DMFusion: A dual-branch multi-scale feature fusion network for medical multi-modal image fusion

In the field of medical imaging, high-quality multi-modal image fusion is crucial for improving diagnostic accuracy. By integrating information from different imaging modalities, medical multi-modal image fusion provides more comprehensive and accurate images. However, many existing fusion methods e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomedical signal processing and control Ročník 105; s. 107572
Hlavní autori: Ma, Gengchen, Qiu, Xihe, Tan, Xiaoyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2025
Predmet:
ISSN:1746-8094
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the field of medical imaging, high-quality multi-modal image fusion is crucial for improving diagnostic accuracy. By integrating information from different imaging modalities, medical multi-modal image fusion provides more comprehensive and accurate images. However, many existing fusion methods either overlook the unique information of each modality or fail to capture commonalities, resulting in incomplete fused images. To address this challenge, we propose an advanced medical multi-modal image fusion framework called Dual-Branch Multi-Scale Feature Fusion (DMFusion), aiming to optimize the fusion performance of multi-modal medical images. The DMFusion framework is based on a dual-branch autoencoder (AE) structure, where one branch is dedicated to extracting modality-specific distinctive features, and the other branch focuses on capturing shared features between modalities. This design allows DMFusion to not only preserve key features of each modality but also to effectively integrate their common information. Furthermore, our encoder employs multi-scale feature extraction techniques, enhancing the model’s perception of image details and allowing effective capture and fusion of image features at various scales. During the fusion process, both the encoder and decoder employ lightweight self-attention mechanisms. The encoder uses designed selection rules to precisely select salient features from the two branches, which are then fed into the decoder to achieve deep fusion. This decoder employs advanced image reconstruction techniques to generate fused images with richer texture details and better visual quality. Through qualitative and quantitative experiments on the publicly available Harvard Medical dataset and a dataset of abdominal multi-modal medical images from China, our method has demonstrated superior performance in medical image fusion tasks. The results indicate that the DMFusion framework can effectively enhance the accuracy of medical image fusion, providing new insights for future research on multi-modal image fusion. •Dual-branch autoencoder for multi-modal medical image fusion.•Modality-specific and shared features extracted by separate branches.•Multi-scale feature extraction enhances perception of image details.•Lightweight self-attention and selection rules enable precise feature fusion.
AbstractList In the field of medical imaging, high-quality multi-modal image fusion is crucial for improving diagnostic accuracy. By integrating information from different imaging modalities, medical multi-modal image fusion provides more comprehensive and accurate images. However, many existing fusion methods either overlook the unique information of each modality or fail to capture commonalities, resulting in incomplete fused images. To address this challenge, we propose an advanced medical multi-modal image fusion framework called Dual-Branch Multi-Scale Feature Fusion (DMFusion), aiming to optimize the fusion performance of multi-modal medical images. The DMFusion framework is based on a dual-branch autoencoder (AE) structure, where one branch is dedicated to extracting modality-specific distinctive features, and the other branch focuses on capturing shared features between modalities. This design allows DMFusion to not only preserve key features of each modality but also to effectively integrate their common information. Furthermore, our encoder employs multi-scale feature extraction techniques, enhancing the model’s perception of image details and allowing effective capture and fusion of image features at various scales. During the fusion process, both the encoder and decoder employ lightweight self-attention mechanisms. The encoder uses designed selection rules to precisely select salient features from the two branches, which are then fed into the decoder to achieve deep fusion. This decoder employs advanced image reconstruction techniques to generate fused images with richer texture details and better visual quality. Through qualitative and quantitative experiments on the publicly available Harvard Medical dataset and a dataset of abdominal multi-modal medical images from China, our method has demonstrated superior performance in medical image fusion tasks. The results indicate that the DMFusion framework can effectively enhance the accuracy of medical image fusion, providing new insights for future research on multi-modal image fusion. •Dual-branch autoencoder for multi-modal medical image fusion.•Modality-specific and shared features extracted by separate branches.•Multi-scale feature extraction enhances perception of image details.•Lightweight self-attention and selection rules enable precise feature fusion.
ArticleNumber 107572
Author Tan, Xiaoyu
Qiu, Xihe
Ma, Gengchen
Author_xml – sequence: 1
  givenname: Gengchen
  orcidid: 0009-0002-3841-9889
  surname: Ma
  fullname: Ma, Gengchen
  organization: School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
– sequence: 2
  givenname: Xihe
  orcidid: 0000-0003-4024-925X
  surname: Qiu
  fullname: Qiu, Xihe
  email: qiuxihe@sues.edu.cn
  organization: School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
– sequence: 3
  givenname: Xiaoyu
  orcidid: 0000-0003-3555-7143
  surname: Tan
  fullname: Tan, Xiaoyu
  organization: INF Technology (Shanghai) Co., Ltd., Shanghai, China
BookMark eNp9kM9OAjEQh3vAREBfwFNfYLEt7W7XeCEoaILxwr3p9o8Wd7ek7Wp8e4vgxQOnmUx-32Tmm4BR73sDwA1GM4xwebubNXGvZgQRlgcVq8gIjHFFy4Kjml6CSYw7hCivMB0D8fCyGqLz_R1cQD3ItmiC7NU77IY2uSIq2RpojUxDyPU3CXuTvnz4gNYH2BntcuYU77zOvevk21_4ClxY2UZzfapTsF09bpdPxeZ1_bxcbAo1RygVljNLaqVLZjFTNZVaEsZYIxGtSsZwpZGmJakbLZWtjTWMS46opQ1nc0TmU8CPa1XwMQZjhXJJpnxACtK1AiNxcCN24uBGHNyIo5uMkn_oPuQPwvd56P4ImfzTpzNBROVMr7KNYFQS2rtz-A_BbYLe
CitedBy_id crossref_primary_10_3390_app15179298
crossref_primary_10_1007_s11517_025_03361_7
crossref_primary_10_1007_s40747_025_01964_z
Cites_doi 10.1109/TIP.2003.819861
10.1109/CVPR.2016.308
10.1016/j.procs.2015.10.057
10.1016/j.inffus.2018.07.010
10.1109/TPAMI.2020.3012548
10.1109/CVPR.2018.00474
10.1109/JAS.2022.106082
10.1109/TCI.2021.3100986
10.1016/j.inffus.2021.06.001
10.1016/j.inffus.2013.01.001
10.1016/j.cviu.2021.103228
10.1109/CVPR46437.2021.00681
10.1016/j.compbiomed.2023.106923
10.1609/aaai.v36i2.20109
10.1109/JAS.2022.105686
10.1109/ICCV48922.2021.00986
10.1109/TCI.2017.2786138
10.1109/ACCESS.2020.2982016
10.1109/TIM.2018.2838778
10.1109/ICCV48922.2021.00061
10.1016/j.image.2021.116554
10.1109/TIM.2020.3022438
10.1007/s11042-022-13507-6
10.1364/OE.27.038312
10.1109/CVPR.2017.243
10.1016/j.inffus.2013.12.002
10.1016/j.sigpro.2020.107734
10.1109/ICCV.2019.00140
10.1016/j.bspc.2021.102788
10.1109/CVPR52688.2022.00564
10.1109/TBME.2012.2217493
10.1109/TIP.2013.2244222
10.1109/TIP.2020.2977573
10.1109/CVPR52688.2022.00571
10.1109/TCSVT.2021.3056725
10.1007/s11263-021-01501-8
10.1109/CVPR.2016.90
10.1109/TIP.2018.2887342
10.1016/j.bspc.2017.02.005
10.1016/j.inffus.2011.01.002
10.1007/s11263-018-1117-z
10.1007/s13721-021-00342-2
10.1007/s13534-014-0161-z
10.1109/CVPR52729.2023.00572
10.1109/CVPR52688.2022.01186
10.1016/j.compbiomed.2024.108771
10.1016/j.bspc.2019.101810
10.1109/ICCV51070.2023.00742
10.1109/ICCVW54120.2021.00210
10.1109/CVPR.2015.7298594
10.1109/CVPR52688.2022.01167
10.1016/j.inffus.2021.02.023
10.1016/j.neucom.2021.08.044
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2025.107572
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2025_107572
S1746809425000837
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9DU
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c300t-f85f29cd65f15c94ada2555ba04765517d0d4629bdacf9efe58a804f4b853023
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421853900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 21:10:17 EST 2025
Thu Nov 27 00:44:24 EST 2025
Wed Dec 10 14:41:50 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Medical image fusion
CNN-transformer
Multi-scale
Multi-modality images
Dual-branch
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-f85f29cd65f15c94ada2555ba04765517d0d4629bdacf9efe58a804f4b853023
ORCID 0000-0003-4024-925X
0009-0002-3841-9889
0000-0003-3555-7143
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2025_107572
crossref_primary_10_1016_j_bspc_2025_107572
elsevier_sciencedirect_doi_10_1016_j_bspc_2025_107572
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Kang, Hu (b43) 2013; 22
Ma, Zhao, Jiang, Zhou, Guo (b16) 2019; 127
Xu, Ma (b11) 2021; 76
Yao, Xiong, Wang, Liu, Chen (b4) 2019; 27
Zong, Qiu (b40) 2017; 34
Jie, Xu, Li, Tan (b50) 2024
Xiao, Guo, Veelaert, Philips (b25) 2022; 101
Meher, Agrawal, Panda, Abraham (b3) 2019; 48
Cheng, He, Lv (b31) 2008
J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte, Swinir: Image restoration using swin transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1833–1844.
Diwakar, Singh, Shankar, Nayak, Nayak, Vimal, Singh, Sisodia (b35) 2022; 11
Wang, He, Liu (b29) 2024; 179
Das, Gupta, Bakde (b47) 2024
A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., Searching for mobilenetv3, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324.
Xu (b44) 2014; 19
Tan, Le (b69) 2019
Liu, Fan, Jiang, Liu, Luo (b8) 2021; 32
Diwakar, Singh, Shankar (b36) 2021; 68
Fang, Zhao, Yang, Qin, Zhang (b49) 2021; 463
Kumar, Diwakar (b37) 2021; 32
Simonyan, Zisserman (b64) 2014
Zhang (b7) 2021; 44
Bhavana, Krishnappa (b32) 2015; 70
Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet for the 2020s, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11976–11986.
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
L. Qu, S. Liu, M. Wang, Z. Song, Transmef: A transformer-based multi-exposure image fusion framework using self-supervised multi-task learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 2126–2134.
J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, C. Xu, Cmt: Convolutional neural networks meet vision transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12175–12185.
Ma, Xu, Jiang, Mei, Zhang (b46) 2020; 29
Huang, Le, Ma, Fan, Zhang, Yang (b45) 2020; 8
Krizhevsky, Sutskever, Hinton (b63) 2012; 25
S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, Restormer: Efficient transformer for high-resolution image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5728–5739.
Dhaundiyal, Tripathi, Joshi, Diwakar, Singh (b33) 2020; Vol. 1478
Ganasala, Kumar (b2) 2014; 4
J. Liu, X. Fan, Z. Huang, G. Wu, R. Liu, W. Zhong, Z. Luo, Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5802–5811.
Zhang, Ma (b20) 2021; 129
Hu, Li (b42) 2012; 13
Xu, Zhang, Ma (b19) 2021; 7
Peng, Li, Yang, Wang (b34) 2021; 210
Yin, Liu, Liu, Chen (b1) 2018; 68
Z. Zhao, H. Bai, J. Zhang, Y. Zhang, S. Xu, Z. Lin, R. Timofte, L. Van Gool, Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5906–5916.
Touvron, Cord, Douze, Massa, Sablayrolles, Jégou (b54) 2021
Liang, Jiang, Liu, Ma (b23) 2022
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
Li, Wu, Kittler (b21) 2021; 73
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b51) 2017; 30
He, Li, Xu, Yan, Tang, Zhang, Wang, Li (b12) 2023
Ma, Tang, Fan, Huang, Mei, Ma (b15) 2022; 9
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (b57) 2020
Xu, Wang, Ma (b18) 2021; 70
Li, Wu (b22) 2018; 28
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Xu, Ma, Jiang, Guo, Ling (b9) 2020; 44
S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P.H. Torr, et al., Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6881–6890.
Wang, Bovik, Sheikh, Simoncelli (b72) 2004; 13
Zhao, Xu, Zhang, Liu, Li, Zhang (b10) 2020
Maqsood, Javed (b41) 2020; 57
Ding, Li, Guo, Zhou, Liu, Xie (b27) 2023; 159
James, Dasarathy (b13) 2014; 19
Zhao, Xu, Zhang, Liu, Zhang (b5) 2020; 177
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b52) 2020
Zhu, Su, Lu, Li, Wang, Dai (b58) 2020
Ma, Duanmu, Yeganeh, Wang (b6) 2017; 4
Tang, Deng, Ma, Huang, Ma (b17) 2022; 9
Jian, Yang, Liu, Jeon, Gao, Chisholm (b28) 2020; 70
Li, Yin, Fang (b39) 2012; 59
Z. Zhao, H. Bai, Y. Zhu, J. Zhang, S. Xu, Y. Zhang, K. Zhang, D. Meng, R. Timofte, L. Van Gool, DDFM: denoising diffusion model for multi-modality image fusion, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 8082–8093.
W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
Diwakar, Shankar, Chakraborty, Singh, Arunkumar (b38) 2022; 81
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
Ronneberger, Fischer, Brox (b30) 2015
Meher (10.1016/j.bspc.2025.107572_b3) 2019; 48
Xu (10.1016/j.bspc.2025.107572_b44) 2014; 19
Das (10.1016/j.bspc.2025.107572_b47) 2024
Li (10.1016/j.bspc.2025.107572_b22) 2018; 28
Zhao (10.1016/j.bspc.2025.107572_b5) 2020; 177
Li (10.1016/j.bspc.2025.107572_b21) 2021; 73
Kumar (10.1016/j.bspc.2025.107572_b37) 2021; 32
Zhao (10.1016/j.bspc.2025.107572_b10) 2020
Ma (10.1016/j.bspc.2025.107572_b46) 2020; 29
Zhu (10.1016/j.bspc.2025.107572_b58) 2020
Tan (10.1016/j.bspc.2025.107572_b69) 2019
Ganasala (10.1016/j.bspc.2025.107572_b2) 2014; 4
Xiao (10.1016/j.bspc.2025.107572_b25) 2022; 101
Vaswani (10.1016/j.bspc.2025.107572_b51) 2017; 30
10.1016/j.bspc.2025.107572_b71
Tang (10.1016/j.bspc.2025.107572_b17) 2022; 9
Yin (10.1016/j.bspc.2025.107572_b1) 2018; 68
Dosovitskiy (10.1016/j.bspc.2025.107572_b52) 2020
Zhang (10.1016/j.bspc.2025.107572_b20) 2021; 129
Yao (10.1016/j.bspc.2025.107572_b4) 2019; 27
Zong (10.1016/j.bspc.2025.107572_b40) 2017; 34
Xu (10.1016/j.bspc.2025.107572_b18) 2021; 70
10.1016/j.bspc.2025.107572_b70
Jian (10.1016/j.bspc.2025.107572_b28) 2020; 70
Li (10.1016/j.bspc.2025.107572_b43) 2013; 22
Simonyan (10.1016/j.bspc.2025.107572_b64) 2014
Xu (10.1016/j.bspc.2025.107572_b11) 2021; 76
Diwakar (10.1016/j.bspc.2025.107572_b36) 2021; 68
Xu (10.1016/j.bspc.2025.107572_b9) 2020; 44
Ma (10.1016/j.bspc.2025.107572_b16) 2019; 127
Diwakar (10.1016/j.bspc.2025.107572_b38) 2022; 81
Touvron (10.1016/j.bspc.2025.107572_b54) 2021
10.1016/j.bspc.2025.107572_b24
10.1016/j.bspc.2025.107572_b68
10.1016/j.bspc.2025.107572_b26
Carion (10.1016/j.bspc.2025.107572_b57) 2020
Zhang (10.1016/j.bspc.2025.107572_b7) 2021; 44
10.1016/j.bspc.2025.107572_b61
10.1016/j.bspc.2025.107572_b60
Peng (10.1016/j.bspc.2025.107572_b34) 2021; 210
10.1016/j.bspc.2025.107572_b62
Krizhevsky (10.1016/j.bspc.2025.107572_b63) 2012; 25
10.1016/j.bspc.2025.107572_b65
10.1016/j.bspc.2025.107572_b67
10.1016/j.bspc.2025.107572_b66
Wang (10.1016/j.bspc.2025.107572_b29) 2024; 179
Huang (10.1016/j.bspc.2025.107572_b45) 2020; 8
Maqsood (10.1016/j.bspc.2025.107572_b41) 2020; 57
Cheng (10.1016/j.bspc.2025.107572_b31) 2008
Hu (10.1016/j.bspc.2025.107572_b42) 2012; 13
Ma (10.1016/j.bspc.2025.107572_b6) 2017; 4
Jie (10.1016/j.bspc.2025.107572_b50) 2024
10.1016/j.bspc.2025.107572_b14
Liu (10.1016/j.bspc.2025.107572_b8) 2021; 32
Ma (10.1016/j.bspc.2025.107572_b15) 2022; 9
10.1016/j.bspc.2025.107572_b59
Diwakar (10.1016/j.bspc.2025.107572_b35) 2022; 11
Fang (10.1016/j.bspc.2025.107572_b49) 2021; 463
Wang (10.1016/j.bspc.2025.107572_b72) 2004; 13
Li (10.1016/j.bspc.2025.107572_b39) 2012; 59
Xu (10.1016/j.bspc.2025.107572_b19) 2021; 7
10.1016/j.bspc.2025.107572_b53
10.1016/j.bspc.2025.107572_b56
10.1016/j.bspc.2025.107572_b55
James (10.1016/j.bspc.2025.107572_b13) 2014; 19
He (10.1016/j.bspc.2025.107572_b12) 2023
Ding (10.1016/j.bspc.2025.107572_b27) 2023; 159
Ronneberger (10.1016/j.bspc.2025.107572_b30) 2015
Dhaundiyal (10.1016/j.bspc.2025.107572_b33) 2020; Vol. 1478
10.1016/j.bspc.2025.107572_b48
Liang (10.1016/j.bspc.2025.107572_b23) 2022
Bhavana (10.1016/j.bspc.2025.107572_b32) 2015; 70
References_xml – volume: 68
  year: 2021
  ident: b36
  article-title: Multi-modal medical image fusion framework using co-occurrence filter and local extrema in NSST domain
  publication-title: Biomed. Signal Process. Control
– volume: Vol. 1478
  year: 2020
  ident: b33
  article-title: Clustering based multi-modality medical image fusion
  publication-title: Journal of Physics: Conference Series
– volume: 9
  start-page: 1200
  year: 2022
  end-page: 1217
  ident: b15
  article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer
  publication-title: IEEE/CAA J. Autom. Sin.
– year: 2020
  ident: b58
  article-title: Deformable detr: Deformable transformers for end-to-end object detection
– volume: 4
  start-page: 414
  year: 2014
  end-page: 424
  ident: b2
  article-title: Multimodality medical image fusion based on new features in NSST domain
  publication-title: Biomed. Eng. Lett.
– reference: J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte, Swinir: Image restoration using swin transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1833–1844.
– volume: 73
  start-page: 72
  year: 2021
  end-page: 86
  ident: b21
  article-title: RFN-nest: An end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fusion
– start-page: 234
  year: 2015
  end-page: 241
  ident: b30
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– volume: 25
  year: 2012
  ident: b63
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, C. Xu, Cmt: Convolutional neural networks meet vision transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12175–12185.
– volume: 8
  start-page: 55145
  year: 2020
  end-page: 55157
  ident: b45
  article-title: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network
  publication-title: IEEE Access
– volume: 34
  start-page: 195
  year: 2017
  end-page: 205
  ident: b40
  article-title: Medical image fusion based on sparse representation of classified image patches
  publication-title: Biomed. Signal Process. Control
– start-page: 2523
  year: 2008
  end-page: 2525
  ident: b31
  article-title: Medical image of PET/CT weighted fusion based on wavelet transform
  publication-title: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering
– volume: 177
  year: 2020
  ident: b5
  article-title: Bayesian fusion for infrared and visible images
  publication-title: Signal Process.
– volume: 101
  year: 2022
  ident: b25
  article-title: DMDN: Degradation model-based deep network for multi-focus image fusion
  publication-title: Signal Process., Image Commun.
– year: 2023
  ident: b12
  article-title: Hqg-net: Unpaired medical image enhancement with high-quality guidance
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 719
  year: 2022
  end-page: 735
  ident: b23
  article-title: Fusion from decomposition: A self-supervised decomposition approach for image fusion
  publication-title: European Conference on Computer Vision
– volume: 13
  start-page: 196
  year: 2012
  end-page: 206
  ident: b42
  article-title: The multiscale directional bilateral filter and its application to multisensor image fusion
  publication-title: Inf. Fusion
– volume: 28
  start-page: 2614
  year: 2018
  end-page: 2623
  ident: b22
  article-title: DenseFuse: A fusion approach to infrared and visible images
  publication-title: IEEE Trans. Image Process.
– volume: 44
  start-page: 502
  year: 2020
  end-page: 518
  ident: b9
  article-title: U2Fusion: A unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 159
  year: 2023
  ident: b27
  article-title: M4fnet: Multimodal medical image fusion network via multi-receptive-field and multi-scale feature integration
  publication-title: Comput. Biol. Med.
– volume: 179
  year: 2024
  ident: b29
  article-title: EMOST: A dual-branch hybrid network for medical image fusion via efficient model module and sparse transformer
  publication-title: Comput. Biol. Med.
– volume: 19
  start-page: 4
  year: 2014
  end-page: 19
  ident: b13
  article-title: Medical image fusion: A survey of the state of the art
  publication-title: Inf. Fusion
– volume: 32
  year: 2021
  ident: b37
  article-title: A novel approach for multimodality medical image fusion over secure environment
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 4
  start-page: 60
  year: 2017
  end-page: 72
  ident: b6
  article-title: Multi-exposure image fusion by optimizing a structural similarity index
  publication-title: IEEE Trans. Comput. Imaging
– volume: 48
  start-page: 119
  year: 2019
  end-page: 132
  ident: b3
  article-title: A survey on region based image fusion methods
  publication-title: Inf. Fusion
– volume: 44
  start-page: 4819
  year: 2021
  end-page: 4838
  ident: b7
  article-title: Deep learning-based multi-focus image fusion: A survey and a comparative study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2024
  ident: b47
  article-title: An end-to-end content-aware generative adversarial network based method for multimodal medical image fusion
  publication-title: Data Analytics for Intelligent Systems: Techniques and Solutions
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
– reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
– volume: 76
  start-page: 177
  year: 2021
  end-page: 186
  ident: b11
  article-title: EMFusion: An unsupervised enhanced medical image fusion network
  publication-title: Inf. Fusion
– volume: 22
  start-page: 2864
  year: 2013
  end-page: 2875
  ident: b43
  article-title: Image fusion with guided filtering
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 4980
  year: 2020
  end-page: 4995
  ident: b46
  article-title: DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 59
  start-page: 3450
  year: 2012
  end-page: 3459
  ident: b39
  article-title: Group-sparse representation with dictionary learning for medical image denoising and fusion
  publication-title: IEEE Trans. Biomed. Eng.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
– reference: A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., Searching for mobilenetv3, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324.
– volume: 9
  start-page: 2121
  year: 2022
  end-page: 2137
  ident: b17
  article-title: SuperFusion: A versatile image registration and fusion network with semantic awareness
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 7
  start-page: 824
  year: 2021
  end-page: 836
  ident: b19
  article-title: Classification saliency-based rule for visible and infrared image fusion
  publication-title: IEEE Trans. Comput. Imaging
– volume: 68
  start-page: 49
  year: 2018
  end-page: 64
  ident: b1
  article-title: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain
  publication-title: IEEE Trans. Instrum. Meas.
– reference: L. Qu, S. Liu, M. Wang, Z. Song, Transmef: A transformer-based multi-exposure image fusion framework using self-supervised multi-task learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 2126–2134.
– volume: 57
  year: 2020
  ident: b41
  article-title: Multi-modal medical image fusion based on two-scale image decomposition and sparse representation
  publication-title: Biomed. Signal Process. Control
– volume: 70
  start-page: 625
  year: 2015
  end-page: 631
  ident: b32
  article-title: Multi-modality medical image fusion using discrete wavelet transform
  publication-title: Procedia Comput. Sci.
– volume: 127
  start-page: 512
  year: 2019
  end-page: 531
  ident: b16
  article-title: Locality preserving matching
  publication-title: Int. J. Comput. Vis.
– reference: W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578.
– volume: 32
  start-page: 105
  year: 2021
  end-page: 119
  ident: b8
  article-title: Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet for the 2020s, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11976–11986.
– start-page: 213
  year: 2020
  end-page: 229
  ident: b57
  article-title: End-to-end object detection with transformers
  publication-title: European Conference on Computer Vision
– year: 2014
  ident: b64
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 70
  start-page: 1
  year: 2020
  end-page: 15
  ident: b28
  article-title: SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 81
  start-page: 37477
  year: 2022
  end-page: 37497
  ident: b38
  article-title: Multi-modal medical image fusion in NSST domain for internet of medical things
  publication-title: Multimedia Tools Appl.
– volume: 463
  start-page: 198
  year: 2021
  end-page: 211
  ident: b49
  article-title: A light-weight, efficient, and general cross-modal image fusion network
  publication-title: Neurocomputing
– start-page: 10347
  year: 2021
  end-page: 10357
  ident: b54
  article-title: Training data-efficient image transformers & distillation through attention
  publication-title: International Conference on Machine Learning
– year: 2024
  ident: b50
  article-title: TSJNet: A multi-modality target and semantic awareness joint-driven image fusion network
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b69
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– reference: Z. Zhao, H. Bai, J. Zhang, Y. Zhang, S. Xu, Z. Lin, R. Timofte, L. Van Gool, Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5906–5916.
– volume: 19
  start-page: 38
  year: 2014
  end-page: 48
  ident: b44
  article-title: Medical image fusion using multi-level local extrema
  publication-title: Inf. Fusion
– reference: S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P.H. Torr, et al., Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6881–6890.
– volume: 129
  start-page: 2761
  year: 2021
  end-page: 2785
  ident: b20
  article-title: SDNet: A versatile squeeze-and-decomposition network for real-time image fusion
  publication-title: Int. J. Comput. Vis.
– volume: 30
  year: 2017
  ident: b51
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b72
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 38312
  year: 2019
  end-page: 38325
  ident: b4
  article-title: Spectral-depth imaging with deep learning based reconstruction
  publication-title: Opt. Express
– reference: Z. Zhao, H. Bai, Y. Zhu, J. Zhang, S. Xu, Y. Zhang, K. Zhang, D. Meng, R. Timofte, L. Van Gool, DDFM: denoising diffusion model for multi-modality image fusion, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 8082–8093.
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
– reference: J. Liu, X. Fan, Z. Huang, G. Wu, R. Liu, W. Zhong, Z. Luo, Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5802–5811.
– volume: 11
  start-page: 15
  year: 2022
  ident: b35
  article-title: Directive clustering contrast-based multi-modality medical image fusion for smart healthcare system
  publication-title: Netw. Model. Anal. Heal. Inform. Bioinform.
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: b18
  article-title: DRF: Disentangled representation for visible and infrared image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2020
  ident: b52
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– reference: S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, Restormer: Efficient transformer for high-resolution image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5728–5739.
– year: 2020
  ident: b10
  article-title: DIDFuse: Deep image decomposition for infrared and visible image fusion
– volume: 210
  year: 2021
  ident: b34
  article-title: Multi-focus image fusion approach based on CNP systems in NSCT domain
  publication-title: Comput. Vis. Image Underst.
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.bspc.2025.107572_b72
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: 10.1016/j.bspc.2025.107572_b66
  doi: 10.1109/CVPR.2016.308
– volume: 70
  start-page: 625
  year: 2015
  ident: 10.1016/j.bspc.2025.107572_b32
  article-title: Multi-modality medical image fusion using discrete wavelet transform
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.057
– volume: 48
  start-page: 119
  year: 2019
  ident: 10.1016/j.bspc.2025.107572_b3
  article-title: A survey on region based image fusion methods
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.07.010
– volume: 44
  start-page: 502
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b9
  article-title: U2Fusion: A unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b18
  article-title: DRF: Disentangled representation for visible and infrared image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 2523
  year: 2008
  ident: 10.1016/j.bspc.2025.107572_b31
  article-title: Medical image of PET/CT weighted fusion based on wavelet transform
– volume: Vol. 1478
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b33
  article-title: Clustering based multi-modality medical image fusion
– ident: 10.1016/j.bspc.2025.107572_b68
  doi: 10.1109/CVPR.2018.00474
– volume: 9
  start-page: 2121
  issue: 12
  year: 2022
  ident: 10.1016/j.bspc.2025.107572_b17
  article-title: SuperFusion: A versatile image registration and fusion network with semantic awareness
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.106082
– volume: 7
  start-page: 824
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b19
  article-title: Classification saliency-based rule for visible and infrared image fusion
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2021.3100986
– volume: 76
  start-page: 177
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b11
  article-title: EMFusion: An unsupervised enhanced medical image fusion network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.06.001
– volume: 19
  start-page: 38
  year: 2014
  ident: 10.1016/j.bspc.2025.107572_b44
  article-title: Medical image fusion using multi-level local extrema
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.01.001
– start-page: 234
  year: 2015
  ident: 10.1016/j.bspc.2025.107572_b30
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 210
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b34
  article-title: Multi-focus image fusion approach based on CNP systems in NSCT domain
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103228
– ident: 10.1016/j.bspc.2025.107572_b56
  doi: 10.1109/CVPR46437.2021.00681
– volume: 159
  year: 2023
  ident: 10.1016/j.bspc.2025.107572_b27
  article-title: M4fnet: Multimodal medical image fusion network via multi-receptive-field and multi-scale feature integration
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106923
– ident: 10.1016/j.bspc.2025.107572_b24
  doi: 10.1609/aaai.v36i2.20109
– volume: 25
  year: 2012
  ident: 10.1016/j.bspc.2025.107572_b63
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.bspc.2025.107572_b58
– volume: 9
  start-page: 1200
  issue: 7
  year: 2022
  ident: 10.1016/j.bspc.2025.107572_b15
  article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.105686
– ident: 10.1016/j.bspc.2025.107572_b53
  doi: 10.1109/ICCV48922.2021.00986
– volume: 4
  start-page: 60
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2025.107572_b6
  article-title: Multi-exposure image fusion by optimizing a structural similarity index
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2017.2786138
– volume: 44
  start-page: 4819
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b7
  article-title: Deep learning-based multi-focus image fusion: A survey and a comparative study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 55145
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b45
  article-title: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982016
– volume: 32
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b37
  article-title: A novel approach for multimodality medical image fusion over secure environment
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 68
  start-page: 49
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2025.107572_b1
  article-title: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2838778
– ident: 10.1016/j.bspc.2025.107572_b55
  doi: 10.1109/ICCV48922.2021.00061
– volume: 101
  year: 2022
  ident: 10.1016/j.bspc.2025.107572_b25
  article-title: DMDN: Degradation model-based deep network for multi-focus image fusion
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2021.116554
– start-page: 213
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b57
  article-title: End-to-end object detection with transformers
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b28
  article-title: SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3022438
– volume: 81
  start-page: 37477
  issue: 26
  year: 2022
  ident: 10.1016/j.bspc.2025.107572_b38
  article-title: Multi-modal medical image fusion in NSST domain for internet of medical things
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-022-13507-6
– start-page: 10347
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b54
  article-title: Training data-efficient image transformers & distillation through attention
– volume: 27
  start-page: 38312
  issue: 26
  year: 2019
  ident: 10.1016/j.bspc.2025.107572_b4
  article-title: Spectral-depth imaging with deep learning based reconstruction
  publication-title: Opt. Express
  doi: 10.1364/OE.27.038312
– ident: 10.1016/j.bspc.2025.107572_b62
  doi: 10.1109/CVPR.2017.243
– volume: 19
  start-page: 4
  year: 2014
  ident: 10.1016/j.bspc.2025.107572_b13
  article-title: Medical image fusion: A survey of the state of the art
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.12.002
– volume: 177
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b5
  article-title: Bayesian fusion for infrared and visible images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107734
– ident: 10.1016/j.bspc.2025.107572_b67
  doi: 10.1109/ICCV.2019.00140
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b36
  article-title: Multi-modal medical image fusion framework using co-occurrence filter and local extrema in NSST domain
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102788
– ident: 10.1016/j.bspc.2025.107572_b60
  doi: 10.1109/CVPR52688.2022.00564
– volume: 59
  start-page: 3450
  issue: 12
  year: 2012
  ident: 10.1016/j.bspc.2025.107572_b39
  article-title: Group-sparse representation with dictionary learning for medical image denoising and fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2217493
– volume: 22
  start-page: 2864
  issue: 7
  year: 2013
  ident: 10.1016/j.bspc.2025.107572_b43
  article-title: Image fusion with guided filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2244222
– volume: 29
  start-page: 4980
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b46
  article-title: DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2977573
– ident: 10.1016/j.bspc.2025.107572_b14
  doi: 10.1109/CVPR52688.2022.00571
– year: 2014
  ident: 10.1016/j.bspc.2025.107572_b64
– year: 2024
  ident: 10.1016/j.bspc.2025.107572_b47
  article-title: An end-to-end content-aware generative adversarial network based method for multimodal medical image fusion
– volume: 32
  start-page: 105
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b8
  article-title: Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3056725
– volume: 129
  start-page: 2761
  issue: 10
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b20
  article-title: SDNet: A versatile squeeze-and-decomposition network for real-time image fusion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01501-8
– ident: 10.1016/j.bspc.2025.107572_b61
  doi: 10.1109/CVPR.2016.90
– year: 2024
  ident: 10.1016/j.bspc.2025.107572_b50
– volume: 28
  start-page: 2614
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2025.107572_b22
  article-title: DenseFuse: A fusion approach to infrared and visible images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2887342
– volume: 34
  start-page: 195
  year: 2017
  ident: 10.1016/j.bspc.2025.107572_b40
  article-title: Medical image fusion based on sparse representation of classified image patches
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.02.005
– volume: 13
  start-page: 196
  issue: 3
  year: 2012
  ident: 10.1016/j.bspc.2025.107572_b42
  article-title: The multiscale directional bilateral filter and its application to multisensor image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.01.002
– year: 2020
  ident: 10.1016/j.bspc.2025.107572_b52
– volume: 127
  start-page: 512
  year: 2019
  ident: 10.1016/j.bspc.2025.107572_b16
  article-title: Locality preserving matching
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1117-z
– volume: 11
  start-page: 15
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2025.107572_b35
  article-title: Directive clustering contrast-based multi-modality medical image fusion for smart healthcare system
  publication-title: Netw. Model. Anal. Heal. Inform. Bioinform.
  doi: 10.1007/s13721-021-00342-2
– start-page: 6105
  year: 2019
  ident: 10.1016/j.bspc.2025.107572_b69
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– year: 2020
  ident: 10.1016/j.bspc.2025.107572_b10
– volume: 4
  start-page: 414
  year: 2014
  ident: 10.1016/j.bspc.2025.107572_b2
  article-title: Multimodality medical image fusion based on new features in NSST domain
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-014-0161-z
– ident: 10.1016/j.bspc.2025.107572_b26
  doi: 10.1109/CVPR52729.2023.00572
– ident: 10.1016/j.bspc.2025.107572_b71
  doi: 10.1109/CVPR52688.2022.01186
– volume: 179
  year: 2024
  ident: 10.1016/j.bspc.2025.107572_b29
  article-title: EMOST: A dual-branch hybrid network for medical image fusion via efficient model module and sparse transformer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108771
– volume: 57
  year: 2020
  ident: 10.1016/j.bspc.2025.107572_b41
  article-title: Multi-modal medical image fusion based on two-scale image decomposition and sparse representation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101810
– ident: 10.1016/j.bspc.2025.107572_b48
  doi: 10.1109/ICCV51070.2023.00742
– ident: 10.1016/j.bspc.2025.107572_b59
  doi: 10.1109/ICCVW54120.2021.00210
– ident: 10.1016/j.bspc.2025.107572_b65
  doi: 10.1109/CVPR.2015.7298594
– ident: 10.1016/j.bspc.2025.107572_b70
  doi: 10.1109/CVPR52688.2022.01167
– year: 2023
  ident: 10.1016/j.bspc.2025.107572_b12
  article-title: Hqg-net: Unpaired medical image enhancement with high-quality guidance
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 30
  year: 2017
  ident: 10.1016/j.bspc.2025.107572_b51
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 73
  start-page: 72
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b21
  article-title: RFN-nest: An end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.023
– volume: 463
  start-page: 198
  year: 2021
  ident: 10.1016/j.bspc.2025.107572_b49
  article-title: A light-weight, efficient, and general cross-modal image fusion network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.044
– start-page: 719
  year: 2022
  ident: 10.1016/j.bspc.2025.107572_b23
  article-title: Fusion from decomposition: A self-supervised decomposition approach for image fusion
SSID ssj0048714
Score 2.4026535
Snippet In the field of medical imaging, high-quality multi-modal image fusion is crucial for improving diagnostic accuracy. By integrating information from different...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107572
SubjectTerms CNN-transformer
Dual-branch
Medical image fusion
Multi-modality images
Multi-scale
Title DMFusion: A dual-branch multi-scale feature fusion network for medical multi-modal image fusion
URI https://dx.doi.org/10.1016/j.bspc.2025.107572
Volume 105
WOSCitedRecordID wos001421853900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVgywEOiE_R8iEfuEWp0myc2NxW0AoQVCDtIbfIduw2FZtdNbuo_feMPU42LVDRA5doZU2caN-LPbbfzBDytlYFt7oQsYDp2B0zqlgazWMD3i9jBsZH6ZO4fimOj3lZim9BOtT5cgJF2_KLC7H6r1BDG4DtQmdvAffQKTTAbwAdrgA7XP8J-A9fjzZdUGzMIhdqFStXPeMUxYNxB6iYyBqf0TOy3jZqUQ3uRYeLcHaD5otl7fJyLJy2B42vnAP76H0MrWxOnGe7wsiDPvYxSOG3G9-4Ed-eAFkGXn5vNq65bE4Hms1xY7Zs5PJyM96aSNkgY-1H0yJz2Y6xivEw3CZsNGDC6pNh7Z7fxnLcVjjbV93K5ZpM2f7W-Gri7GsT2iAz7BVsZ5Xro3J9VNjHXbKTFkzwCdmZfTosP_eTNyzffDr44c1DnBVKAq-_yZ99mZF_Mn9EHoaFBZ0hIR6TO6Z9Qh6M0k0-JVVPjXd0RkfEoCNi0EAMiljTQAwKxKABaToiBvXECMbPyPzocP7-YxwKbMR6miTr2HJmU6HrnNkDpkUmawkrTKZkkhU5fLtFndRZngpVS22FsYZxyZPMZor7YlPPyaRdtuYFodxOpzrPrOXKZkwqLm2aWJMwmQtmlNolB_0_VemQfN7VQPlR_R2jXRIN96ww9cqN1qwHoArOIzqFFfDphvv2bvWUl-T-luivyGR9vjGvyT39c910528CmX4BKsiRpg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMFusion%3A+A+dual-branch+multi-scale+feature+fusion+network+for+medical+multi-modal+image+fusion&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Ma%2C+Gengchen&rft.au=Qiu%2C+Xihe&rft.au=Tan%2C+Xiaoyu&rft.date=2025-07-01&rft.issn=1746-8094&rft.volume=105&rft.spage=107572&rft_id=info:doi/10.1016%2Fj.bspc.2025.107572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2025_107572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon