Biorthogonal Greedy Algorithms in convex optimization

The study of greedy approximation in the context of convex optimization is becoming a promising research direction as greedy algorithms are actively being employed to construct sparse minimizers for convex functions with respect to given sets of elements. In this paper we propose a unified way of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis Jg. 60; S. 489 - 511
Hauptverfasser: Dereventsov, A.V., Temlyakov, V.N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.2022
Schlagworte:
ISSN:1063-5203, 1096-603X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The study of greedy approximation in the context of convex optimization is becoming a promising research direction as greedy algorithms are actively being employed to construct sparse minimizers for convex functions with respect to given sets of elements. In this paper we propose a unified way of analyzing a certain kind of greedy-type algorithms for the minimization of convex functions on Banach spaces. Specifically, we define the class of Weak Biorthogonal Greedy Algorithms for convex optimization that contains a wide range of greedy algorithms. We analyze the introduced class of algorithms and establish the properties of convergence, rate of convergence, and numerical stability, which is understood in the sense that the steps of the algorithm are allowed to be performed not precisely but with controlled computational inaccuracies. We show that the following well-known algorithms for convex optimization — the Weak Chebyshev Greedy Algorithm (co) and the Weak Greedy Algorithm with Free Relaxation (co) — belong to this class, and introduce a new algorithm — the Rescaled Weak Relaxed Greedy Algorithm (co). Presented numerical experiments demonstrate the practical performance of the aforementioned greedy algorithms in the setting of convex minimization as compared to optimization with regularization, which is the conventional approach of constructing sparse minimizers.
AbstractList The study of greedy approximation in the context of convex optimization is becoming a promising research direction as greedy algorithms are actively being employed to construct sparse minimizers for convex functions with respect to given sets of elements. In this paper we propose a unified way of analyzing a certain kind of greedy-type algorithms for the minimization of convex functions on Banach spaces. Specifically, we define the class of Weak Biorthogonal Greedy Algorithms for convex optimization that contains a wide range of greedy algorithms. We analyze the introduced class of algorithms and establish the properties of convergence, rate of convergence, and numerical stability, which is understood in the sense that the steps of the algorithm are allowed to be performed not precisely but with controlled computational inaccuracies. We show that the following well-known algorithms for convex optimization — the Weak Chebyshev Greedy Algorithm (co) and the Weak Greedy Algorithm with Free Relaxation (co) — belong to this class, and introduce a new algorithm — the Rescaled Weak Relaxed Greedy Algorithm (co). Presented numerical experiments demonstrate the practical performance of the aforementioned greedy algorithms in the setting of convex minimization as compared to optimization with regularization, which is the conventional approach of constructing sparse minimizers.
Author Dereventsov, A.V.
Temlyakov, V.N.
Author_xml – sequence: 1
  givenname: A.V.
  orcidid: 0000-0002-7095-8236
  surname: Dereventsov
  fullname: Dereventsov, A.V.
  email: dereventsov@gmail.com
  organization: Oak Ridge National Laboratory, United States of America
– sequence: 2
  givenname: V.N.
  surname: Temlyakov
  fullname: Temlyakov, V.N.
