, TX, USA, October 2326, 2002.
Yang, Xue (b0200) 2008; 12
Saxe A M, Mcclelland J L, Ganguli S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. 2013.
Sahoo, Kanungo, Behera, Sabut (b0155) 2017; 108
Li, Yuan, Wang, Cui, Cao (b0160) 2016; 16
Malhotra, Vig, Shroff, Agarwal (b0050) 2015; vol 23
Yeh, Wang, Chiou (b0165) 2009; 42
Apolloni B , Marinaro M , R Tagliaferri. [Lecture Notes in Computer Science] Neural Nets Volume 2859 || An Adaptive Learning Algorithm for ECG Noise and Baseline Drift Removal. 2003, 10.1007/b13826(Chapter 15):139-147.
Moody, Mark (b0075) 2001; 20
Alexander S.T. (1986) The Least Mean Squares (LMS) Algorithm. In: Adaptive Signal Processing. Texts and Monographs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4978-8_5.
Gómez J., Quispe A., Kemper G. (2021) A Comparative Study of Deep Learning Techniques Aimed at Detection of Arrhythmias from ECG Signals. In: Iano Y., Saotome O., Kemper G., Mendes de Seixas A.C., Gomes de Oliveira G. (eds) Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). BTSym 2020. Smart Innovation, Systems and Technologies, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75680-2_43.
O.S. Lih E.Y.K. Ng T.R. San et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Computers in Biology and Medicine 2018:S0010482518301446-.
(2007) Adaptive Filters. In: Digital Signal Processing with Field Programmable Gate Arrays. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72613-5_8.
Acharya, Fujita, Lih, Hagiwara, Tan, Adam (b0185) 2017; 405
Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (b0035) 2018; 79
Yang, Pan, Bai (b0145) 2019; 46
He K, Zhang X, Ren S, et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015.
Rui, Zhang, Ren (b0055) 2017
Song, Shi, Chen, Huang, Xia (b0140) 2018; 23
Risk, Marcel0 R and Sobh, Jamil F and Saul, J Philip, ”Beat detection and classification of ECG using self organizing maps”, Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, vol 1, pp. 89-91, IEEE, Chicago, IL. USA.
Greenwald (b0230) 1990
Altan, Kutlu, Gken (b0265) 2020; 28
Tavakoli, Siami-Namini, Adl Khanghah, Mirza Soltani, Siami Namin (b0215) 2020; 2
Altan, Kutlu, Allahverdi (b0260) 2020; 24
Rajpurkar P , Hannun A Y , Haghpanahi M, et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017.Rajpurkar P , Hannun A Y , Haghpanahi M , et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017.
Turnip M, Dharma A , Andrian, et al. Integration of FIR and Butterworth Algorithm for Real-Time Extraction of Recorded ECG Signals[M]. 2021.
Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, Wavelet Toolbox for use with MATLAB, vol. 1, March 1996.
Hammad, Iliyasu, Subasi (b0240) 2020
Hochreiter, Schmidhuber (b0130) 1997; 9
Lempitsky V. (2020) Autoencoder. In: Ikeuchi K. (eds) Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_862-1.
LIN, DU, CHEN (b0015) 2008; 34
Altan G, Kutlu Y, Allahverdi N. A Multistage Deep Belief Networks Application on Arrhythmia Classification. 2016.
Altan, Kutlu, Yeniad (b0275) 2019; 170
Tang S., Tang J. (2021) c. In: Arabnia H.R., Deligiannidis L., Shouno H., Tinetti F.G., Tran QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_67.
Braunwald E. (Editor), Heart Disease,”A Textbook of Cardiovascular Medicine”, Fifth Edition, p. 108, Philadelphia, W.B. Saunders Co., 1997. ISBN 0-7216-5666-8.
Rai, Trivedi, Shukla (b0025) 2013; 46
Altan, Kutlu, Pekmezci, Nural (b0250) 2018; 45
Martis, Acharya, Mandana, Ray, Chakraborty (b0175) 2012; 39
Wang, Fan, Li (b0245) 2020
Osowski, Linh (b0105) 2001; 48
Bengio, Simard, Frasconi (b0060) 1994; 5
Zubair, Kim, Yoon (b0190) 2016
Kiranyaz, Ince, Gabbouj (b0195) 2016; 63
10.1016/j.bspc.2021.103228_b0220
10.1016/j.bspc.2021.103228_b0100
10.1016/j.bspc.2021.103228_b0020
10.1016/j.bspc.2021.103228_b0065
Chen (10.1016/j.bspc.2021.103228_b0080) 2017; 31
10.1016/j.bspc.2021.103228_b0180
Rui (10.1016/j.bspc.2021.103228_b0055) 2017
Martis (10.1016/j.bspc.2021.103228_b0175) 2012; 39
Tavakoli (10.1016/j.bspc.2021.103228_b0215) 2020; 2
Hochreiter (10.1016/j.bspc.2021.103228_b0130) 1997; 9
Elhaj (10.1016/j.bspc.2021.103228_b0170) 2016; 127
10.1016/j.bspc.2021.103228_b0225
Luz (10.1016/j.bspc.2021.103228_b0090) 2016; 127
Altan (10.1016/j.bspc.2021.103228_b0265) 2020; 28
Kiranyaz (10.1016/j.bspc.2021.103228_b0195) 2016; 63
Wang (10.1016/j.bspc.2021.103228_b0245) 2020
10.1016/j.bspc.2021.103228_b0095
Li (10.1016/j.bspc.2021.103228_b0160) 2016; 16
Yang (10.1016/j.bspc.2021.103228_b0200) 2008; 12
Bengio (10.1016/j.bspc.2021.103228_b0060) 1994; 5
Song (10.1016/j.bspc.2021.103228_b0140) 2018; 23
Greenwald (10.1016/j.bspc.2021.103228_b0230) 1990
Acharya (10.1016/j.bspc.2021.103228_b0005) 2017; 89
Zubair (10.1016/j.bspc.2021.103228_b0190) 2016
Altan (10.1016/j.bspc.2021.103228_b0250) 2018; 45
Rai (10.1016/j.bspc.2021.103228_b0025) 2013; 46
Sahoo (10.1016/j.bspc.2021.103228_b0155) 2017; 108
10.1016/j.bspc.2021.103228_b0255
10.1016/j.bspc.2021.103228_b0135
Acharya (10.1016/j.bspc.2021.103228_b0185) 2017; 405
10.1016/j.bspc.2021.103228_b0045
Osowski (10.1016/j.bspc.2021.103228_b0105) 2001; 48
10.1016/j.bspc.2021.103228_b0120
10.1016/j.bspc.2021.103228_b0040
10.1016/j.bspc.2021.103228_b0085
Acharya (10.1016/j.bspc.2021.103228_b0035) 2018; 79
Altan (10.1016/j.bspc.2021.103228_b0275) 2019; 170
Moody (10.1016/j.bspc.2021.103228_b0075) 2001; 20
Hammad (10.1016/j.bspc.2021.103228_b0240) 2020
Amin (10.1016/j.bspc.2021.103228_b0210) 2020; 32
Yeh (10.1016/j.bspc.2021.103228_b0165) 2009; 42
10.1016/j.bspc.2021.103228_b0205
10.1016/j.bspc.2021.103228_b0125
10.1016/j.bspc.2021.103228_b0030
10.1016/j.bspc.2021.103228_b0270
10.1016/j.bspc.2021.103228_b0070
Chen (10.1016/j.bspc.2021.103228_b0235) 2020; 193
LIN (10.1016/j.bspc.2021.103228_b0015) 2008; 34
Yang (10.1016/j.bspc.2021.103228_b0145) 2019; 46
Altan (10.1016/j.bspc.2021.103228_b0260) 2020; 24
Malhotra (10.1016/j.bspc.2021.103228_b0050) 2015; vol 23
10.1016/j.bspc.2021.103228_b0115
References_xml – volume: 46
  start-page: 21
  year: 2019
  end-page: 28
  ident: b0145
  article-title: Summary of time series prediction methods
  publication-title: computer science
– volume: 63
  start-page: 664
  year: 2016
  end-page: 675
  ident: b0195
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 45
  start-page: 58
  year: 2018
  end-page: 69
  ident: b0250
  article-title: Deep learning with 3D-second order difference plot on respiratory sounds
  publication-title: Biomed. Signal Process. Control
– reference: Apolloni B , Marinaro M , R Tagliaferri. [Lecture Notes in Computer Science] Neural Nets Volume 2859 || An Adaptive Learning Algorithm for ECG Noise and Baseline Drift Removal. 2003, 10.1007/b13826(Chapter 15):139-147.
– reference: N. Srinivasan, D.F. Ge, S.M. Krishnan, ”Autoregressive modeling and classification of cardiac arrhythmias”, in Proceedings of the Second Joint Conference Houston, TX, USA, October 2326, 2002.
– reference: Altan G, Yayk A, Kutlu Y. Deep Learning with ConvNet Predicts Imagery Tasks Through EEG. Neural Processing Letters, 2021:1-16.Kiranyaz, S., T. Ince, and M. Gabbouj, Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 2016. 63 (3): p. 664-675.
– volume: 23
  start-page: 85
  year: 2018
  end-page: 94
  ident: b0140
  article-title: Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory
  publication-title: J. Shanghai Jiaotong Univ. (Sci.)
– reference: Altan G, Kutlu Y, Allahverdi N. A Multistage Deep Belief Networks Application on Arrhythmia Classification. 2016.
– reference: Lempitsky V. (2020) Autoencoder. In: Ikeuchi K. (eds) Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_862-1.
– reference: Gómez J., Quispe A., Kemper G. (2021) A Comparative Study of Deep Learning Techniques Aimed at Detection of Arrhythmias from ECG Signals. In: Iano Y., Saotome O., Kemper G., Mendes de Seixas A.C., Gomes de Oliveira G. (eds) Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). BTSym 2020. Smart Innovation, Systems and Technologies, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75680-2_43.
– reference: (2013) Laplace Transform. In: Gass S.I., Fu M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_200378.
– volume: 79
  start-page: 952
  year: 2018
  end-page: 959
  ident: b0035
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Generation Computer Systems
– reference: Rajpurkar P , Hannun A Y , Haghpanahi M, et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017.Rajpurkar P , Hannun A Y , Haghpanahi M , et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017.
– start-page: 99
  year: 2020
  ident: b0245
  article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 16
  start-page: 1744
  year: 2016
  ident: b0160
  article-title: Arrhythmia classification based on multi-domain feature extraction for an ECG recognition system
  publication-title: Sensors
– volume: 170
  start-page: 81
  year: 2019
  end-page: 93
  ident: b0275
  article-title: ECG based human identification using Second Order Difference Plots
  publication-title: Comput. Methods Programs Biomed.
– volume: 32
  start-page: 15965
  year: 2020
  end-page: 15973
  ident: b0210
  article-title: Brain tumor detection: a long short-term memory (LSTM)-based learning model
  publication-title: Neural Comput & Applic
– volume: 42
  start-page: 778
  year: 2009
  end-page: 789
  ident: b0165
  article-title: Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals
  publication-title: Measurement
– volume: 24
  start-page: 1344
  year: 2020
  end-page: 1350
  ident: b0260
  article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease
  publication-title: IEEE J. Biomed. Health. Inf.
– reference: Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, Wavelet Toolbox for use with MATLAB, vol. 1, March 1996.
– volume: 127
  start-page: 144
  year: 2016
  end-page: 164
  ident: b0090
  article-title: ECG-based heartbeat classification for arrhythmia detection: A survey
  publication-title: Comput. Methods Programs Biomed.
– volume: 20
  year: 2001
  ident: b0075
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng in Med and Biol
– volume: 108
  start-page: 55
  year: 2017
  end-page: 66
  ident: b0155
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
– volume: 127
  start-page: 52
  year: 2016
  end-page: 63
  ident: b0170
  article-title: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.
  publication-title: Comput. Methods Programs Biomed.
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: b0005
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– reference: Braunwald E. (Editor), Heart Disease,”A Textbook of Cardiovascular Medicine”, Fifth Edition, p. 108, Philadelphia, W.B. Saunders Co., 1997. ISBN 0-7216-5666-8.
– start-page: 99
  year: 2020
  ident: b0240
  article-title: A multi-tier deep learning model for arrhythmia detection
  publication-title: IEEE Trans. Instrum. Meas.
– reference: He K, Zhang X, Ren S, et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015.
– reference: Risk, Marcel0 R and Sobh, Jamil F and Saul, J Philip, ”Beat detection and classification of ECG using self organizing maps”, Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, vol 1, pp. 89-91, IEEE, Chicago, IL. USA.
– volume: 193
  start-page: 105479
  year: 2020
  ident: b0235
  article-title: Multi-information fusion neural networks for arrhythmia automatic detection
  publication-title: Comput. Methods Programs Biomed.
– volume: 28
  start-page: 2979
  year: 2020
  end-page: 2996
  ident: b0265
  article-title: Chronic obstructive pulmonary disease severity analysis using deep learning on multi-channel lung sounds
  publication-title: Turkish J. Electric. Eng. Comput. Sci.
– reference: O.S. Lih E.Y.K. Ng T.R. San et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Computers in Biology and Medicine 2018:S0010482518301446-.
– year: 2017
  ident: b0055
  article-title: Data Reconstruction Based on Supervised Deep Auto-Encoder[C]// Pacific Rim Conference on Multimedia
– volume: 46
  start-page: 3238
  year: 2013
  end-page: 3246
  ident: b0025
  article-title: ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier
  publication-title: Measurement
– reference: (2007) Adaptive Filters. In: Digital Signal Processing with Field Programmable Gate Arrays. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72613-5_8.
– reference: Turnip M, Dharma A , Andrian, et al. Integration of FIR and Butterworth Algorithm for Real-Time Extraction of Recorded ECG Signals[M]. 2021.
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b0060
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Networks
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: b0185
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 2
  year: 2020
  ident: b0215
  article-title: An autoencoder-based deep learning approach for clustering time series data
  publication-title: SN Appl. Sci.
– volume: 48
  start-page: 1265
  year: 2001
  end-page: 1271
  ident: b0105
  article-title: ECG beat recognition using fuzzy hybrid neural network
  publication-title: IEEE Trans. Biomed. Eng.
– year: 1990
  ident: b0230
  article-title: Improved Detection And Classification Of Arrhythmias In Noise-Corrupted Electrocardiograms Using Contextual Information
– volume: vol 23
  year: 2015
  ident: b0050
  article-title: Long Short Term Memory Networks for Anomaly Detection in Time Series
  publication-title: European Symposium on Artificial Neural Networks
– reference: Alexander S.T. (1986) The Least Mean Squares (LMS) Algorithm. In: Adaptive Signal Processing. Texts and Monographs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4978-8_5.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0130
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 34
  start-page: 2601
  year: 2008
  end-page: 2611
  ident: b0015
  article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 165
  year: 2017
  end-page: 173
  ident: b0080
  article-title: Heartbeat classification using projected and dynamic features of ECG signal
  publication-title: Biomed. Signal Process. Control
– volume: 12
  start-page: 495
  year: 2008
  end-page: 497
  ident: b0200
  article-title: Design of a compact low-pass filter with wide stopband
  publication-title: J. Shanghai Univ. (Engl.)
– reference: Faust, O., Acharya U, R., Krishnan, S. et al. Analysis of cardiac signals using spatial filling index and time-frequency domain. BioMed Eng OnLine 3, 30 (2004). https://doi.org/10.1186/1475-925X-3-30.
– reference: Tang S., Tang J. (2021) c. In: Arabnia H.R., Deligiannidis L., Shouno H., Tinetti F.G., Tran QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_67.
– year: 2016
  ident: b0190
  article-title: An automated ECG beat classification system using convolutional neural networks
  publication-title: 2016 6th International Conference on IT Convergence and Security (ICITCS)
– reference: Saxe A M, Mcclelland J L, Ganguli S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. 2013.
– volume: 39
  start-page: 11792
  year: 2012
  end-page: 11800
  ident: b0175
  article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 85
  issue: S1
  year: 2018
  ident: 10.1016/j.bspc.2021.103228_b0140
  article-title: Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory
  publication-title: J. Shanghai Jiaotong Univ. (Sci.)
  doi: 10.1007/s12204-018-2027-5
– year: 1990
  ident: 10.1016/j.bspc.2021.103228_b0230
– volume: 46
  start-page: 3238
  issue: 9
  year: 2013
  ident: 10.1016/j.bspc.2021.103228_b0025
  article-title: ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.05.021
– volume: 31
  start-page: 165
  year: 2017
  ident: 10.1016/j.bspc.2021.103228_b0080
  article-title: Heartbeat classification using projected and dynamic features of ECG signal
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.07.010
– volume: 42
  start-page: 778
  issue: 5
  year: 2009
  ident: 10.1016/j.bspc.2021.103228_b0165
  article-title: Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2009.01.004
– volume: 170
  start-page: 81
  year: 2019
  ident: 10.1016/j.bspc.2021.103228_b0275
  article-title: ECG based human identification using Second Order Difference Plots
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.01.010
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.bspc.2021.103228_b0005
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: 10.1016/j.bspc.2021.103228_b0205
  doi: 10.1186/1475-925X-3-30
– ident: 10.1016/j.bspc.2021.103228_b0115
  doi: 10.1007/978-1-4419-1153-7_200378
– year: 2016
  ident: 10.1016/j.bspc.2021.103228_b0190
  article-title: An automated ECG beat classification system using convolutional neural networks
– ident: 10.1016/j.bspc.2021.103228_b0030
– volume: 46
  start-page: 21
  issue: 01
  year: 2019
  ident: 10.1016/j.bspc.2021.103228_b0145
  article-title: Summary of time series prediction methods
  publication-title: computer science
– ident: 10.1016/j.bspc.2021.103228_b0225
  doi: 10.1007/978-3-030-71051-4_67
– ident: 10.1016/j.bspc.2021.103228_b0040
  doi: 10.1109/IEMBS.2002.1106452
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2021.103228_b0195
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 45
  start-page: 58
  year: 2018
  ident: 10.1016/j.bspc.2021.103228_b0250
  article-title: Deep learning with 3D-second order difference plot on respiratory sounds
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.05.014
– volume: 193
  start-page: 105479
  year: 2020
  ident: 10.1016/j.bspc.2021.103228_b0235
  article-title: Multi-information fusion neural networks for arrhythmia automatic detection
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105479
– volume: 79
  start-page: 952
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2021.103228_b0035
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.08.039
– ident: 10.1016/j.bspc.2021.103228_b0120
  doi: 10.1007/978-3-540-72613-5_8
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.bspc.2021.103228_b0185
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– ident: 10.1016/j.bspc.2021.103228_b0045
  doi: 10.1109/IEMBS.1997.754471
– ident: 10.1016/j.bspc.2021.103228_b0180
– ident: 10.1016/j.bspc.2021.103228_b0095
  doi: 10.1007/978-981-33-4062-6_5
– volume: 28
  start-page: 2979
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2021.103228_b0265
  article-title: Chronic obstructive pulmonary disease severity analysis using deep learning on multi-channel lung sounds
  publication-title: Turkish J. Electric. Eng. Comput. Sci.
  doi: 10.3906/elk-2004-68
– ident: 10.1016/j.bspc.2021.103228_b0085
– ident: 10.1016/j.bspc.2021.103228_b0135
  doi: 10.1007/978-3-030-03243-2_862-1
– ident: 10.1016/j.bspc.2021.103228_b0070
– volume: 24
  start-page: 1344
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2021.103228_b0260
  article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2019.2931395
– ident: 10.1016/j.bspc.2021.103228_b0220
  doi: 10.1007/978-3-030-75680-2_43
– volume: 20
  issue: 3
  year: 2001
  ident: 10.1016/j.bspc.2021.103228_b0075
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng in Med and Biol
  doi: 10.1109/51.932724
– volume: 34
  start-page: 2601
  issue: 4
  year: 2008
  ident: 10.1016/j.bspc.2021.103228_b0015
  article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.008
– year: 2017
  ident: 10.1016/j.bspc.2021.103228_b0055
– volume: 108
  start-page: 55
  year: 2017
  ident: 10.1016/j.bspc.2021.103228_b0155
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.05.022
– start-page: 99
  year: 2020
  ident: 10.1016/j.bspc.2021.103228_b0245
  article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.bspc.2021.103228_b0060
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.279181
– volume: 16
  start-page: 1744
  issue: 10
  year: 2016
  ident: 10.1016/j.bspc.2021.103228_b0160
  article-title: Arrhythmia classification based on multi-domain feature extraction for an ECG recognition system
  publication-title: Sensors
  doi: 10.3390/s16101744
– volume: 12
  start-page: 495
  issue: 6
  year: 2008
  ident: 10.1016/j.bspc.2021.103228_b0200
  article-title: Design of a compact low-pass filter with wide stopband
  publication-title: J. Shanghai Univ. (Engl.)
  doi: 10.1007/s11741-008-0606-2
– volume: 32
  start-page: 15965
  issue: 20
  year: 2020
  ident: 10.1016/j.bspc.2021.103228_b0210
  article-title: Brain tumor detection: a long short-term memory (LSTM)-based learning model
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-019-04650-7
– volume: 127
  start-page: 144
  year: 2016
  ident: 10.1016/j.bspc.2021.103228_b0090
  article-title: ECG-based heartbeat classification for arrhythmia detection: A survey
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.12.008
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.bspc.2021.103228_b0130
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 99
  year: 2020
  ident: 10.1016/j.bspc.2021.103228_b0240
  article-title: A multi-tier deep learning model for arrhythmia detection
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.bspc.2021.103228_b0270
  doi: 10.18201/ijisae.2016SpecialIssue-146978
– volume: 127
  start-page: 52
  year: 2016
  ident: 10.1016/j.bspc.2021.103228_b0170
  article-title: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.12.024
– volume: vol 23
  year: 2015
  ident: 10.1016/j.bspc.2021.103228_b0050
  article-title: Long Short Term Memory Networks for Anomaly Detection in Time Series
– volume: 2
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2021.103228_b0215
  article-title: An autoencoder-based deep learning approach for clustering time series data
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2584-8
– volume: 48
  start-page: 1265
  year: 2001
  ident: 10.1016/j.bspc.2021.103228_b0105
  article-title: ECG beat recognition using fuzzy hybrid neural network
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.959322
– ident: 10.1016/j.bspc.2021.103228_b0125
  doi: 10.1007/978-1-4612-4978-8_5
– ident: 10.1016/j.bspc.2021.103228_b0065
  doi: 10.1109/ICCV.2015.123
– volume: 39
  start-page: 11792
  issue: 14
  year: 2012
  ident: 10.1016/j.bspc.2021.103228_b0175
  article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.04.072
– ident: 10.1016/j.bspc.2021.103228_b0100
  doi: 10.1007/978-3-540-45216-4_15
– ident: 10.1016/j.bspc.2021.103228_b0020
– ident: 10.1016/j.bspc.2021.103228_b0255
  doi: 10.1109/TBME.2015.2468589
SSID ssj0048714
Score 2.584372
Snippet •This method does not need to manually set the model input parameters.•This method avoids the problems of gradient disappearance and is more stable.•The model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103228
SubjectTerms Arrhythmia
Autoencoder
Deep learning
Heartbeat classification
LSTM
Title Arrhythmia classification of LSTM autoencoder based on time series anomaly detection
URI https://dx.doi.org/10.1016/j.bspc.2021.103228
Volume 71
WOSCitedRecordID wos000710785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOaPzSBhvygVuVqYnzozlWaBOgMSFRUDlFju2sntqkatNp_e95z3bSdMDEDlyi1k1cK-_T82e_9z4T8n7IU8UHEnfcWeCFPC68YShirwiByjFZiMhETH9cJJeXw8kk_drrbZpamJtZUpbD29t08V9NDW1gbCydfYC5206hAT6D0eEKZofrPxl-tFxON_V0rrHsEagx5gK1vPDi2_hLn6_rCvUrUUYCZzFpIgZ6rvo4QIWqzdWczzZ9qWqTqVXuhH5Nwb6tptRXSGYXttigKXd02e9tqo9e20Tg8qpQehuEMu5uonk1b2ZP4whN80_eabIBlKleTddcd3cpgqCzS2EdaxKi8LE90LjxvPbwFec6UdnP1on_5tXtBsP1ab5aoOpk4J9ub96V0L4ztbUJh00u23WGfWTYR2b7eET2gyRKwafvjz6dTT430zgs5IwwfDtwV3FlkwPvjuTPrKbDVMYH5JlbYtCRhcZz0lPlC_K0Izz5koy3IKG7IKFVQREktAMSakBC4UcECbUgoQ4ktAXJK_L9_Gz84aPnztfwBBsMaq8QjHOfqZzFiYB1bxTFaRBx-AZrcCCKOYbM86gImQLe56s4jH1fRrJgvpCKKfaa7JVVqQ4JZaLw85yxEHoESpqnqZLAbVWYwoJAhsER8Zv3kwknPo9noMyyv1vmiPTbZxZWeuXeu6PmtWeOPFpSmAGK7nnuzYP-5S15skX3Mdmrl2t1Qh6Lm1qvlu8chH4BuuWQUA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arrhythmia+classification+of+LSTM+autoencoder+based+on+time+series+anomaly+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Liu%2C+Pengfei&rft.au=Sun%2C+Xiaoming&rft.au=Han%2C+Yang&rft.au=He%2C+Zhishuai&rft.date=2022-01-01&rft.issn=1746-8094&rft.volume=71&rft.spage=103228&rft_id=info:doi/10.1016%2Fj.bspc.2021.103228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon