Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach

With the rapid advancement of Internet of Things (IoT) devices, a variety of IoT applications that require a real-time response and low latency have emerged. Fog computing has become a viable platform for processing emerging IoT applications. However, fog computing devices tend to be highly distribu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of network and computer applications Ročník 201; s. 103333
Hlavní autori: Azizi, Sadoon, Shojafar, Mohammad, Abawajy, Jemal, Buyya, Rajkumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2022
Predmet:
ISSN:1084-8045, 1095-8592
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the rapid advancement of Internet of Things (IoT) devices, a variety of IoT applications that require a real-time response and low latency have emerged. Fog computing has become a viable platform for processing emerging IoT applications. However, fog computing devices tend to be highly distributed, dynamic, and resource-constrained, so deploying fog computing resources effectively for executing heterogeneous and delay-sensitive IoT tasks is a fundamental challenge. In this paper, we mathematically formulate the task scheduling problem to minimize the total energy consumption of fog nodes (FNs) while meeting the quality of service (QoS) requirements of IoT tasks. We also consider the minimization of the deadline violation time in our model. Next, we propose two semi-greedy based algorithms, namely priority-aware semi-greedy (PSG) and PSG with multistart procedure (PSG-M), to efficiently map IoT tasks to FNs. We evaluate the performance of the proposed task scheduling approaches with respect to the percentage of IoT tasks that meet their deadline requirement, total energy consumption, total deadline violation time, and the system’s makespan. Compared with existing algorithms, the experiment results confirm that the proposed algorithms improve the percentage of tasks meeting their deadline requirement up to 1.35x and decrease the total deadline violation time up to 97.6% compared to the second-best results, respectively, while the energy consumption of fog resources and makespan of the system are optimized.
AbstractList With the rapid advancement of Internet of Things (IoT) devices, a variety of IoT applications that require a real-time response and low latency have emerged. Fog computing has become a viable platform for processing emerging IoT applications. However, fog computing devices tend to be highly distributed, dynamic, and resource-constrained, so deploying fog computing resources effectively for executing heterogeneous and delay-sensitive IoT tasks is a fundamental challenge. In this paper, we mathematically formulate the task scheduling problem to minimize the total energy consumption of fog nodes (FNs) while meeting the quality of service (QoS) requirements of IoT tasks. We also consider the minimization of the deadline violation time in our model. Next, we propose two semi-greedy based algorithms, namely priority-aware semi-greedy (PSG) and PSG with multistart procedure (PSG-M), to efficiently map IoT tasks to FNs. We evaluate the performance of the proposed task scheduling approaches with respect to the percentage of IoT tasks that meet their deadline requirement, total energy consumption, total deadline violation time, and the system’s makespan. Compared with existing algorithms, the experiment results confirm that the proposed algorithms improve the percentage of tasks meeting their deadline requirement up to 1.35x and decrease the total deadline violation time up to 97.6% compared to the second-best results, respectively, while the energy consumption of fog resources and makespan of the system are optimized.
ArticleNumber 103333
Author Buyya, Rajkumar
Shojafar, Mohammad
Azizi, Sadoon
Abawajy, Jemal
Author_xml – sequence: 1
  givenname: Sadoon
  orcidid: 0000-0002-5788-0438
  surname: Azizi
  fullname: Azizi, Sadoon
  email: s.azizi@uok.ac.ir
  organization: Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0003-3284-5086
  surname: Shojafar
  fullname: Shojafar, Mohammad
  email: m.shojafar@surrey.ac.uk
  organization: 5GIC & 6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, GU27XH, United Kingdom
– sequence: 3
  givenname: Jemal
  surname: Abawajy
  fullname: Abawajy, Jemal
  email: jemal.abawajy@deakin.edu.au
  organization: School of Information Technology, Deakin University, Geelong, VIC 3220, Australia
– sequence: 4
  givenname: Rajkumar
  surname: Buyya
  fullname: Buyya, Rajkumar
  email: rbuyya@unimelb.edu.au
  organization: CLOUDS lab, School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3010, Australia
BookMark eNp9kMtOwzAQRS1UJNrCD7DyD7jYSZomiE1VXpUqsSlry49x6tA4ke2C8vckKisWnc2MruaMNGeGJq51gNA9owtGWf5QL2qnxCKhSTIE6VBXaMpouSTFskwm41xkpKDZ8gbNQqgppXlWplN0eAahj9YBET_CAxZOY3Dgq56AMVZZcBFv2z2OInzhoA6gT8N6ha3Dpq2wapvuFMcg9CFCEx7xGgdoLKk8gO6x6DrfCnW4RddGHAPc_fU5-nx92W_eye7jbbtZ74hKKY3ECEZXWpm0LKQoVGIggxUIZgqlzIoVqaS5phJkLlmZ6DxjTGstRSol06xU6Rwl57vKtyF4MLzzthG-54zy0RWv-eiKj6742dUAFf8gZaOItnXRC3u8jD6dURie-rbgeRilKdDWg4pct_YS_gv3P4l2
CitedBy_id crossref_primary_10_1002_ett_4980
crossref_primary_10_1016_j_adhoc_2023_103090
crossref_primary_10_3390_s23010232
crossref_primary_10_1007_s10586_023_03991_2
crossref_primary_10_1016_j_jnca_2024_103891
crossref_primary_10_1002_dac_5613
crossref_primary_10_1007_s10586_025_05446_2
crossref_primary_10_1007_s10586_022_03714_z
crossref_primary_10_1016_j_future_2024_03_010
crossref_primary_10_1016_j_suscom_2022_100834
crossref_primary_10_1007_s12083_022_01385_6
crossref_primary_10_1007_s10586_024_04308_7
crossref_primary_10_1109_JIOT_2024_3379392
crossref_primary_10_7717_peerj_cs_2128
crossref_primary_10_1016_j_future_2024_03_013
crossref_primary_10_1109_JIOT_2025_3566670
crossref_primary_10_1007_s10586_024_04771_2
crossref_primary_10_1007_s11042_024_19509_w
crossref_primary_10_1007_s10586_024_04612_2
crossref_primary_10_1007_s00607_023_01215_4
crossref_primary_10_1007_s41870_024_01817_x
crossref_primary_10_3390_electronics14112169
crossref_primary_10_1016_j_jocs_2023_102152
crossref_primary_10_1155_2023_2644846
crossref_primary_10_1002_dac_5695
crossref_primary_10_1038_s41598_024_81055_0
crossref_primary_10_1007_s10586_022_03650_y
crossref_primary_10_1016_j_comnet_2025_111349
crossref_primary_10_1002_ett_5057
crossref_primary_10_1007_s10723_024_09781_3
crossref_primary_10_3390_electronics12122599
crossref_primary_10_1007_s11760_023_02761_2
crossref_primary_10_1109_TCCN_2024_3378219
crossref_primary_10_1007_s10586_024_04396_5
crossref_primary_10_1007_s11227_024_06853_9
crossref_primary_10_1109_ACCESS_2023_3343877
crossref_primary_10_1007_s42235_023_00389_z
crossref_primary_10_1016_j_jii_2024_100719
crossref_primary_10_3390_math13132198
crossref_primary_10_1007_s41870_024_01807_z
crossref_primary_10_32604_cmc_2024_050380
crossref_primary_10_1016_j_cosrev_2023_100550
crossref_primary_10_1016_j_iot_2025_101708
crossref_primary_10_1186_s13677_023_00428_4
crossref_primary_10_1016_j_jnca_2023_103617
crossref_primary_10_3390_s25113403
crossref_primary_10_1007_s00607_022_01147_5
crossref_primary_10_3390_app14041670
crossref_primary_10_1007_s11227_022_04690_2
crossref_primary_10_1002_ett_4803
crossref_primary_10_1002_ett_4523
crossref_primary_10_1016_j_future_2023_10_002
crossref_primary_10_1016_j_future_2024_02_005
crossref_primary_10_1007_s00607_024_01371_1
crossref_primary_10_1007_s11227_023_05870_4
crossref_primary_10_1007_s11227_023_05358_1
crossref_primary_10_1109_TCE_2024_3504545
crossref_primary_10_1016_j_jnca_2024_104026
crossref_primary_10_1016_j_comnet_2023_109603
crossref_primary_10_1109_JSYST_2022_3185011
crossref_primary_10_1007_s11277_023_10567_1
crossref_primary_10_1109_TMC_2025_3551597
crossref_primary_10_1109_TCE_2023_3325319
crossref_primary_10_1109_ACCESS_2025_3563103
crossref_primary_10_1109_JIOT_2023_3296478
crossref_primary_10_1016_j_future_2023_10_012
crossref_primary_10_1016_j_jer_2024_11_002
crossref_primary_10_1109_ACCESS_2023_3277826
crossref_primary_10_1109_ACCESS_2024_3398017
crossref_primary_10_1016_j_suscom_2024_101068
crossref_primary_10_1016_j_procs_2025_01_002
crossref_primary_10_1007_s10723_025_09795_5
crossref_primary_10_1007_s13369_024_09661_8
crossref_primary_10_3390_jsan13010010
crossref_primary_10_1016_j_suscom_2023_100918
crossref_primary_10_3390_su142215096
crossref_primary_10_1109_ACCESS_2025_3583584
crossref_primary_10_1515_comp_2025_0042
crossref_primary_10_1007_s11235_025_01320_z
crossref_primary_10_1016_j_jocs_2022_101828
crossref_primary_10_53759_7669_jmc202505161
crossref_primary_10_1002_cpe_7843
crossref_primary_10_4018_IJSIR_350221
crossref_primary_10_1007_s41870_024_02068_6
crossref_primary_10_1016_j_suscom_2024_100988
crossref_primary_10_3390_bdcc9060160
crossref_primary_10_1016_j_rineng_2025_104196
crossref_primary_10_1007_s10586_022_03765_2
crossref_primary_10_1016_j_compeleceng_2025_110377
crossref_primary_10_1109_TMC_2024_3494793
crossref_primary_10_1016_j_comnet_2024_110609
crossref_primary_10_1016_j_simpat_2025_103096
crossref_primary_10_3390_computers14030099
crossref_primary_10_1109_ACCESS_2025_3591375
crossref_primary_10_1016_j_procs_2023_12_110
crossref_primary_10_1109_JSYST_2023_3319280
crossref_primary_10_1109_TCE_2024_3371774
crossref_primary_10_1016_j_seta_2024_103786
crossref_primary_10_1007_s42044_025_00263_7
crossref_primary_10_1007_s10723_023_09707_5
crossref_primary_10_1109_TSUSC_2024_3381841
crossref_primary_10_1007_s11227_024_06004_0
crossref_primary_10_1002_cpe_7836
Cites_doi 10.1049/iet-com.2020.0007
10.1016/j.sysarc.2021.101996
10.1145/3426852
10.1109/JSAC.2019.2906793
10.1145/1496091.1496103
10.1016/j.pmcj.2021.101395
10.1109/JSAC.2016.2545559
10.1109/TII.2019.2897001
10.1002/dac.4583
10.3390/app9091730
10.1016/j.future.2019.02.028
10.1145/3418501
10.1016/j.future.2019.09.039
10.1016/j.eswa.2020.113377
10.1186/s13677-021-00243-9
10.1007/BF02060483
10.1109/TCC.2016.2551747
10.1016/j.future.2018.05.015
10.1109/TII.2018.2791619
10.1109/JIOT.2018.2846644
10.1109/JIOT.2019.2903191
10.1016/j.jnca.2020.102596
10.1016/j.future.2018.12.062
10.1109/ACCESS.2017.2702013
10.1109/ACCESS.2019.2920488
10.1145/3403955
10.1109/JIOT.2018.2884720
10.1109/JIOT.2019.2946426
10.1109/JSYST.2018.2877850
10.1002/cpe.6432
10.1007/s10586-020-03096-0
10.1016/j.comcom.2017.05.013
10.3390/s21092958
10.1016/j.jnca.2021.103008
10.1016/j.future.2019.09.060
10.1109/TCCN.2021.3066619
10.1007/s11277-017-5200-5
10.1007/s12083-021-01081-x
10.1109/TII.2018.2855198
10.1016/j.comnet.2021.108463
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.jnca.2022.103333
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1095-8592
ExternalDocumentID 10_1016_j_jnca_2022_103333
S1084804522000029
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WH7
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-fa107dcf398ba8c2fe4e7ea1f8ccf7183b06d0beb6b192d6411dddba3bb1d19c3
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791061100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1084-8045
IngestDate Tue Nov 18 21:14:28 EST 2025
Sat Nov 29 07:11:01 EST 2025
Fri Feb 23 02:41:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fog computing
Cloud computing
Energy consumption
Deadline-aware
Task scheduling
Internet of Things
Semi-greedy algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-fa107dcf398ba8c2fe4e7ea1f8ccf7183b06d0beb6b192d6411dddba3bb1d19c3
ORCID 0000-0003-3284-5086
0000-0002-5788-0438
ParticipantIDs crossref_primary_10_1016_j_jnca_2022_103333
crossref_citationtrail_10_1016_j_jnca_2022_103333
elsevier_sciencedirect_doi_10_1016_j_jnca_2022_103333
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Journal of network and computer applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Omer, Azizi, Shojafar, Tafazolli (b48) 2021; 115
Cob-Parro, Losada-Gutiérrez, Marrón-Romera, Gardel-Vicente, Bravo-Muñoz (b17) 2021; 21
Adhikari, Mukherjee, Srirama (b5) 2020; 7
Liu, Yang, Yang, Wang, Mao (b41) 2018; 6
Marín-Tordera, Masip-Bruin, García-Almiñana, Jukan, Ren, Zhu (b44) 2017; 109
Abdel-Basset, El-shahat, Elhoseny, Song (b2) 2020
Mishra, Puthal, Rodrigues, Sahoo, Dutkiewicz (b45) 2018; 14
Calheiros, Ranjan, Buyya (b15) 2011
Konečnỳ, McMahan, Ramage, Richtárik (b39) 2016
Shojafar, Cordeschi, Baccarelli (b53) 2019; 7
Savaglio, Gerace, Di Fatta, Fortino (b51) 2019
Hassan, Azizi, Shojafar (b29) 2020; 14
Chen, Wen, Wu, Lei, Hou, Liu, Xu, Jiang (b16) 2019; 7
Ghanavati, Abawajy, Izadi (b23) 2020
Xu, Sun, Zhang, Liang, Duan (b60) 2020; 7
Zhang, Zhang, Zeadally, Chao, Leung (b63) 2019; 15
Mahmud, Ramamohanarao, Buyya (b43) 2020; 53
Sun, Zhou, Hu (b56) 2019; 68
Zhang, Zhu, Leng, He, Maharjan, Zhang (b64) 2019; 6
Stankovic, Spuri, Ramamritham, Buttazzo (b54) 2012
Azizi, Shojafar, Abawajy, Buyya (b10) 2021
Shahryari, Pedram, Khajehvand, TakhtFooladi (b52) 2021
Baccarelli, Naranjo, Scarpiniti, Shojafar, Abawajy (b12) 2017; 5
Jiang, Chen, Yang, Wu (b36) 2019; 13
Tang, Wong (b58) 2020
Azizi, Zandsalimi, Li (b11) 2020; 23
Deng, Lu, Lai, Luan, Liang (b18) 2016; 3
Greenberg (b25) 2008; 39
Sun, Lin, Xu (b55) 2018; 102
Gazori, Rahbari, Nickray (b21) 2020; 110
Hoseiny, Azizi, Shojafar, Ahmadiazar, Tafazolli (b32) 2021
Gai, Qin, Zhu (b20) 2020
Auluck, Azim, Fizza (b9) 2019
Ghanavati, Abawajy, Izadi (b22) 2020
Almutairi, Aldossary (b8) 2021; 10
Gu, Cai, Zeng, Zhang, Jin, Dai (b26) 2019; 95
Hashimoto, Aida (b28) 2012
Resende, Ribeiro (b50) 2016
Vemireddy, Rout (b59) 2021
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b19) 2020; 152
Kaur, Kumar, Kumar (b37) 2021
Abdel-Basset, Mohamed, Elhoseny, Bashir, Jolfaei, Kumar (b3) 2020
Peng, Dhaini, Ho (b49) 2018; 88
Aazam, Zeadally, Harras (b1) 2018; 14
Hoang, Dang (b31) 2017
Alizadeh, Khajehvand, Rahmani, Akbari (b7) 2020; 33
Taami, Krug, O’Nils (b57) 2019
Hoseiny, Azizi, Shojafar, Tafazolli (b33) 2021; 21
Yang, Rahmani (b61) 2020
Zhao, Stankovic (b65) 1989
Bonomi, Milito, Natarajan, Zhu (b13) 2014
Jalali, Hinton, Ayre, Alpcan, Tucker (b35) 2016; 34
Yang, Wang, Zhang, Chen, Luo, Zhou (b62) 2018; 5
Nguyen, Thi Thanh Binh, Do Son (b47) 2019; 9
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b30) 2019; 97
Islam, Kumar, Hu (b34) 2021
Aburukba, AliKarrar, Landolsi, El-Fakih (b4) 2020; 111
Klincewicz (b38) 1992; 40
Misra, Saha (b46) 2019; 37
Gia, Jiang, Rahmani, Westerlund, Liljeberg, Tenhunen (b24) 2015
Ale, Zhang, Fang, Chen, Wu, Li (b6) 2021
Louail, Esseghir, Merghem-Boulahia (b42) 2020
Li (b40) 2021; 20
Bu, Wang (b14) 2021; 14
Guevara, Torres, da Fonseca (b27) 2020; 159
Gu (10.1016/j.jnca.2022.103333_b26) 2019; 95
Kaur (10.1016/j.jnca.2022.103333_b37) 2021
Zhang (10.1016/j.jnca.2022.103333_b63) 2019; 15
Alizadeh (10.1016/j.jnca.2022.103333_b7) 2020; 33
Louail (10.1016/j.jnca.2022.103333_b42) 2020
Ghanavati (10.1016/j.jnca.2022.103333_b23) 2020
Calheiros (10.1016/j.jnca.2022.103333_b15) 2011
Resende (10.1016/j.jnca.2022.103333_b50) 2016
Stankovic (10.1016/j.jnca.2022.103333_b54) 2012
Xu (10.1016/j.jnca.2022.103333_b60) 2020; 7
Abdel-Basset (10.1016/j.jnca.2022.103333_b3) 2020
Ghanavati (10.1016/j.jnca.2022.103333_b22) 2020
Ale (10.1016/j.jnca.2022.103333_b6) 2021
Gai (10.1016/j.jnca.2022.103333_b20) 2020
Azizi (10.1016/j.jnca.2022.103333_b11) 2020; 23
Shahryari (10.1016/j.jnca.2022.103333_b52) 2021
Yang (10.1016/j.jnca.2022.103333_b62) 2018; 5
Adhikari (10.1016/j.jnca.2022.103333_b5) 2020; 7
Greenberg (10.1016/j.jnca.2022.103333_b25) 2008; 39
Tang (10.1016/j.jnca.2022.103333_b58) 2020
Azizi (10.1016/j.jnca.2022.103333_b10) 2021
Baccarelli (10.1016/j.jnca.2022.103333_b12) 2017; 5
Nguyen (10.1016/j.jnca.2022.103333_b47) 2019; 9
Sun (10.1016/j.jnca.2022.103333_b55) 2018; 102
Aazam (10.1016/j.jnca.2022.103333_b1) 2018; 14
Zhang (10.1016/j.jnca.2022.103333_b64) 2019; 6
Hassan (10.1016/j.jnca.2022.103333_b29) 2020; 14
Liu (10.1016/j.jnca.2022.103333_b41) 2018; 6
Hoang (10.1016/j.jnca.2022.103333_b31) 2017
Shojafar (10.1016/j.jnca.2022.103333_b53) 2019; 7
Sun (10.1016/j.jnca.2022.103333_b56) 2019; 68
Savaglio (10.1016/j.jnca.2022.103333_b51) 2019
Deng (10.1016/j.jnca.2022.103333_b18) 2016; 3
Gia (10.1016/j.jnca.2022.103333_b24) 2015
Marín-Tordera (10.1016/j.jnca.2022.103333_b44) 2017; 109
Vemireddy (10.1016/j.jnca.2022.103333_b59) 2021
Auluck (10.1016/j.jnca.2022.103333_b9) 2019
Guevara (10.1016/j.jnca.2022.103333_b27) 2020; 159
Bonomi (10.1016/j.jnca.2022.103333_b13) 2014
Chen (10.1016/j.jnca.2022.103333_b16) 2019; 7
Mahmud (10.1016/j.jnca.2022.103333_b43) 2020; 53
Abdel-Basset (10.1016/j.jnca.2022.103333_b2) 2020
Aburukba (10.1016/j.jnca.2022.103333_b4) 2020; 111
Konečnỳ (10.1016/j.jnca.2022.103333_b39) 2016
Bu (10.1016/j.jnca.2022.103333_b14) 2021; 14
Gazori (10.1016/j.jnca.2022.103333_b21) 2020; 110
Jiang (10.1016/j.jnca.2022.103333_b36) 2019; 13
Hashimoto (10.1016/j.jnca.2022.103333_b28) 2012
Klincewicz (10.1016/j.jnca.2022.103333_b38) 1992; 40
Peng (10.1016/j.jnca.2022.103333_b49) 2018; 88
Almutairi (10.1016/j.jnca.2022.103333_b8) 2021; 10
Zhao (10.1016/j.jnca.2022.103333_b65) 1989
Cob-Parro (10.1016/j.jnca.2022.103333_b17) 2021; 21
Misra (10.1016/j.jnca.2022.103333_b46) 2019; 37
Hoseiny (10.1016/j.jnca.2022.103333_b32) 2021
Jalali (10.1016/j.jnca.2022.103333_b35) 2016; 34
Li (10.1016/j.jnca.2022.103333_b40) 2021; 20
Taami (10.1016/j.jnca.2022.103333_b57) 2019
Mishra (10.1016/j.jnca.2022.103333_b45) 2018; 14
Faramarzi (10.1016/j.jnca.2022.103333_b19) 2020; 152
Omer (10.1016/j.jnca.2022.103333_b48) 2021; 115
Yang (10.1016/j.jnca.2022.103333_b61) 2020
Islam (10.1016/j.jnca.2022.103333_b34) 2021
Hoseiny (10.1016/j.jnca.2022.103333_b33) 2021; 21
Heidari (10.1016/j.jnca.2022.103333_b30) 2019; 97
References_xml – volume: 37
  start-page: 1159
  year: 2019
  end-page: 1166
  ident: b46
  article-title: Detour: Dynamic task offloading in software-defined fog for IoT applications
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 14
  start-page: 4674
  year: 2018
  end-page: 4682
  ident: b1
  article-title: Deploying fog computing in industrial internet of things and industry 4.0
  publication-title: IEEE Trans. Ind. Inform.
– volume: 3
  start-page: 1171
  year: 2016
  end-page: 1181
  ident: b18
  article-title: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption
  publication-title: IEEE Internet Things J.
– year: 2021
  ident: b6
  article-title: Delay-aware and energy-efficient computation offloading in mobile edge computing using deep reinforcement learning
  publication-title: IEEE Trans. Cogn. Commun. Netw.
– volume: 14
  start-page: 2117
  year: 2020
  end-page: 2129
  ident: b29
  article-title: Priority, network and energy-aware placement of IoT-based application services in fog-cloud environments
  publication-title: IET Commun.
– start-page: 1109
  year: 2017
  end-page: 1114
  ident: b31
  article-title: FBRC: Optimization of task scheduling in fog-based region and cloud
  publication-title: 2017 IEEE Trustcom/BigDataSE/ICESS
– volume: 7
  start-page: 5773
  year: 2020
  end-page: 5782
  ident: b5
  article-title: DPTO: A deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing
  publication-title: IEEE Internet Things J.
– year: 2021
  ident: b37
  article-title: A systematic review on task scheduling in fog computing: Taxonomy, tools, challenges, and future directions
  publication-title: Concurr. Comput: Prac. Exp.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b51
  article-title: Data mining at the IoT edge
  publication-title: 2019 28th International Conference On Computer Communication And Networks
– volume: 15
  start-page: 4216
  year: 2019
  end-page: 4224
  ident: b63
  article-title: MASM: A multiple-algorithm service model for energy-delay optimization in edge artificial intelligence
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 356
  year: 2015
  end-page: 363
  ident: b24
  article-title: Fog computing in healthcare internet of things: A case study on ecg feature extraction
  publication-title: 2015 IEEE International Conference On Computer And Information Technology; Ubiquitous Computing And Communications; Dependable, Autonomic And Secure Computing; Pervasive Intelligence And Computing
– volume: 102
  start-page: 1369
  year: 2018
  end-page: 1385
  ident: b55
  article-title: Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II
  publication-title: Wirel. Pers. Commun.
– year: 2020
  ident: b61
  article-title: Task scheduling mechanisms in fog computing: review, trends, and perspectives
  publication-title: Kybernetes
– volume: 5
  start-page: 4076
  year: 2018
  end-page: 4087
  ident: b62
  article-title: MEETS: Maximal energy efficient task scheduling in homogeneous fog networks
  publication-title: IEEE Internet Things J.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 21
  ident: b33
  article-title: Joint QoS-aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system
  publication-title: ACM Trans. Internet Technol.
– year: 2020
  ident: b58
  article-title: Deep reinforcement learning for task offloading in mobile edge computing systems
  publication-title: IEEE Trans. Mob. Comput.
– year: 2021
  ident: b10
  article-title: PSG and PSG-M source code
– year: 2020
  ident: b3
  article-title: Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications
  publication-title: IEEE Trans. Ind. Inform.
– volume: 23
  start-page: 3421
  year: 2020
  end-page: 3434
  ident: b11
  article-title: An energy-efficient algorithm for virtual machine placement optimization in cloud data centers
  publication-title: Cluster Comput.
– start-page: 1
  year: 2021
  end-page: 6
  ident: b32
  article-title: PGA: a priority-aware genetic algorithm for task scheduling in heterogeneous fog-cloud computing
  publication-title: IEEE INFOCOM 2021-IEEE Conference On Computer Communications Workshops
– year: 2020
  ident: b20
  article-title: An energy-aware high performance task allocation strategy in heterogeneous fog computing environments
  publication-title: IEEE Trans. Comput.
– start-page: 16
  year: 2020
  end-page: 22
  ident: b42
  article-title: Dynamic task scheduling for fog nodes based on deadline constraints and task frequency for smart factories
  publication-title: 2020 11th International Conference On Network Of The Future
– year: 2016
  ident: b50
  article-title: Optimization By GRASP
– volume: 10
  start-page: 1
  year: 2021
  end-page: 19
  ident: b8
  article-title: A novel approach for IoT tasks offloading in edge-cloud environments
  publication-title: J. Cloud Comput.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b30
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 5
  start-page: 9882
  year: 2017
  end-page: 9910
  ident: b12
  article-title: Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study
  publication-title: IEEE Access
– volume: 39
  start-page: 68
  year: 2008
  end-page: 73
  ident: b25
  article-title: The cost of a cloud: Research problems in data center networks
  publication-title: SIGCOMM Comput. Commun. Rev.
– volume: 88
  start-page: 606
  year: 2018
  end-page: 613
  ident: b49
  article-title: Toward integrated cloud–fog networks for efficient IoT provisioning: Key challenges and solutions
  publication-title: Future Gener. Comput. Syst.
– year: 2021
  ident: b59
  article-title: Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing
  publication-title: Comput. Netw.
– volume: 95
  start-page: 89
  year: 2019
  end-page: 99
  ident: b26
  article-title: Energy efficient task allocation and energy scheduling in green energy powered edge computing
  publication-title: Future Gener. Comput. Syst.
– volume: 34
  start-page: 1728
  year: 2016
  end-page: 1739
  ident: b35
  article-title: Fog computing may help to save energy in cloud computing
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 109
  start-page: 117
  year: 2017
  end-page: 130
  ident: b44
  article-title: Do we all really know what a fog node is? Current trends towards an open definition
  publication-title: Comput. Commun.
– year: 2021
  ident: b52
  article-title: Energy and task completion time trade-off for task offloading in fog-enabled IoT networks
  publication-title: Pervasive Mob. Comput.
– year: 2012
  ident: b54
  article-title: Deadline scheduling for real-time systems: EDF and related algorithms, Vol. 460
– volume: 6
  start-page: 7635
  year: 2019
  end-page: 7647
  ident: b64
  article-title: Deep learning empowered task offloading for mobile edge computing in urban informatics
  publication-title: IEEE Internet Things J.
– volume: 14
  start-page: 4497
  year: 2018
  end-page: 4506
  ident: b45
  article-title: Sustainable service allocation using a metaheuristic technique in a fog server for industrial applications
  publication-title: IEEE Trans. Ind. Inform.
– volume: 68
  start-page: 3052
  year: 2019
  end-page: 3056
  ident: b56
  article-title: Joint offloading and computation energy efficiency maximization in a mobile edge computing system
  publication-title: IEEE Trans. Veh. Technol.
– volume: 53
  start-page: 1
  year: 2020
  end-page: 43
  ident: b43
  article-title: Application management in fog computing environments: A taxonomy, review and future directions
  publication-title: ACM Comput. Surv.
– volume: 40
  start-page: 283
  year: 1992
  end-page: 302
  ident: b38
  article-title: Avoiding local optima in thep-hub location problem using tabu search and grasp
  publication-title: Ann. Opera. Res.
– start-page: 295
  year: 2011
  end-page: 304
  ident: b15
  article-title: Virtual machine provisioning based on analytical performance and QoS in cloud computing environments
  publication-title: 2011 International Conference On Parallel Processing
– volume: 7
  start-page: 196
  year: 2019
  end-page: 209
  ident: b53
  article-title: Energy-efficient adaptive resource management for real-time vehicular cloud services
  publication-title: IEEE Trans. Cloud Comput.
– volume: 111
  start-page: 539
  year: 2020
  end-page: 551
  ident: b4
  article-title: Scheduling Internet of Things requests to minimize latency in hybrid fog-cloud computing
  publication-title: Future Gener. Comput. Syst.
– volume: 7
  start-page: 74089
  year: 2019
  end-page: 74102
  ident: b16
  article-title: Internet of things based smart grids supported by intelligent edge computing
  publication-title: IEEE Access
– volume: 159
  year: 2020
  ident: b27
  article-title: On the classification of fog computing applications: A machine learning perspective
  publication-title: J. Netw. Comput. Appl.
– year: 2021
  ident: b34
  article-title: Context-aware scheduling in fog computing: A survey, taxonomy, challenges and future directions
  publication-title: J. Netw. Comput. Appl.
– volume: 14
  start-page: 1190
  year: 2021
  end-page: 1206
  ident: b14
  article-title: Computing tasks assignment optimization among edge computing servers via SDN
  publication-title: Peer-To-Peer Netw. Appl.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b57
  article-title: Experimental characterization of latency in distributed iot systems with cloud fog offloading
  publication-title: 2019 15th IEEE International Workshop On Factory Communication Systems
– volume: 7
  start-page: 375
  year: 2020
  end-page: 392
  ident: b60
  article-title: Fog-cloud task scheduling of energy consumption optimisation with deadline consideration
  publication-title: Int. J. Internet Manuf. Serv.
– year: 2020
  ident: b22
  article-title: Automata-based dynamic fault tolerant task scheduling approach in fog computing
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 13
  start-page: 2930
  year: 2019
  end-page: 2941
  ident: b36
  article-title: Energy-efficient task offloading for time-sensitive applications in fog computing
  publication-title: IEEE Syst. J.
– volume: 110
  start-page: 1098
  year: 2020
  end-page: 1115
  ident: b21
  article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach
  publication-title: Future Gener. Comput. Syst.
– volume: 6
  start-page: 3423
  year: 2018
  end-page: 3436
  ident: b41
  article-title: DATS: Dispersive stable task scheduling in heterogeneous fog networks
  publication-title: IEEE Internet Things J.
– volume: 115
  year: 2021
  ident: b48
  article-title: A priority, power and traffic-aware virtual machine placement of IoT applications in cloud data centers
  publication-title: J. Syst. Archit.
– volume: 152
  year: 2020
  ident: b19
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b2
  article-title: Energy-aware metaheuristic algorithm for industrial Internet of Things task scheduling problems in fog computing applications
  publication-title: IEEE Internet Things J.
– year: 2020
  ident: b23
  article-title: An energy aware task scheduling model using ant-mating optimization in fog computing environment
  publication-title: IEEE Trans. Serv. Comput.
– volume: 33
  year: 2020
  ident: b7
  article-title: Task scheduling approaches in fog computing: A systematic review
  publication-title: Int. J. Commun. Syst.
– year: 2019
  ident: b9
  article-title: Improving the schedulability of real-time tasks using fog computing
  publication-title: IEEE Trans. Serv. Comput.
– volume: 21
  start-page: 2958
  year: 2021
  ident: b17
  article-title: Smart video surveillance system based on edge computing
  publication-title: Sensors
– start-page: 169
  year: 2014
  end-page: 186
  ident: b13
  article-title: Fog computing: A platform for internet of things and analytics
  publication-title: Big Data And Internet Of Things: A Roadmap For Smart Environments
– year: 2016
  ident: b39
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
– volume: 20
  start-page: 1
  year: 2021
  end-page: 28
  ident: b40
  article-title: Heuristic computation offloading algorithms for mobile users in fog computing
  publication-title: ACM Trans. Embed. Comput. Syst. (TECS)
– start-page: 273
  year: 2012
  end-page: 277
  ident: b28
  article-title: Evaluation of performance degradation in HPC applications with vm consolidation
  publication-title: 2012 Third International Conference On Networking And Computing
– volume: 9
  start-page: 1730
  year: 2019
  ident: b47
  article-title: Evolutionary algorithms to optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment
  publication-title: Appl. Sci.
– start-page: 156
  year: 1989
  end-page: 157
  ident: b65
  article-title: Performance analysis of FCFS and improved FCFS scheduling algorithms for dynamic real-time computer systems
  publication-title: 1989 Real-Time Systems Symposium
– volume: 14
  start-page: 2117
  issue: 13
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b29
  article-title: Priority, network and energy-aware placement of IoT-based application services in fog-cloud environments
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2020.0007
– year: 2020
  ident: 10.1016/j.jnca.2022.103333_b3
  article-title: Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 295
  year: 2011
  ident: 10.1016/j.jnca.2022.103333_b15
  article-title: Virtual machine provisioning based on analytical performance and QoS in cloud computing environments
– volume: 115
  year: 2021
  ident: 10.1016/j.jnca.2022.103333_b48
  article-title: A priority, power and traffic-aware virtual machine placement of IoT applications in cloud data centers
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2021.101996
– start-page: 1
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b57
  article-title: Experimental characterization of latency in distributed iot systems with cloud fog offloading
– volume: 20
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jnca.2022.103333_b40
  article-title: Heuristic computation offloading algorithms for mobile users in fog computing
  publication-title: ACM Trans. Embed. Comput. Syst. (TECS)
  doi: 10.1145/3426852
– volume: 37
  start-page: 1159
  issue: 5
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b46
  article-title: Detour: Dynamic task offloading in software-defined fog for IoT applications
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2019.2906793
– start-page: 156
  year: 1989
  ident: 10.1016/j.jnca.2022.103333_b65
  article-title: Performance analysis of FCFS and improved FCFS scheduling algorithms for dynamic real-time computer systems
– volume: 39
  start-page: 68
  year: 2008
  ident: 10.1016/j.jnca.2022.103333_b25
  article-title: The cost of a cloud: Research problems in data center networks
  publication-title: SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/1496091.1496103
– start-page: 169
  year: 2014
  ident: 10.1016/j.jnca.2022.103333_b13
  article-title: Fog computing: A platform for internet of things and analytics
– year: 2021
  ident: 10.1016/j.jnca.2022.103333_b52
  article-title: Energy and task completion time trade-off for task offloading in fog-enabled IoT networks
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2021.101395
– volume: 34
  start-page: 1728
  issue: 5
  year: 2016
  ident: 10.1016/j.jnca.2022.103333_b35
  article-title: Fog computing may help to save energy in cloud computing
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2016.2545559
– year: 2020
  ident: 10.1016/j.jnca.2022.103333_b61
  article-title: Task scheduling mechanisms in fog computing: review, trends, and perspectives
  publication-title: Kybernetes
– volume: 15
  start-page: 4216
  issue: 7
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b63
  article-title: MASM: A multiple-algorithm service model for energy-delay optimization in edge artificial intelligence
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2897001
– volume: 33
  issue: 16
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b7
  article-title: Task scheduling approaches in fog computing: A systematic review
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4583
– volume: 3
  start-page: 1171
  issue: 6
  year: 2016
  ident: 10.1016/j.jnca.2022.103333_b18
  article-title: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption
  publication-title: IEEE Internet Things J.
– volume: 9
  start-page: 1730
  issue: 9
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b47
  article-title: Evolutionary algorithms to optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment
  publication-title: Appl. Sci.
  doi: 10.3390/app9091730
– start-page: 273
  year: 2012
  ident: 10.1016/j.jnca.2022.103333_b28
  article-title: Evaluation of performance degradation in HPC applications with vm consolidation
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b30
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– start-page: 1109
  year: 2017
  ident: 10.1016/j.jnca.2022.103333_b31
  article-title: FBRC: Optimization of task scheduling in fog-based region and cloud
– volume: 21
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.jnca.2022.103333_b33
  article-title: Joint QoS-aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system
  publication-title: ACM Trans. Internet Technol.
  doi: 10.1145/3418501
– year: 2016
  ident: 10.1016/j.jnca.2022.103333_b39
– volume: 111
  start-page: 539
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b4
  article-title: Scheduling Internet of Things requests to minimize latency in hybrid fog-cloud computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.039
– volume: 152
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b19
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 10
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jnca.2022.103333_b8
  article-title: A novel approach for IoT tasks offloading in edge-cloud environments
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-021-00243-9
– volume: 40
  start-page: 283
  issue: 1
  year: 1992
  ident: 10.1016/j.jnca.2022.103333_b38
  article-title: Avoiding local optima in thep-hub location problem using tabu search and grasp
  publication-title: Ann. Opera. Res.
  doi: 10.1007/BF02060483
– volume: 7
  start-page: 196
  issue: 1
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b53
  article-title: Energy-efficient adaptive resource management for real-time vehicular cloud services
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2016.2551747
– start-page: 16
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b42
  article-title: Dynamic task scheduling for fog nodes based on deadline constraints and task frequency for smart factories
– volume: 88
  start-page: 606
  year: 2018
  ident: 10.1016/j.jnca.2022.103333_b49
  article-title: Toward integrated cloud–fog networks for efficient IoT provisioning: Key challenges and solutions
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.015
– year: 2020
  ident: 10.1016/j.jnca.2022.103333_b2
  article-title: Energy-aware metaheuristic algorithm for industrial Internet of Things task scheduling problems in fog computing applications
  publication-title: IEEE Internet Things J.
– volume: 14
  start-page: 4497
  issue: 10
  year: 2018
  ident: 10.1016/j.jnca.2022.103333_b45
  article-title: Sustainable service allocation using a metaheuristic technique in a fog server for industrial applications
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2791619
– volume: 5
  start-page: 4076
  issue: 5
  year: 2018
  ident: 10.1016/j.jnca.2022.103333_b62
  article-title: MEETS: Maximal energy efficient task scheduling in homogeneous fog networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2846644
– volume: 6
  start-page: 7635
  issue: 5
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b64
  article-title: Deep learning empowered task offloading for mobile edge computing in urban informatics
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2903191
– volume: 159
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b27
  article-title: On the classification of fog computing applications: A machine learning perspective
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102596
– year: 2020
  ident: 10.1016/j.jnca.2022.103333_b23
  article-title: An energy aware task scheduling model using ant-mating optimization in fog computing environment
  publication-title: IEEE Trans. Serv. Comput.
– year: 2020
  ident: 10.1016/j.jnca.2022.103333_b20
  article-title: An energy-aware high performance task allocation strategy in heterogeneous fog computing environments
  publication-title: IEEE Trans. Comput.
– volume: 95
  start-page: 89
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b26
  article-title: Energy efficient task allocation and energy scheduling in green energy powered edge computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.12.062
– volume: 5
  start-page: 9882
  year: 2017
  ident: 10.1016/j.jnca.2022.103333_b12
  article-title: Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2702013
– start-page: 1
  year: 2021
  ident: 10.1016/j.jnca.2022.103333_b32
  article-title: PGA: a priority-aware genetic algorithm for task scheduling in heterogeneous fog-cloud computing
– year: 2012
  ident: 10.1016/j.jnca.2022.103333_b54
– year: 2021
  ident: 10.1016/j.jnca.2022.103333_b10
– year: 2020
  ident: 10.1016/j.jnca.2022.103333_b58
  article-title: Deep reinforcement learning for task offloading in mobile edge computing systems
  publication-title: IEEE Trans. Mob. Comput.
– volume: 7
  start-page: 74089
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b16
  article-title: Internet of things based smart grids supported by intelligent edge computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920488
– volume: 53
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b43
  article-title: Application management in fog computing environments: A taxonomy, review and future directions
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3403955
– start-page: 356
  year: 2015
  ident: 10.1016/j.jnca.2022.103333_b24
  article-title: Fog computing in healthcare internet of things: A case study on ecg feature extraction
– volume: 6
  start-page: 3423
  issue: 2
  year: 2018
  ident: 10.1016/j.jnca.2022.103333_b41
  article-title: DATS: Dispersive stable task scheduling in heterogeneous fog networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2884720
– volume: 7
  start-page: 5773
  issue: 7
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b5
  article-title: DPTO: A deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2946426
– year: 2019
  ident: 10.1016/j.jnca.2022.103333_b9
  article-title: Improving the schedulability of real-time tasks using fog computing
  publication-title: IEEE Trans. Serv. Comput.
– volume: 13
  start-page: 2930
  issue: 3
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b36
  article-title: Energy-efficient task offloading for time-sensitive applications in fog computing
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2018.2877850
– year: 2021
  ident: 10.1016/j.jnca.2022.103333_b37
  article-title: A systematic review on task scheduling in fog computing: Taxonomy, tools, challenges, and future directions
  publication-title: Concurr. Comput: Prac. Exp.
  doi: 10.1002/cpe.6432
– volume: 23
  start-page: 3421
  issue: 4
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b11
  article-title: An energy-efficient algorithm for virtual machine placement optimization in cloud data centers
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-020-03096-0
– volume: 109
  start-page: 117
  year: 2017
  ident: 10.1016/j.jnca.2022.103333_b44
  article-title: Do we all really know what a fog node is? Current trends towards an open definition
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2017.05.013
– volume: 21
  start-page: 2958
  issue: 9
  year: 2021
  ident: 10.1016/j.jnca.2022.103333_b17
  article-title: Smart video surveillance system based on edge computing
  publication-title: Sensors
  doi: 10.3390/s21092958
– year: 2021
  ident: 10.1016/j.jnca.2022.103333_b34
  article-title: Context-aware scheduling in fog computing: A survey, taxonomy, challenges and future directions
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103008
– start-page: 1
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b51
  article-title: Data mining at the IoT edge
– volume: 110
  start-page: 1098
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b21
  article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.060
– volume: 68
  start-page: 3052
  issue: 3
  year: 2019
  ident: 10.1016/j.jnca.2022.103333_b56
  article-title: Joint offloading and computation energy efficiency maximization in a mobile edge computing system
  publication-title: IEEE Trans. Veh. Technol.
– year: 2020
  ident: 10.1016/j.jnca.2022.103333_b22
  article-title: Automata-based dynamic fault tolerant task scheduling approach in fog computing
  publication-title: IEEE Trans. Emerg. Top. Comput.
– year: 2021
  ident: 10.1016/j.jnca.2022.103333_b6
  article-title: Delay-aware and energy-efficient computation offloading in mobile edge computing using deep reinforcement learning
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2021.3066619
– volume: 102
  start-page: 1369
  issue: 2
  year: 2018
  ident: 10.1016/j.jnca.2022.103333_b55
  article-title: Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-017-5200-5
– volume: 14
  start-page: 1190
  issue: 3
  year: 2021
  ident: 10.1016/j.jnca.2022.103333_b14
  article-title: Computing tasks assignment optimization among edge computing servers via SDN
  publication-title: Peer-To-Peer Netw. Appl.
  doi: 10.1007/s12083-021-01081-x
– volume: 14
  start-page: 4674
  issue: 10
  year: 2018
  ident: 10.1016/j.jnca.2022.103333_b1
  article-title: Deploying fog computing in industrial internet of things and industry 4.0
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2855198
– volume: 7
  start-page: 375
  issue: 4
  year: 2020
  ident: 10.1016/j.jnca.2022.103333_b60
  article-title: Fog-cloud task scheduling of energy consumption optimisation with deadline consideration
  publication-title: Int. J. Internet Manuf. Serv.
– year: 2021
  ident: 10.1016/j.jnca.2022.103333_b59
  article-title: Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108463
– year: 2016
  ident: 10.1016/j.jnca.2022.103333_b50
SSID ssj0006493
Score 2.599099
Snippet With the rapid advancement of Internet of Things (IoT) devices, a variety of IoT applications that require a real-time response and low latency have emerged....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103333
SubjectTerms Cloud computing
Deadline-aware
Energy consumption
Fog computing
Internet of Things
Semi-greedy algorithm
Task scheduling
Title Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach
URI https://dx.doi.org/10.1016/j.jnca.2022.103333
Volume 201
WOSCitedRecordID wos000791061100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLXKxgM8cBkgxk1-4K3KFNe5OLwVGGJITEgUqW-R44uarE2qtR3bfg6_lM-xc1lhE3vgJWojx0l7To4_298FobeKSBIQIr0o08oLlIRXKg6lR0iURLECsRzJuthEfHzMptPk22Dwq4mFOZvHZcnOz5Plf4UazgHYJnT2FnC3ncIJ-AygwxFgh-M_Af8RUDO2o8d_crc5oOoAP0_V6SLM5v9RNRmu-epkCHNbGGvmLrBFV3UA7nJT-0LbJM8rG7u-Uovcg7k5iHKbh_waw7a0nuVNxFxdNGLY3yhvSXaZX-Z2WVpWnTvA91lVcG0dv79WM75YcNntUsGvKmyVZbXgrXvI-83FhTWDeXFivMb7qxkwEW59B50A-yyAUdOmmGwUeuRaWI0lPqU2ecYf8m9XIoqDwiwHme4PusZXc21vjYGtZ2Lj9Fakpo_U9JHaPu6g3VEcJqCcu-Ojw-mXdryPgsSFcdgnd6FZ1otw-0n-bv70TJrJI_TAQYbHlkOP0UCVe-hhU-cDO9nfQ_d7SSufoNlVgmGAGW8TDAPBsCEY7giG8xIDwXBLMOwI9g6PcY9euKHXU_Tj0-Hkw2fP1evwBPX9tac58WMpNE1YxpkYaRWoWHGimRAabCCa-ZH0M5VFGcwrZGQ0QsqM0ywDxUgEfYZ2yqpUzxFmvuCh1owGVAaKMvjCQxILnugIjC62j0jzN6bCJbM3NVXm6fUA7qNhe83SpnK5sXXYoJM6Y9QamSmQ7YbrXtzqLi_Rve4teIV21qcb9RrdFWfrfHX6xjHtNwWCrrk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deadline-aware+and+energy-efficient+IoT+task+scheduling+in+fog+computing+systems%3A+A+semi-greedy+approach&rft.jtitle=Journal+of+network+and+computer+applications&rft.au=Azizi%2C+Sadoon&rft.au=Shojafar%2C+Mohammad&rft.au=Abawajy%2C+Jemal&rft.au=Buyya%2C+Rajkumar&rft.date=2022-05-01&rft.issn=1084-8045&rft.volume=201&rft.spage=103333&rft_id=info:doi/10.1016%2Fj.jnca.2022.103333&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnca_2022_103333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-8045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-8045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-8045&client=summon