  email: temlyakovv@gmail.com
  organization: University of South Carolina, United States of America
BookMark eNp9j7FOwzAURS1UJNrCDzDlBxKe7dhpJJZSQUGqxAISm-XYL62rNK4cq6J8PUnLxNDp3eGdq3smZNT6Fgm5p5BRoPJhm2mz0RkDxjIQGQC9ImMKpUwl8K_RkCVPBQN-QyZdt-0faC7KMRFPzoe48Wvf6iZZBkR7TObN2gcXN7sucW1ifHvA78Tvo9u5Hx2db2_Jda2bDu_-7pR8vjx_LF7T1fvybTFfpYYDxBSRWyqoNlWd24IzlhfG8twgrUqwUGqDUrJKzgQtSl5DKUwNWpra5hR4UfEpmZ17TfBdF7BWxsXTghi0axQFNeirrRr01aCvQKjerkfZP3Qf3E6H42Xo8QxhL3VwGFRnHLYGrQtoorLeXcJ_Aau0dlk
CitedBy_id crossref_primary_10_1063_5_0222940
crossref_primary_10_3390_axioms14060446
crossref_primary_10_4213_rm10186
crossref_primary_10_1177_09544100251343664
crossref_primary_10_1007_s10915_025_03050_5
crossref_primary_10_1142_S0219649224500692
crossref_primary_10_3103_S0027132225700214
crossref_primary_10_4213_rm10186e
crossref_primary_10_1016_j_cie_2024_110482
crossref_primary_10_3390_math11112559
Cites_doi 10.1109/TSP.2009.2025088
10.1109/TIT.2002.808136
10.1023/A:1018917218956
10.1016/j.acha.2015.10.008
10.1016/j.jmaa.2015.12.006
10.1109/TSP.2007.916124
10.1007/s10208-015-9248-x
10.1145/1824777.1824783
10.1007/BF03024948
10.1017/S0962492900002816
10.1007/s10092-019-0311-x
10.1137/090759574
10.1090/S0002-9939-08-09630-5
10.1007/s10208-012-9135-7
10.1051/m2an/2011056
10.1134/S0081543814010180
10.1007/s00365-014-9272-0
10.1007/s00365-004-0565-6
10.1007/BF02678464
10.1023/A:1012255021470
10.1016/j.jfa.2019.108286
10.1109/JSTSP.2007.910281
10.1137/100795772
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.acha.2022.05.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
EndPage 511
ExternalDocumentID 10_1016_j_acha_2022_05_001
S1063520322000410
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-ee3d151acbf4d732247cd34ce1b90d09ace662b6851793f095cf0a6cfd41037b3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808576100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-5203
IngestDate Sat Nov 29 07:08:40 EST 2025
Tue Nov 18 22:38:12 EST 2025
Fri Feb 23 02:41:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Greedy algorithm
Sparsity
Biorthogonal Greedy Algorithm
Banach space
Convex optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ee3d151acbf4d732247cd34ce1b90d09ace662b6851793f095cf0a6cfd41037b3
ORCID 0000-0002-7095-8236
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_acha_2022_05_001
crossref_primary_10_1016_j_acha_2022_05_001
elsevier_sciencedirect_doi_10_1016_j_acha_2022_05_001
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rozza, Huynh, Patera (br0260) 2007; 15
Blumensath, Davies (br0030) 2008; 56
Dereventsov (br0110) 2017
Nesterov (br0230) 2004
Chandrasekaran, Recht, Parrilo, Willsky (br0080) 2012; 12
Shalev-Shwartz, Srebro, Zhang (br0270) 2010; 20
Temlyakov (br0280) 2000; 12
Jaggi, Sulovský (br0220) 2010
Borwein, Guirao, Hájek, Vanderwerff (br0050) 2009; 137
Temlyakov (br0290) 2005; 21
Dereventsov, Webster (br0120) 2019
Jaggi (br0210) 2013
Dereventsov, Temlyakov (br0130) 2019; 277
Donahue, Darken, Gurvits, Sontag (br0160) 1997; 13
Temlyakov (br0330) 2016; 293
Clarkson (br0090) 2010; 6
Tewari, Ravikumar, Dhillon (br0340) 2011
DeVore (br0140) 1998; 7
Figueiredo, Nowak, Wright (br0170) 2007; 1
Temlyakov (br0310) 2015; 41
Temlyakov (br0320) 2014; 284
Petrova (br0250) 2016; 41
Zhang (br0350) 2003; 49
Beauzamy (br0010) 1982
Dereventsov (br0100) 2016; 436
Buffa, Maday, Patera, Prud'homme, Turinici (br0070) 2012; 46
Gao, Petrova (br0190) 2019; 56
Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk (br0020) 2011; 43
Blumensath, Davies (br0040) 2009; 57
Temlyakov (br0300) 2011
Nguyen, Petrova (br0240) 2016
Boyd, Vandenberghe (br0060) 2004
DeVore, Temlyakov (br0150) 2016; 16
Gribonval, Nielsen (br0200) 2001; 14
Galatenko, Livshitz (br0180) 2003; 9
Shalev-Shwartz (10.1016/j.acha.2022.05.001_br0270) 2010; 20
Temlyakov (10.1016/j.acha.2022.05.001_br0320) 2014; 284
Chandrasekaran (10.1016/j.acha.2022.05.001_br0080) 2012; 12
DeVore (10.1016/j.acha.2022.05.001_br0150) 2016; 16
Rozza (10.1016/j.acha.2022.05.001_br0260) 2007; 15
Jaggi (10.1016/j.acha.2022.05.001_br0210) 2013
Clarkson (10.1016/j.acha.2022.05.001_br0090) 2010; 6
Temlyakov (10.1016/j.acha.2022.05.001_br0310) 2015; 41
Blumensath (10.1016/j.acha.2022.05.001_br0040) 2009; 57
Temlyakov (10.1016/j.acha.2022.05.001_br0330) 2016; 293
Gao (10.1016/j.acha.2022.05.001_br0190) 2019; 56
Galatenko (10.1016/j.acha.2022.05.001_br0180) 2003; 9
Jaggi (10.1016/j.acha.2022.05.001_br0220) 2010
Dereventsov (10.1016/j.acha.2022.05.001_br0120)
Donahue (10.1016/j.acha.2022.05.001_br0160) 1997; 13
Buffa (10.1016/j.acha.2022.05.001_br0070) 2012; 46
Boyd (10.1016/j.acha.2022.05.001_br0060) 2004
Borwein (10.1016/j.acha.2022.05.001_br0050) 2009; 137
Figueiredo (10.1016/j.acha.2022.05.001_br0170) 2007; 1
Tewari (10.1016/j.acha.2022.05.001_br0340) 2011
Beauzamy (10.1016/j.acha.2022.05.001_br0010) 1982
Dereventsov (10.1016/j.acha.2022.05.001_br0100) 2016; 436
Gribonval (10.1016/j.acha.2022.05.001_br0200) 2001; 14
Temlyakov (10.1016/j.acha.2022.05.001_br0280) 2000; 12
Dereventsov (10.1016/j.acha.2022.05.001_br0130) 2019; 277
Nguyen (10.1016/j.acha.2022.05.001_br0240) 2016
Blumensath (10.1016/j.acha.2022.05.001_br0030) 2008; 56
DeVore (10.1016/j.acha.2022.05.001_br0140) 1998; 7
Temlyakov (10.1016/j.acha.2022.05.001_br0300) 2011
Zhang (10.1016/j.acha.2022.05.001_br0350) 2003; 49
Petrova (10.1016/j.acha.2022.05.001_br0250) 2016; 41
Temlyakov (10.1016/j.acha.2022.05.001_br0290) 2005; 21
Binev (10.1016/j.acha.2022.05.001_br0020) 2011; 43
Dereventsov (10.1016/j.acha.2022.05.001_br0110) 2017
Nesterov (10.1016/j.acha.2022.05.001_br0230) 2004
References_xml – volume: 16
  start-page: 369
  year: 2016
  end-page: 394
  ident: br0150
  article-title: Convex optimization on Banach spaces
  publication-title: Found. Comput. Math.
– volume: 1
  start-page: 586
  year: 2007
  end-page: 597
  ident: br0170
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
– year: 2011
  ident: br0300
  article-title: Greedy Approximation
– volume: 15
  year: 2007
  ident: br0260
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parameterized elliptic coercive partial differential equations
  publication-title: Arch. Comput. Methods Eng.
– volume: 21
  start-page: 257
  year: 2005
  end-page: 292
  ident: br0290
  article-title: Greedy type algorithms in Banach spaces and applications
  publication-title: Constr. Approx.
– volume: 43
  start-page: 1457
  year: 2011
  end-page: 1472
  ident: br0020
  article-title: Convergence rates for greedy algorithms in reduced basis methods
  publication-title: SIAM J. Math. Anal.
– volume: 41
  start-page: 269
  year: 2015
  end-page: 296
  ident: br0310
  article-title: Greedy approximation in convex optimization
  publication-title: Constr. Approx.
– year: 1982
  ident: br0010
  article-title: Introduction to Banach Spaces and Their Geometry
– volume: 436
  start-page: 288
  year: 2016
  end-page: 304
  ident: br0100
  article-title: On the Approximate Weak Chebyshev Greedy Algorithm in uniformly smooth Banach spaces
  publication-title: J. Math. Anal. Appl.
– start-page: 1
  year: 2016
  end-page: 18
  ident: br0240
  article-title: Greedy strategies for convex optimization
  publication-title: Calcolo
– volume: 56
  start-page: 2370
  year: 2008
  end-page: 2382
  ident: br0030
  article-title: Gradient pursuits
  publication-title: IEEE Trans. Signal Process.
– volume: 137
  start-page: 1081
  year: 2009
  end-page: 1091
  ident: br0050
  article-title: Uniformly convex functions on Banach spaces
  publication-title: Proc. Am. Math. Soc.
– volume: 20
  start-page: 2807
  year: 2010
  end-page: 2832
  ident: br0270
  article-title: Trading accuracy for sparsity in optimization problems with sparsity constrains
  publication-title: SIAM J. Optim.
– start-page: 427
  year: 2013
  end-page: 435
  ident: br0210
  article-title: Revisiting Frank-Wolfe: projection-free sparse convex optimization
  publication-title: International Conference on Machine Learning, vol. 1
– volume: 7
  start-page: 51
  year: 1998
  end-page: 150
  ident: br0140
  article-title: Nonlinear approximation
  publication-title: Acta Numer.
– volume: 41
  start-page: 852
  year: 2016
  end-page: 866
  ident: br0250
  article-title: Rescaled Pure Greedy Algorithm for Hilbert and Banach spaces
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 49
  start-page: 682
  year: 2003
  end-page: 691
  ident: br0350
  article-title: Sequential greedy approximation for certain convex optimization problems
  publication-title: IEEE Trans. Inf. Theory
– volume: 9
  start-page: 43
  year: 2003
  end-page: 50
  ident: br0180
  article-title: On the convergence of approximate weak greedy algorithms
  publication-title: East J. Approx.
– volume: 14
  start-page: 361
  year: 2001
  end-page: 378
  ident: br0200
  article-title: Approximate weak greedy algorithms
  publication-title: Adv. Comput. Math.
– volume: 284
  start-page: 244
  year: 2014
  end-page: 262
  ident: br0320
  article-title: Greedy expansions in convex optimization
  publication-title: Proc. Steklov Inst. Math.
– start-page: 882
  year: 2011
  end-page: 890
  ident: br0340
  article-title: Greedy algorithms for structurally constrained high dimensional problems
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 56
  year: 2019
  ident: br0190
  article-title: Rescaled Pure Greedy Algorithm for convex optimization
  publication-title: Calcolo
– volume: 6
  start-page: 63
  year: 2010
  ident: br0090
  article-title: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm
  publication-title: ACM Trans. Algorithms
– year: 2019
  ident: br0120
  article-title: The Natural Greedy Algorithm for reduced bases in Banach spaces
– volume: 12
  start-page: 805
  year: 2012
  end-page: 849
  ident: br0080
  article-title: The convex geometry of linear inverse problems
  publication-title: Found. Comput. Math.
– volume: 46
  start-page: 595
  year: 2012
  end-page: 603
  ident: br0070
  article-title: A priori convergence of the greedy algorithm for the parametrized reduced basis method
  publication-title: ESAIM: Math. Model. Numer. Anal.
– year: 2010
  ident: br0220
  article-title: A simple algorithm for nuclear norm regularized problems
  publication-title: International Conference on Machine Learning
– volume: 12
  start-page: 213
  year: 2000
  end-page: 227
  ident: br0280
  article-title: Weak Greedy Algorithms
  publication-title: Adv. Comput. Math.
– year: 2004
  ident: br0230
  article-title: Introductory Lectures on Convex Optimization: A Basic Course
– volume: 293
  start-page: 333
  year: 2016
  end-page: 345
  ident: br0330
  article-title: Convergence and rate of convergence of some greedy algorithms in convex optimization
  publication-title: Tr. Mat. Inst. Steklova
– volume: 13
  start-page: 187
  year: 1997
  end-page: 220
  ident: br0160
  article-title: Rates of convex approximation in non-Hilbert spaces
  publication-title: Constr. Approx.
– volume: 57
  start-page: 4333
  year: 2009
  end-page: 4346
  ident: br0040
  article-title: Stagewise weak gradient pursuits
  publication-title: IEEE Trans. Signal Process.
– volume: 277
  year: 2019
  ident: br0130
  article-title: A unified way of analyzing some greedy algorithms
  publication-title: J. Funct. Anal.
– year: 2004
  ident: br0060
  article-title: Convex Optimization
– year: 2017
  ident: br0110
  article-title: Convergence and rate of convergence of approximate greedy-type algorithms
– volume: 57
  start-page: 4333
  year: 2009
  ident: 10.1016/j.acha.2022.05.001_br0040
  article-title: Stagewise weak gradient pursuits
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2025088
– volume: 49
  start-page: 682
  issue: 3
  year: 2003
  ident: 10.1016/j.acha.2022.05.001_br0350
  article-title: Sequential greedy approximation for certain convex optimization problems
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2002.808136
– volume: 12
  start-page: 213
  issue: 2–3
  year: 2000
  ident: 10.1016/j.acha.2022.05.001_br0280
  article-title: Weak Greedy Algorithms
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018917218956
– year: 1982
  ident: 10.1016/j.acha.2022.05.001_br0010
– volume: 41
  start-page: 852
  year: 2016
  ident: 10.1016/j.acha.2022.05.001_br0250
  article-title: Rescaled Pure Greedy Algorithm for Hilbert and Banach spaces
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.10.008
– year: 2011
  ident: 10.1016/j.acha.2022.05.001_br0300
– volume: 436
  start-page: 288
  issue: 1
  year: 2016
  ident: 10.1016/j.acha.2022.05.001_br0100
  article-title: On the Approximate Weak Chebyshev Greedy Algorithm in uniformly smooth Banach spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.12.006
– volume: 56
  start-page: 2370
  year: 2008
  ident: 10.1016/j.acha.2022.05.001_br0030
  article-title: Gradient pursuits
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.916124
– volume: 16
  start-page: 369
  year: 2016
  ident: 10.1016/j.acha.2022.05.001_br0150
  article-title: Convex optimization on Banach spaces
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-015-9248-x
– volume: 6
  start-page: 63
  issue: 4
  year: 2010
  ident: 10.1016/j.acha.2022.05.001_br0090
  article-title: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1824777.1824783
– year: 2004
  ident: 10.1016/j.acha.2022.05.001_br0230
– volume: 293
  start-page: 333
  year: 2016
  ident: 10.1016/j.acha.2022.05.001_br0330
  article-title: Convergence and rate of convergence of some greedy algorithms in convex optimization
  publication-title: Tr. Mat. Inst. Steklova
– volume: 15
  issue: 3
  year: 2007
  ident: 10.1016/j.acha.2022.05.001_br0260
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parameterized elliptic coercive partial differential equations
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF03024948
– year: 2017
  ident: 10.1016/j.acha.2022.05.001_br0110
– volume: 7
  start-page: 51
  year: 1998
  ident: 10.1016/j.acha.2022.05.001_br0140
  article-title: Nonlinear approximation
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002816
– volume: 56
  year: 2019
  ident: 10.1016/j.acha.2022.05.001_br0190
  article-title: Rescaled Pure Greedy Algorithm for convex optimization
  publication-title: Calcolo
  doi: 10.1007/s10092-019-0311-x
– volume: 20
  start-page: 2807
  issue: 6
  year: 2010
  ident: 10.1016/j.acha.2022.05.001_br0270
  article-title: Trading accuracy for sparsity in optimization problems with sparsity constrains
  publication-title: SIAM J. Optim.
  doi: 10.1137/090759574
– volume: 137
  start-page: 1081
  issue: 3
  year: 2009
  ident: 10.1016/j.acha.2022.05.001_br0050
  article-title: Uniformly convex functions on Banach spaces
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-08-09630-5
– volume: 12
  start-page: 805
  issue: 6
  year: 2012
  ident: 10.1016/j.acha.2022.05.001_br0080
  article-title: The convex geometry of linear inverse problems
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-012-9135-7
– start-page: 1
  year: 2016
  ident: 10.1016/j.acha.2022.05.001_br0240
  article-title: Greedy strategies for convex optimization
  publication-title: Calcolo
– year: 2010
  ident: 10.1016/j.acha.2022.05.001_br0220
  article-title: A simple algorithm for nuclear norm regularized problems
– volume: 46
  start-page: 595
  issue: 3
  year: 2012
  ident: 10.1016/j.acha.2022.05.001_br0070
  article-title: A priori convergence of the greedy algorithm for the parametrized reduced basis method
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2011056
– volume: 9
  start-page: 43
  issue: 1
  year: 2003
  ident: 10.1016/j.acha.2022.05.001_br0180
  article-title: On the convergence of approximate weak greedy algorithms
  publication-title: East J. Approx.
– volume: 284
  start-page: 244
  year: 2014
  ident: 10.1016/j.acha.2022.05.001_br0320
  article-title: Greedy expansions in convex optimization
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543814010180
– volume: 41
  start-page: 269
  year: 2015
  ident: 10.1016/j.acha.2022.05.001_br0310
  article-title: Greedy approximation in convex optimization
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-014-9272-0
– ident: 10.1016/j.acha.2022.05.001_br0120
– volume: 21
  start-page: 257
  year: 2005
  ident: 10.1016/j.acha.2022.05.001_br0290
  article-title: Greedy type algorithms in Banach spaces and applications
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-004-0565-6
– start-page: 427
  year: 2013
  ident: 10.1016/j.acha.2022.05.001_br0210
  article-title: Revisiting Frank-Wolfe: projection-free sparse convex optimization
– volume: 13
  start-page: 187
  issue: 2
  year: 1997
  ident: 10.1016/j.acha.2022.05.001_br0160
  article-title: Rates of convex approximation in non-Hilbert spaces
  publication-title: Constr. Approx.
  doi: 10.1007/BF02678464
– volume: 14
  start-page: 361
  year: 2001
  ident: 10.1016/j.acha.2022.05.001_br0200
  article-title: Approximate weak greedy algorithms
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1012255021470
– volume: 277
  issue: 12
  year: 2019
  ident: 10.1016/j.acha.2022.05.001_br0130
  article-title: A unified way of analyzing some greedy algorithms
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2019.108286
– start-page: 882
  year: 2011
  ident: 10.1016/j.acha.2022.05.001_br0340
  article-title: Greedy algorithms for structurally constrained high dimensional problems
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  ident: 10.1016/j.acha.2022.05.001_br0170
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910281
– year: 2004
  ident: 10.1016/j.acha.2022.05.001_br0060
– volume: 43
  start-page: 1457
  issue: 3
  year: 2011
  ident: 10.1016/j.acha.2022.05.001_br0020
  article-title: Convergence rates for greedy algorithms in reduced basis methods
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100795772
SSID ssj0011459
Score 2.411825
Snippet The study of greedy approximation in the context of convex optimization is becoming a promising research direction as greedy algorithms are actively being...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 489
SubjectTerms Banach space
Biorthogonal Greedy Algorithm
Convex optimization
Greedy algorithm
Sparsity
Title Biorthogonal Greedy Algorithms in convex optimization
URI https://dx.doi.org/10.1016/j.acha.2022.05.001
Volume 60
WOSCitedRecordID wos000808576100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-603X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011459
  issn: 1063-5203
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swELYmygN7QGOAYIwpD3urUrmJ4ySPZWJiiFVIQNW3yHUcKGuTqg2o_ffc2U4IDCGYtJeodevUujtdv7vcfUfIdx4wGUUpdbuCC5eJyAc_SEEhGYBTKuOY6Zzu4Czs96PhMD63U1EXepxAmOfRchnP_quqYQ2Uja2z71B3fVNYgNegdLiC2uH6JsUfjfFRTHGtU3xYVpOu2r3JdTEflzdTXf2qK82X7QK8xdS2YTYxagVMbcfb7K6sEoZIc60n5ghLZVLDYGWYoBbFvXY2nUGnTgmo6WQl_pgPBp1-p5lngBC1KqSyya-qAeZJfSYElD7EstT4KGXXYu5yqsf81k7WDA2wXpKZqUH2Dzcw3vYvX27SCrdgVzdIEOV5mmLVHukpR_YFngOP4WHnEcOWu5YXBjG4uVbv1_HwtH6w1GV6fl59bttHZUr-nv_Sy1ilgT8uP5FNGzg4PaPwLfJB5Z_JxwadJLz7XXPwLrZJ0DQExxiC82gIzjh3jCE4TUPYIVc_jy9_nLh2SIYrfUpLVyk_BdQmJFZchiAAFsrUZ1J1RzFNaSyk4twb8Qi52PwMELXMqOAySxm2iI78XbKWF7naIw5sYZ7AXmcpmZCwhWehDCFCzUYhOPZ90q3EkUjLII-DTCZJVSp4m6AIExRhQgOsl9wn7XrPzPCnvPrtoJJyYhGgQXYJGMUr-778474DsvFo6l_JWjm_U4dkXd6X48X8m7WdB9HrfkU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biorthogonal+Greedy+Algorithms+in+convex+optimization&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Dereventsov%2C+A.V.&rft.au=Temlyakov%2C+V.N.&rft.date=2022-09-01&rft.pub=Elsevier+Inc&rft.issn=1063-5203&rft.eissn=1096-603X&rft.volume=60&rft.spage=489&rft.epage=511&rft_id=info:doi/10.1016%2Fj.acha.2022.05.001&rft.externalDocID=S1063520322000410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon