FSE-Net: Rethinking the up-sampling operation in encoder-decoder structure for retinal vessel segmentation

•We present an efficient medical image segmentation framework called FSE-Net for retinal vessel segmentation, which eliminates the up-sampling operation.•To enhance the feature extraction capability in the encoder stage, we introduce the Residual Feature Separable Block (RFSB) module, which effectiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 90; s. 105861
Hlavní autoři: Ni, Jiajia, Mu, Wei, Pan, An, Chen, Zhengming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2024
Témata:
ISSN:1746-8094, 1746-8108
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We present an efficient medical image segmentation framework called FSE-Net for retinal vessel segmentation, which eliminates the up-sampling operation.•To enhance the feature extraction capability in the encoder stage, we introduce the Residual Feature Separable Block (RFSB) module, which effectively extracts and refines low-level features, increasing the receptive field of the network.•We introduce the Multi-Head Feature Fusion (MFF) module, which effectively merges low-level and high-level features, streamlining encoder-decoder structure. Automatic retinal vessel segmentation plays a crucial role in the diagnosis and assessment of various ophthalmologic diseases. Currently, the primary retinal vessel segmentation algorithms are based on the encoder-decoder structure. However, these U-Net analogs suffer from the loss of both spatial and semantic information, caused by continuous up-sampling operations in the decoder structure. In this paper, we rethink the above problem and build a novel deep neural network for retinal vessel segmentation, called FSE-Net. Specifically, to address the issue of feature information loss and enhance the performance of retinal vessel segmentation, we eliminate the decoder structure. In particular, we introduced a multi-head feature fusion block (MFF) as a substitute for the continuous up-sampling operation. Additionally, the encoder stage of FSE-Net incorporates a residual feature separable block (RFSB) to further refine and distill features, thereby enhancing the capability of feature extraction. Subsequently, we employ a residual atrous spatial feature aggregate module (RASF) to expand the network's receptive field by incorporating multi-scale feature information. We conducted experiments on five widely recognized databases for retinal vessel segmentation, namely DRIVE, CHASEDB1, STARE, IOSTAR, and LES-AV. The results demonstrate that our proposed FSE-Net outperforms state-of-the-art approaches in terms of segmentation performance. Moreover, we demonstrate the feasibility of achieving superior segmentation performance without employing the traditional U-Net analog network structure.
AbstractList •We present an efficient medical image segmentation framework called FSE-Net for retinal vessel segmentation, which eliminates the up-sampling operation.•To enhance the feature extraction capability in the encoder stage, we introduce the Residual Feature Separable Block (RFSB) module, which effectively extracts and refines low-level features, increasing the receptive field of the network.•We introduce the Multi-Head Feature Fusion (MFF) module, which effectively merges low-level and high-level features, streamlining encoder-decoder structure. Automatic retinal vessel segmentation plays a crucial role in the diagnosis and assessment of various ophthalmologic diseases. Currently, the primary retinal vessel segmentation algorithms are based on the encoder-decoder structure. However, these U-Net analogs suffer from the loss of both spatial and semantic information, caused by continuous up-sampling operations in the decoder structure. In this paper, we rethink the above problem and build a novel deep neural network for retinal vessel segmentation, called FSE-Net. Specifically, to address the issue of feature information loss and enhance the performance of retinal vessel segmentation, we eliminate the decoder structure. In particular, we introduced a multi-head feature fusion block (MFF) as a substitute for the continuous up-sampling operation. Additionally, the encoder stage of FSE-Net incorporates a residual feature separable block (RFSB) to further refine and distill features, thereby enhancing the capability of feature extraction. Subsequently, we employ a residual atrous spatial feature aggregate module (RASF) to expand the network's receptive field by incorporating multi-scale feature information. We conducted experiments on five widely recognized databases for retinal vessel segmentation, namely DRIVE, CHASEDB1, STARE, IOSTAR, and LES-AV. The results demonstrate that our proposed FSE-Net outperforms state-of-the-art approaches in terms of segmentation performance. Moreover, we demonstrate the feasibility of achieving superior segmentation performance without employing the traditional U-Net analog network structure.
ArticleNumber 105861
Author Pan, An
Mu, Wei
Ni, Jiajia
Chen, Zhengming
Author_xml – sequence: 1
  givenname: Jiajia
  orcidid: 0000-0002-0158-0890
  surname: Ni
  fullname: Ni, Jiajia
  organization: School of Artificial Intelligence, Anhui Polytechnic University, Wuhu, China
– sequence: 2
  givenname: Wei
  surname: Mu
  fullname: Mu, Wei
  organization: College of Internet of Things Engineering, HoHai University, Changzhou, China
– sequence: 3
  givenname: An
  surname: Pan
  fullname: Pan, An
  organization: College of Internet of Things Engineering, HoHai University, Changzhou, China
– sequence: 4
  givenname: Zhengming
  surname: Chen
  fullname: Chen, Zhengming
  organization: College of Internet of Things Engineering, HoHai University, Changzhou, China
BookMark eNp9kE1OwzAQRi1UJNrCBVj5Ail2nDg2YoOqFpAQSPysLdeZtC6pE9luJW5P0sCGRVffzEhvNPMmaOQaBwhdUzKjhPKb7WwVWjNLScq6QS44PUNjWmQ8EZSI0V9NZHaBJiFsCclEQbMx2i7fF8kLxFv8BnFj3Zd1axw3gPdtEvSurfu-acHraBuHrcPgTFOCT0o4Jg7R703ce8BV47GHaJ2u8QFCgBoHWO_AxSN8ic4rXQe4-s0p-lwuPuaPyfPrw9P8_jkxjJCYVDLXkhgJmmgBRHJTVDKDHErDM8NEylc6zcqKlaIUNGeyygWrCq45lxQkY1Mkhr3GNyF4qJSxwwXRa1srSlTvTG1V70z1ztTgrEPTf2jr7U7779PQ3QBB99TBglfB2M4SlNaDiaps7Cn8BybNic8
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108598
crossref_primary_10_3390_s24165372
crossref_primary_10_1007_s00530_025_01789_3
crossref_primary_10_1007_s10044_025_01424_x
crossref_primary_10_1007_s11760_025_04415_x
crossref_primary_10_1016_j_bspc_2024_107175
crossref_primary_10_1016_j_bspc_2025_108463
crossref_primary_10_1016_j_bspc_2024_107150
crossref_primary_10_1007_s11517_024_03223_8
crossref_primary_10_1002_ima_70213
crossref_primary_10_1016_j_measurement_2025_118695
crossref_primary_10_1016_j_compmedimag_2025_102548
crossref_primary_10_1016_j_inffus_2024_102777
crossref_primary_10_1016_j_jksuci_2024_102123
Cites_doi 10.1016/j.media.2021.102025
10.5772/60581
10.1109/TVCG.2020.3030374
10.1016/j.bspc.2023.104829
10.1155/2022/4695136
10.1016/j.media.2017.07.005
10.1117/1.JBO.18.12.126011
10.1167/iovs.08-3018
10.1109/TMI.2019.2903562
10.1016/j.neunet.2023.05.029
10.1016/j.compbiomed.2021.104449
10.1016/j.bspc.2021.102977
10.1109/42.845178
10.1016/j.cmpb.2019.105121
10.1109/TMI.2016.2587062
10.1109/TMI.2018.2867837
10.1109/TMI.2018.2791721
10.1109/ICCV.2019.00069
10.1016/j.compbiomed.2022.106341
10.1109/TMI.2004.825627
10.1016/j.measurement.2022.112316
10.1109/TPAMI.2019.2938758
10.1109/JBHI.2022.3182471
10.1016/j.cmpb.2021.106070
10.1109/JBHI.2020.3028180
10.1007/978-3-030-00937-3_48
10.1016/j.bspc.2022.104087
10.1186/s12880-022-00836-z
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105861
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105861
S1746809423012946
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-f95a90c9ea0a8e096c7f94e5edc64c3826ba24df3d8d81539f583f76a6691e933
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001143296300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 22:15:55 EST 2025
Sat Nov 29 07:01:35 EST 2025
Sat Feb 24 15:48:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Retinal vessel segmentation
Feature fusion
Convolutional neural network
U-Net
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-f95a90c9ea0a8e096c7f94e5edc64c3826ba24df3d8d81539f583f76a6691e933
ORCID 0000-0002-0158-0890
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_105861
crossref_primary_10_1016_j_bspc_2023_105861
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105861
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Liu, Zhang, Lu, Kong (b0110) 2023
Ni, Wu, Elazab, Tong, Chen (b0145) 2022; 22
K. Li, X. Qi, Y. Luo, Z. Yao, X. Zhou, M. Sun, Informatics h: Accurate Retinal Vessel Segmentation in Color Fundus Images via Fully Attention-Based Networks 25(6) (2020) 2071–2081.
1-8.
Wang, Li, Zuluaga, Pratt, Patel, Aertsen, Doel, David, Deprest, Ourselin (b0010) 2018; 37
Xu, Yang, Wang, Xiao, Xing, Zhang, Wang, Xu, Zhang, Lei (b0125) 2022
Zhou, Siddiquee, Tajbakhsh, Liang (b0070) 2018
(2) (2018) 585-595.
Owen, Rudnicka, Mullen, Barman, Monekosso, Whincup, Ng, Paterson (b0185) 2009; 50
Ni, Wu, Tong, Chen, Zhao (b0045) 2020; 190
Li, Verma, Nakashima, Nagahara, Kawasaki (b0050) 2020
Hoover, Kouznetsova, Goldbaum (b0190) 2000; 19
Li, Gao, Liu, Yang (b0060) 2023; 206
Ni, Sun, Xu, Liu, Chen (b0115) 2023; 85
Wu, Wang, Zhong, Lei, Wen, Qin (b0015) 2021; 70
Khan, Naqvi, Robles-Kelly, Razzak (b0055) 2023
Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Wei
Ni, Liu, Li, Chen (b0080) 2022; 2022
2017.
Gu, Cheng, Fu, Zhou, Hao, Zhao, Zhang, Gao, Liu (b0040) 2019; 38
(2021) 104449.
H.R. Roth, H. Oda, Y. Hayashi, M. Oda, N. Shimizu, M. Fujiwara, K. Misawa, K. Misawa
Staal, Abràmoff, Niemeijer, Viergever, Van Ginneken (b0180) 2004; 23
Huang, Lin, Tong, Hu, Zhang, Iwamoto, Han, Chen, Wu (b0120) 2020
Wang, Lin, Li, Li, Shen, Gao, Ma (b0105) 2023
F. Isensee, J. Petersen, S.A. Kohl, P.F. Jäger, K.H. Maier-Hein
J. Zhang, B. Dashtbozorg, E. Bekkers, J.P. Pluim, R. Duits, B. Ter Haar Romeny, Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores 35(12) (2016) 2631–2644.
Zhang, Zhang, Xu (b0135) 2021
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (b0005) 2017; 42
Mapayi, Tapamo, Viriri (b0020) 2015; 12
P. Rodrigues, P. Guimaraes, T. Santos, S. Simao, T. Miranda, P. Serranho, R. Bernardes
.
Ye, Pan, Wu, Wang, Xia (b0155) 2022; 26
Gao, Cheng, Zhao, Zhang, Yang, Torr (b0170) 2019; 43
2019
(12) (2013) 126011.
Li, Liu, Chen, Cai, Gu, Qiao, Dong (b0175) 2022, 2022
Wang, Yan, Zhu, Buch, Wang, Haacke, Hua, Zhong (b0085) 2020; 27
Long, Shelhamer, Darrell (b0090) 2015, 2015
Liu, Shen, Yang, Bian, Yu (b0160) 2023; 79
Ronneberger, Fischer, Brox (b0030) 2015
Z. Shi, T. Wang, Z. Huang, F. Xie, Z. Liu, B. Wang, J. Xu, Control: MD-Net: A Multi-Scale Dense Network for Retinal Vessel Segmentation 70 (2021) 102977.
Orlando, Barbosa Breda, Kv, Blaschko, Blanco, Bulant (b0200) 2018
K. He, X. Cao, Y. Shi, D. Nie, Y. Gao, D. Shen
Liu, Shen, Yang, Yu, Bian (b0165) 2023; 152
Z. Wang, Y. Zou, P. Liu, Medicine
2018.
Li, Rahardja (b0140) 2021; 205
Li (10.1016/j.bspc.2023.105861_b0140) 2021; 205
Xu (10.1016/j.bspc.2023.105861_b0125) 2022
Khan (10.1016/j.bspc.2023.105861_b0055) 2023
Ye (10.1016/j.bspc.2023.105861_b0155) 2022; 26
Staal (10.1016/j.bspc.2023.105861_b0180) 2004; 23
10.1016/j.bspc.2023.105861_b0095
10.1016/j.bspc.2023.105861_b0150
10.1016/j.bspc.2023.105861_b0195
10.1016/j.bspc.2023.105861_b0075
Huang (10.1016/j.bspc.2023.105861_b0120) 2020
10.1016/j.bspc.2023.105861_b0130
Wang (10.1016/j.bspc.2023.105861_b0085) 2020; 27
Wu (10.1016/j.bspc.2023.105861_b0015) 2021; 70
10.1016/j.bspc.2023.105861_b0035
Liu (10.1016/j.bspc.2023.105861_b0165) 2023; 152
Long (10.1016/j.bspc.2023.105861_b0090) 2015
Ni (10.1016/j.bspc.2023.105861_b0145) 2022; 22
Wang (10.1016/j.bspc.2023.105861_b0105) 2023
Ronneberger (10.1016/j.bspc.2023.105861_b0030) 2015
Li (10.1016/j.bspc.2023.105861_b0060) 2023; 206
Chen (10.1016/j.bspc.2023.105861_b0110) 2023
Ni (10.1016/j.bspc.2023.105861_b0045) 2020; 190
Gu (10.1016/j.bspc.2023.105861_b0040) 2019; 38
Owen (10.1016/j.bspc.2023.105861_b0185) 2009; 50
Hoover (10.1016/j.bspc.2023.105861_b0190) 2000; 19
Wang (10.1016/j.bspc.2023.105861_b0010) 2018; 37
Gao (10.1016/j.bspc.2023.105861_b0170) 2019; 43
Litjens (10.1016/j.bspc.2023.105861_b0005) 2017; 42
10.1016/j.bspc.2023.105861_b0065
Ni (10.1016/j.bspc.2023.105861_b0080) 2022; 2022
10.1016/j.bspc.2023.105861_b0100
10.1016/j.bspc.2023.105861_b0025
Li (10.1016/j.bspc.2023.105861_b0050) 2020
Li (10.1016/j.bspc.2023.105861_b0175) 2022
Mapayi (10.1016/j.bspc.2023.105861_b0020) 2015; 12
Zhou (10.1016/j.bspc.2023.105861_b0070) 2018
Zhang (10.1016/j.bspc.2023.105861_b0135) 2021
Ni (10.1016/j.bspc.2023.105861_b0115) 2023; 85
Liu (10.1016/j.bspc.2023.105861_b0160) 2023; 79
Orlando (10.1016/j.bspc.2023.105861_b0200) 2018
References_xml – reference: Z. Shi, T. Wang, Z. Huang, F. Xie, Z. Liu, B. Wang, J. Xu, Control: MD-Net: A Multi-Scale Dense Network for Retinal Vessel Segmentation 70 (2021) 102977.
– year: 2018
  ident: b0200
  article-title: Towards a glaucoma risk index based on simulated hemodynamics from fundus images
  publication-title: In:
– reference: (2) (2018) 585-595.
– volume: 2022
  start-page: 4695136
  year: 2022
  ident: b0080
  article-title: SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation
  publication-title: J Healthc Eng
– volume: 12
  start-page: 133
  year: 2015
  ident: b0020
  article-title: Retinal vessel segmentation: a comparative study of fuzzy C-means and sum entropy information on phase congruency
  publication-title: Int. J. Adv. Rob. Syst.
– reference: Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Wei,
– start-page: 3656
  year: 2020
  end-page: 3665
  ident: b0050
  article-title: Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks
– volume: 19
  start-page: 203
  year: 2000
  end-page: 210
  ident: b0190
  article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1055
  year: 2020
  end-page: 1059
  ident: b0120
  article-title: Unet 3+: A full-scale connected unet for medical image segmentation
  publication-title: In:
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b0005
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– start-page: 3
  year: 2018
  end-page: 11
  ident: b0070
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: In:
– reference: K. Li, X. Qi, Y. Luo, Z. Yao, X. Zhou, M. Sun, Informatics h: Accurate Retinal Vessel Segmentation in Color Fundus Images via Fully Attention-Based Networks 25(6) (2020) 2071–2081.
– reference: Z. Wang, Y. Zou, P. Liu, Medicine:
– year: 2023
  ident: b0105
  article-title: MISSU: 3D medical image segmentation via self-distilling TransUNet
  publication-title: IEEE Trans. Med. Imaging
– volume: 23
  start-page: 501
  year: 2004
  end-page: 509
  ident: b0180
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
– reference: , 2017.
– volume: 79
  year: 2023
  ident: b0160
  article-title: ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images
  publication-title: Biomed. Signal Process. Control
– volume: 70
  year: 2021
  ident: b0015
  article-title: Scs-net: A scale and context sensitive network for retinal vessel segmentation
  publication-title: Med. Image Anal.
– reference: F. Isensee, J. Petersen, S.A. Kohl, P.F. Jäger, K.H. Maier-Hein,
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0030
  article-title: U-net: Convolutional networks for biomedical image segmentation
– reference: (2021) 104449.
– reference: K. He, X. Cao, Y. Shi, D. Nie, Y. Gao, D. Shen,
– volume: 190
  year: 2020
  ident: b0045
  article-title: GC-Net: Global context network for medical image segmentation
  publication-title: Comput Methods Programs Biomed
– volume: 38
  start-page: 2281
  year: 2019
  end-page: 2292
  ident: b0040
  article-title: CE-Net: Context Encoder Network for 2D Medical Image Segmentation
  publication-title: IEEE Trans Med Imaging
– reference: P. Rodrigues, P. Guimaraes, T. Santos, S. Simao, T. Miranda, P. Serranho, R. Bernardes,
– reference: :1-8.
– reference: H.R. Roth, H. Oda, Y. Hayashi, M. Oda, N. Shimizu, M. Fujiwara, K. Misawa, K. Misawa,
– year: 2022
  ident: b0125
  article-title: AV-casNet: Fully Automatic Arteriole-Venule Segmentation and Differentiation in OCT Angiography
  publication-title: IEEE Trans Med Imaging
– volume: 22
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0145
  article-title: DNL-Net: deformed non-local neural network for blood vessel segmentation
  publication-title: BMC Med Imaging
– volume: 85
  year: 2023
  ident: b0115
  article-title: A feature aggregation and feature fusion network for retinal vessel segmentation
  publication-title: Biomed. Signal Process. Control
– reference: (12) (2013) 126011.
– volume: 50
  start-page: 2004
  year: 2009
  end-page: 2010
  ident: b0185
  article-title: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program
  publication-title: Invest Ophthalmol vis Sci
– volume: 37
  start-page: 1562
  year: 2018
  end-page: 1573
  ident: b0010
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans. Med. Imaging
– reference: 2018.
– year: 2023
  ident: b0055
  article-title: Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning
  publication-title: Neural Netw
– start-page: 1125
  year: 2021
  end-page: 1129
  ident: b0135
  article-title: Pyramid u-net for retinal vessel segmentation
  publication-title: In:
– start-page: 3431
  year: 2015, 2015,
  end-page: 3440
  ident: b0090
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: In:
– reference: J. Zhang, B. Dashtbozorg, E. Bekkers, J.P. Pluim, R. Duits, B. Ter Haar Romeny, Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores 35(12) (2016) 2631–2644.
– year: 2023
  ident: b0110
  article-title: Transattunet:
  publication-title: IEEE Trans. Emerging Topics Comput. Intell.
– reference: 2019,
– reference: .
– volume: 43
  start-page: 652
  year: 2019
  end-page: 662
  ident: b0170
  article-title: Res2net: A new multi-scale backbone architecture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 833
  year: 2022, 2022,
  end-page: 843
  ident: b0175
  article-title: Blueprint Separable Residual Network for Efficient Image Super-Resolution
  publication-title: In:
– volume: 205
  year: 2021
  ident: b0140
  article-title: BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation
  publication-title: Comput Methods Programs Biomed
– volume: 26
  start-page: 4551
  year: 2022
  end-page: 4562
  ident: b0155
  article-title: MFI-Net: Multiscale Feature Interaction Network for Retinal Vessel Segmentation
  publication-title: IEEE J Biomed Health Inform
– volume: 152
  year: 2023
  ident: b0165
  article-title: Wave-Net: A lightweight deep network for retinal vessel segmentation from fundus images
  publication-title: Comput. Biol. Med.
– volume: 206
  year: 2023
  ident: b0060
  article-title: MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation
  publication-title: Measurement
– volume: 27
  start-page: 1301
  year: 2020
  end-page: 1311
  ident: b0085
  article-title: VC-Net: deep volume-composition networks for segmentation and visualization of highly sparse and noisy image data
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 70
  year: 2021
  ident: 10.1016/j.bspc.2023.105861_b0015
  article-title: Scs-net: A scale and context sensitive network for retinal vessel segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102025
– volume: 12
  start-page: 133
  issue: 9
  year: 2015
  ident: 10.1016/j.bspc.2023.105861_b0020
  article-title: Retinal vessel segmentation: a comparative study of fuzzy C-means and sum entropy information on phase congruency
  publication-title: Int. J. Adv. Rob. Syst.
  doi: 10.5772/60581
– start-page: 3656
  year: 2020
  ident: 10.1016/j.bspc.2023.105861_b0050
  article-title: Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks
– start-page: 1125
  year: 2021
  ident: 10.1016/j.bspc.2023.105861_b0135
  article-title: Pyramid u-net for retinal vessel segmentation
– year: 2023
  ident: 10.1016/j.bspc.2023.105861_b0105
  article-title: MISSU: 3D medical image segmentation via self-distilling TransUNet
  publication-title: IEEE Trans. Med. Imaging
– volume: 27
  start-page: 1301
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.105861_b0085
  article-title: VC-Net: deep volume-composition networks for segmentation and visualization of highly sparse and noisy image data
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2020.3030374
– volume: 85
  year: 2023
  ident: 10.1016/j.bspc.2023.105861_b0115
  article-title: A feature aggregation and feature fusion network for retinal vessel segmentation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104829
– start-page: 234
  year: 2015
  ident: 10.1016/j.bspc.2023.105861_b0030
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 2022
  start-page: 4695136
  year: 2022
  ident: 10.1016/j.bspc.2023.105861_b0080
  article-title: SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation
  publication-title: J Healthc Eng
  doi: 10.1155/2022/4695136
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.bspc.2023.105861_b0005
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 10.1016/j.bspc.2023.105861_b0075
– ident: 10.1016/j.bspc.2023.105861_b0025
  doi: 10.1117/1.JBO.18.12.126011
– start-page: 833
  year: 2022
  ident: 10.1016/j.bspc.2023.105861_b0175
  article-title: Blueprint Separable Residual Network for Efficient Image Super-Resolution
– volume: 50
  start-page: 2004
  issue: 5
  year: 2009
  ident: 10.1016/j.bspc.2023.105861_b0185
  article-title: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program
  publication-title: Invest Ophthalmol vis Sci
  doi: 10.1167/iovs.08-3018
– volume: 38
  start-page: 2281
  issue: 10
  year: 2019
  ident: 10.1016/j.bspc.2023.105861_b0040
  article-title: CE-Net: Context Encoder Network for 2D Medical Image Segmentation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2903562
– year: 2023
  ident: 10.1016/j.bspc.2023.105861_b0055
  article-title: Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2023.05.029
– ident: 10.1016/j.bspc.2023.105861_b0065
  doi: 10.1016/j.compbiomed.2021.104449
– start-page: 3431
  year: 2015
  ident: 10.1016/j.bspc.2023.105861_b0090
  article-title: Fully convolutional networks for semantic segmentation
– year: 2022
  ident: 10.1016/j.bspc.2023.105861_b0125
  article-title: AV-casNet: Fully Automatic Arteriole-Venule Segmentation and Differentiation in OCT Angiography
  publication-title: IEEE Trans Med Imaging
– ident: 10.1016/j.bspc.2023.105861_b0130
  doi: 10.1016/j.bspc.2021.102977
– volume: 19
  start-page: 203
  issue: 3
  year: 2000
  ident: 10.1016/j.bspc.2023.105861_b0190
  article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.845178
– year: 2018
  ident: 10.1016/j.bspc.2023.105861_b0200
  article-title: Towards a glaucoma risk index based on simulated hemodynamics from fundus images
– volume: 190
  year: 2020
  ident: 10.1016/j.bspc.2023.105861_b0045
  article-title: GC-Net: Global context network for medical image segmentation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105121
– year: 2023
  ident: 10.1016/j.bspc.2023.105861_b0110
  article-title: Transattunet: Multi-level attention-guided u-net with transformer for medical image segmentation
  publication-title: IEEE Trans. Emerging Topics Comput. Intell.
– ident: 10.1016/j.bspc.2023.105861_b0195
  doi: 10.1109/TMI.2016.2587062
– ident: 10.1016/j.bspc.2023.105861_b0100
  doi: 10.1109/TMI.2018.2867837
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  ident: 10.1016/j.bspc.2023.105861_b0010
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2791721
– start-page: 3
  year: 2018
  ident: 10.1016/j.bspc.2023.105861_b0070
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– ident: 10.1016/j.bspc.2023.105861_b0035
  doi: 10.1109/ICCV.2019.00069
– volume: 152
  year: 2023
  ident: 10.1016/j.bspc.2023.105861_b0165
  article-title: Wave-Net: A lightweight deep network for retinal vessel segmentation from fundus images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106341
– volume: 23
  start-page: 501
  issue: 4
  year: 2004
  ident: 10.1016/j.bspc.2023.105861_b0180
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.825627
– volume: 206
  year: 2023
  ident: 10.1016/j.bspc.2023.105861_b0060
  article-title: MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112316
– volume: 43
  start-page: 652
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2023.105861_b0170
  article-title: Res2net: A new multi-scale backbone architecture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2938758
– volume: 26
  start-page: 4551
  issue: 9
  year: 2022
  ident: 10.1016/j.bspc.2023.105861_b0155
  article-title: MFI-Net: Multiscale Feature Interaction Network for Retinal Vessel Segmentation
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3182471
– volume: 205
  year: 2021
  ident: 10.1016/j.bspc.2023.105861_b0140
  article-title: BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106070
– ident: 10.1016/j.bspc.2023.105861_b0150
  doi: 10.1109/JBHI.2020.3028180
– ident: 10.1016/j.bspc.2023.105861_b0095
  doi: 10.1007/978-3-030-00937-3_48
– volume: 79
  year: 2023
  ident: 10.1016/j.bspc.2023.105861_b0160
  article-title: ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104087
– start-page: 1055
  year: 2020
  ident: 10.1016/j.bspc.2023.105861_b0120
  article-title: Unet 3+: A full-scale connected unet for medical image segmentation
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105861_b0145
  article-title: DNL-Net: deformed non-local neural network for blood vessel segmentation
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-022-00836-z
SSID ssj0048714
Score 2.433268
Snippet •We present an efficient medical image segmentation framework called FSE-Net for retinal vessel segmentation, which eliminates the up-sampling operation.•To...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105861
SubjectTerms Convolutional neural network
Feature fusion
Retinal vessel segmentation
U-Net
Title FSE-Net: Rethinking the up-sampling operation in encoder-decoder structure for retinal vessel segmentation
URI https://dx.doi.org/10.1016/j.bspc.2023.105861
Volume 90
WOSCitedRecordID wos001143296300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEM7FH2i6SPg0M1gIEuiJHYLCgdNBqNAU8DoIlDk0ZXhKELsGvkN_dU9itQjbhskQxfJEERK8H043onffUfIB8m14RoMU5prFoOIWZEkwIpiIiAIhVEqbppNpLNZNp-LL6PRr7YWZrtKqyq7vhb1fzU1XkNj29LZe5i7mxQv4G80Oh7R7Hi8k-FPvk7ZDDaO6bb54XojNPHlz5qtpWWQW6JzDd72VjOkspXtV0xDcx47UVm7tWBJiLbO0casWyszvhqvYXHhC5aqG1vCTSG_q7IsF3ZA7YoQ2jJIz4rvd0IaBJVyWcre7A3nD8p-Z8tLHPQ0BOcnv-N5cdGuu_6zRThkuzhPm8ZWCdl1OG5dsesc6n0pRn6ZE2r_w827Lw7Lo2JdWxnKMDrqb76pqb2z1nUMxJbctsztHLmdI3dzPCD7YcoFesj949Pp_Kxd1zGza5Tiuxf3JViOLbj7Jn8Pcwahy_lT8sTnHPTYYeUZGUH1nDweKFG-IEuPmo-0xwxFzNABZmiHGVpWdAcztMMMRcxQjxnqMEOHmHlJvp1Mzz99Zr4NB1NREGyYEVyKQAmQgcwAU16VGhEDB62SWEWYnxYyjLWJdKYzXECF4Vlk0kQmiZiAiKJXZK-6rOA1oRKDIVGEBrN2qwrFpcHwvYhxPlVAJPkBmbT_Wq68Rr1tlbLK_22vAzLuxtROoeXWu3lrjNzHmC52zBFbt4x7c6-nvCWPesy_I3toAXhPHqrtplxfHXpg_QaxRqDc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FSE-Net%3A+Rethinking+the+up-sampling+operation+in+encoder-decoder+structure+for+retinal+vessel+segmentation&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Ni%2C+Jiajia&rft.au=Mu%2C+Wei&rft.au=Pan%2C+An&rft.au=Chen%2C+Zhengming&rft.date=2024-04-01&rft.issn=1746-8094&rft.volume=90&rft.spage=105861&rft_id=info:doi/10.1016%2Fj.bspc.2023.105861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon