Real-time data-driven automatic design of multi-objective evolutionary algorithm: A case study on production scheduling

Multi-objective evolutionary algorithms (MOEAs) have become an important choice for solving multi-objective optimization problems. The performance of MOEAs is highly dependent on the algorithm configuration. Therefore, the algorithm configuration is an essential task in the development and applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 138; S. 110187
Hauptverfasser: Zhang, Biao, Meng, Lei-lei, Lu, Chao, Li, Jun-qing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2023
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-objective evolutionary algorithms (MOEAs) have become an important choice for solving multi-objective optimization problems. The performance of MOEAs is highly dependent on the algorithm configuration. Therefore, the algorithm configuration is an essential task in the development and application of MOEAs. In this paper, a real-time data-driven automatic design method for configuring an MOEA with minimal user interference is developed. Real-time data are driven in two ways. One lies in that the learning model is constructed based on the elite configurations selected by the Iterated F-Race (I/F-Race), which is used to bias the sampling toward the best configurations. Another is that the decision tree model is constructed by collecting the evaluated configurations in the process of I/F-Race as the data, and used to help identify the potential configurations to improve the sampling quality. In addition, a configurable MOEA (CMOEA) framework is summarized by integrating three general fitness assignment methods. In the experimental study, a case study on a multi-objective hybrid flowshop scheduling problem is conducted. By comparing with other variants of I/F-Race, the developed method is verified to have the ability of evaluating the promising configurations more fully and conceiving the best MOEA. Compared with the famous frameworks and state-of-the-art MOEAs, the proposed CMOEA framework and the automated algorithm show their superiorities based on different performance metrics. •A CART-enhanced I/F-Race is developed.•A configurable MOEA framework is developed.•A case study on a multi-objective HFSP is studied.
AbstractList Multi-objective evolutionary algorithms (MOEAs) have become an important choice for solving multi-objective optimization problems. The performance of MOEAs is highly dependent on the algorithm configuration. Therefore, the algorithm configuration is an essential task in the development and application of MOEAs. In this paper, a real-time data-driven automatic design method for configuring an MOEA with minimal user interference is developed. Real-time data are driven in two ways. One lies in that the learning model is constructed based on the elite configurations selected by the Iterated F-Race (I/F-Race), which is used to bias the sampling toward the best configurations. Another is that the decision tree model is constructed by collecting the evaluated configurations in the process of I/F-Race as the data, and used to help identify the potential configurations to improve the sampling quality. In addition, a configurable MOEA (CMOEA) framework is summarized by integrating three general fitness assignment methods. In the experimental study, a case study on a multi-objective hybrid flowshop scheduling problem is conducted. By comparing with other variants of I/F-Race, the developed method is verified to have the ability of evaluating the promising configurations more fully and conceiving the best MOEA. Compared with the famous frameworks and state-of-the-art MOEAs, the proposed CMOEA framework and the automated algorithm show their superiorities based on different performance metrics. •A CART-enhanced I/F-Race is developed.•A configurable MOEA framework is developed.•A case study on a multi-objective HFSP is studied.
ArticleNumber 110187
Author Zhang, Biao
Lu, Chao
Meng, Lei-lei
Li, Jun-qing
Author_xml – sequence: 1
  givenname: Biao
  surname: Zhang
  fullname: Zhang, Biao
  organization: School of Computer Science, Liaocheng University, Liaocheng, 25200, PR China
– sequence: 2
  givenname: Lei-lei
  orcidid: 0000-0003-1439-4832
  surname: Meng
  fullname: Meng, Lei-lei
  organization: School of Computer Science, Liaocheng University, Liaocheng, 25200, PR China
– sequence: 3
  givenname: Chao
  orcidid: 0000-0003-4637-6065
  surname: Lu
  fullname: Lu, Chao
  email: luchao@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan, 430074, PR China
– sequence: 4
  givenname: Jun-qing
  surname: Li
  fullname: Li, Jun-qing
  organization: School of Computer Science, Shandong Normal University, Jinan, 252000, PR China
BookMark eNp9kM1qwzAMgM3YYG23F9jJL-DMjtMsGbuUsj8oDMZ2Nv5RWockLrbT0befQ3faoRdJCH1C-ubocnADIHTHaMYoK-_bTAans5zmPGOpUz1coFmKOanLil2mellWpKiL8hrNQ2hpguq8mqGfT5AdibYHbGSUxHh7gAHLMbpeRquxgWC3A3YN7scuWuJUCzqmIQwH143RukH6I5bd1nkbd_0jXmEtA-AQR3PEbsB778yop0Ec9A7M2Nlhe4OuGtkFuP3LC_T98vy1fiObj9f39WpDNKc0EjB5KSlvas55Q0uqqoqpJTNM0wZoqVhqcS3VsqCKNoXUMlecGQVG8bpUwBcoP-3V3oXgoRF7b_t0sWBUTOpEKyZ1YlInTuoSVP2DtI1y-iB6abvz6NMJhfTUwYIXQVsYNBjrkzdhnD2H_wIyzY-M
CitedBy_id crossref_primary_10_1016_j_cie_2023_109675
crossref_primary_10_1016_j_engappai_2025_112353
crossref_primary_10_1016_j_jii_2024_100598
crossref_primary_10_1080_00207543_2024_2333943
crossref_primary_10_1016_j_asoc_2024_112650
crossref_primary_10_1016_j_asoc_2025_113355
crossref_primary_10_3390_math13152401
crossref_primary_10_1155_int_4115924
Cites_doi 10.1016/j.cie.2021.107337
10.1007/s10479-009-0657-6
10.1109/TEVC.2007.892759
10.1109/TSMC.2019.2916088
10.1016/j.swevo.2022.101084
10.1016/j.knosys.2021.107819
10.1016/j.asoc.2014.11.006
10.1016/j.eswa.2017.10.038
10.1007/s00500-012-0946-x
10.1016/j.knosys.2022.108732
10.1007/s12065-020-00487-5
10.1016/j.swevo.2022.101079
10.1109/TII.2020.3043734
10.1016/j.ejor.2020.09.022
10.1016/j.ejor.2019.10.004
10.1109/TEVC.2019.2896002
10.1162/evco_a_00263
10.1109/4235.996017
10.1109/TCYB.2020.3041494
10.1007/978-3-642-02538-9_13
10.1016/j.cie.2019.07.036
10.1080/00207543.2021.1925772
10.1016/j.cie.2021.107835
10.1109/TEVC.2015.2474158
10.1016/j.asoc.2021.107305
10.1109/TEVC.2019.2921598
10.1080/00207543.2020.1741716
10.1016/j.swevo.2022.101097
10.1109/TEVC.2018.2791283
10.1109/TITS.2019.2954982
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110187
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110187
S1568494623002053
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-ed26a03f9333f060b881b51d1c0fe06b160b3cab540b0f4aca2b31dbedb396be3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030419900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:03:12 EST 2025
Tue Nov 18 20:00:29 EST 2025
Fri Feb 23 02:36:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid flowshop scheduling problem
I/F-race
Multi-objective evolutionary algorithm
Decision tree
Automatic algorithm design
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ed26a03f9333f060b881b51d1c0fe06b160b3cab540b0f4aca2b31dbedb396be3
ORCID 0000-0003-1439-4832
0000-0003-4637-6065
ParticipantIDs crossref_primary_10_1016_j_asoc_2023_110187
crossref_citationtrail_10_1016_j_asoc_2023_110187
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110187
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References López-Ibáñez, Dubois-Lacoste, Cáceres, Birattari, Stützle (b14) 2016; 3
He, Li, Tian, Zhang, Cheng, Jin, Yao (b28) 2019; 23
Junqueira, Meneghini, Guimarães (b5) 2022; 71
Birattari, Stützle, Paquete, Varrentrapp (b8) 2002
Zhang, Li (b22) 2007; 11
Li, Gong, Ming, Wang (b1) 2022; 246
Fernández, Rangel-Valdez, Cruz-Reyes, Gomez-Santillan, Coello-Coello (b3) 2022
Birattari, Kacprzyk (b9) 2009
Kang, Kim, Chae (b18) 2018; 93
Zhang, Pan, Meng, Zhang, Ren, Li, Jiang (b36) 2021; 106
Zhang, Pan, Gao, Meng, Li, Peng (b23) 2020; 50
Jun, Lee (b33) 2021; 59
Zhang, Pan, Gao, Li, Meng, Peng (b34) 2019; 136
Balande, Shrimankar (b37) 2022; 15
Liao, Molina, Stützle (b13) 2015; 27
Deb, Pratap, Agarwal, Meyarivan (b26) 2002; 6
Koulamas, Kyparisis (b29) 2022; 163
Pan, Gao, Wang (b38) 2022; 52
Li, Li, Lin, Wong, Ming, Coello (b4) 2022; 72
Jiang, Yuan, Ma, Wang (b31) 2022; 60
Liao, de Oca, Stützle (b12) 2013; 17
Loh (b21) 2011; 1
He, Pan, Gao, Wang, Suganthan (b2) 2021
Birattari, Yuan, Balaprakash, Stützle (b10) 2010
Pan, Zhang, Lim (b15) 2021; 291
Huang, Li, Yao (b7) 2019; 24
Lu, Gao, Yi, Li (b6) 2020; 17
Bistaffa, Blum, Cerquides, Farinelli, Rodríguez-Aguilar (b16) 2019; 22
Alfaro-Fernández, Ruiz, Pagnozzi, Stützle (b17) 2020; 282
Rossi, Nagano (b30) 2021; 157
Sun, Yen, Yi (b25) 2018; 23
Zitzler, Künzli (b24) 2004
Bezerra, Manuel (b20) 2020; 28
Zhang, Pan, Meng, Lu, Mou, Li (b32) 2022; 238
Balaprakash, Birattari, Stützle (b11) 2007
Bezerra, López-Ibánez, Stützle (b19) 2015; 20
Hansen, Mladenović, Moreno Pérez (b35) 2010; 175
Lu, Liu, Zhang, Yin (b27) 2022; 204
He (10.1016/j.asoc.2023.110187_b2) 2021
Kang (10.1016/j.asoc.2023.110187_b18) 2018; 93
He (10.1016/j.asoc.2023.110187_b28) 2019; 23
Deb (10.1016/j.asoc.2023.110187_b26) 2002; 6
Lu (10.1016/j.asoc.2023.110187_b27) 2022; 204
Huang (10.1016/j.asoc.2023.110187_b7) 2019; 24
Liao (10.1016/j.asoc.2023.110187_b12) 2013; 17
Jiang (10.1016/j.asoc.2023.110187_b31) 2022; 60
Li (10.1016/j.asoc.2023.110187_b4) 2022; 72
Zhang (10.1016/j.asoc.2023.110187_b22) 2007; 11
Junqueira (10.1016/j.asoc.2023.110187_b5) 2022; 71
Hansen (10.1016/j.asoc.2023.110187_b35) 2010; 175
Bezerra (10.1016/j.asoc.2023.110187_b19) 2015; 20
Birattari (10.1016/j.asoc.2023.110187_b9) 2009
Zhang (10.1016/j.asoc.2023.110187_b36) 2021; 106
Balande (10.1016/j.asoc.2023.110187_b37) 2022; 15
Birattari (10.1016/j.asoc.2023.110187_b8) 2002
Jun (10.1016/j.asoc.2023.110187_b33) 2021; 59
Li (10.1016/j.asoc.2023.110187_b1) 2022; 246
Zhang (10.1016/j.asoc.2023.110187_b32) 2022; 238
Zhang (10.1016/j.asoc.2023.110187_b34) 2019; 136
Lu (10.1016/j.asoc.2023.110187_b6) 2020; 17
Alfaro-Fernández (10.1016/j.asoc.2023.110187_b17) 2020; 282
Pan (10.1016/j.asoc.2023.110187_b15) 2021; 291
Liao (10.1016/j.asoc.2023.110187_b13) 2015; 27
Zhang (10.1016/j.asoc.2023.110187_b23) 2020; 50
Bezerra (10.1016/j.asoc.2023.110187_b20) 2020; 28
Loh (10.1016/j.asoc.2023.110187_b21) 2011; 1
Zitzler (10.1016/j.asoc.2023.110187_b24) 2004
López-Ibáñez (10.1016/j.asoc.2023.110187_b14) 2016; 3
Bistaffa (10.1016/j.asoc.2023.110187_b16) 2019; 22
Rossi (10.1016/j.asoc.2023.110187_b30) 2021; 157
Sun (10.1016/j.asoc.2023.110187_b25) 2018; 23
Koulamas (10.1016/j.asoc.2023.110187_b29) 2022; 163
Balaprakash (10.1016/j.asoc.2023.110187_b11) 2007
Pan (10.1016/j.asoc.2023.110187_b38) 2022; 52
Fernández (10.1016/j.asoc.2023.110187_b3) 2022
Birattari (10.1016/j.asoc.2023.110187_b10) 2010
References_xml – volume: 238
  year: 2022
  ident: b32
  article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Knowl.-Based Syst.
– volume: 136
  start-page: 325
  year: 2019
  end-page: 344
  ident: b34
  article-title: A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 60
  start-page: 3534
  year: 2022
  end-page: 3554
  ident: b31
  article-title: The evolution of production scheduling from industry 3.0 through industry 4.0
  publication-title: Int. J. Prod. Res.
– year: 2002
  ident: b8
  article-title: A racing algorithm for configuring metaheuristics
  publication-title: Gecco (Vol. 2, No. 2002)
– volume: 93
  start-page: 322
  year: 2018
  end-page: 335
  ident: b18
  article-title: A closed loop based facility layout design using a cuckoo search algorithm
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 57
  year: 2022
  end-page: 79
  ident: b37
  article-title: A modified teaching learning metaheuristic algorithm with opposite-based learning for permutation flow-shop scheduling problem
  publication-title: Evol. Intell.
– volume: 106
  year: 2021
  ident: b36
  article-title: A collaborative variable neighborhood descent algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Appl. Soft Comput.
– volume: 71
  year: 2022
  ident: b5
  article-title: Multi-objective evolutionary algorithm based on decomposition with an external archive and local-neighborhood based adaptation of weights
  publication-title: Swarm Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b26
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– year: 2022
  ident: b3
  article-title: Preference incorporation in MOEA/D using an outranking approach with imprecise model parameters
  publication-title: Swarm Evol. Comput.
– year: 2009
  ident: b9
  article-title: Tuning Metaheuristics: A Machine Learning Perspective, (Vol. 197)
– volume: 28
  start-page: 195
  year: 2020
  end-page: 226
  ident: b20
  article-title: Automatically designing state-of-the-art multi-and many-objective evolutionary algorithms
  publication-title: Evol. Comput.
– volume: 23
  start-page: 949
  year: 2019
  end-page: 961
  ident: b28
  article-title: Accelerating large-scale multiobjective optimization via problem reformulation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 175
  start-page: 367
  year: 2010
  end-page: 407
  ident: b35
  article-title: Variable neighbourhood search: methods and applications
  publication-title: Ann. Oper. Res.
– volume: 17
  start-page: 6687
  year: 2020
  end-page: 6696
  ident: b6
  article-title: Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China
  publication-title: IEEE Trans. Ind. Inform.
– volume: 24
  start-page: 201
  year: 2019
  end-page: 216
  ident: b7
  article-title: A survey of automatic parameter tuning methods for metaheuristics
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 490
  year: 2015
  end-page: 503
  ident: b13
  article-title: Performance evaluation of automatically tuned continuous optimizers on different benchmark sets
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 43
  year: 2016
  end-page: 58
  ident: b14
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Oper. Res. Perspect.
– volume: 291
  start-page: 218
  year: 2021
  end-page: 231
  ident: b15
  article-title: Multi-trip time-dependent vehicle routing problem with time windows
  publication-title: European J. Oper. Res.
– volume: 22
  start-page: 119
  year: 2019
  end-page: 130
  ident: b16
  article-title: A computational approach to quantify the benefits of ridesharing for policy makers and travellers
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 311
  year: 2010
  end-page: 336
  ident: b10
  article-title: F-race and iterated F-race: An overview
  publication-title: Exp. Methods Anal. Optim. Algorithms
– volume: 50
  start-page: 4984
  year: 2020
  end-page: 4999
  ident: b23
  article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 157
  year: 2021
  ident: b30
  article-title: Heuristics and iterated greedy algorithms for the distributed mixed no-idle flowshop with sequence-dependent setup times
  publication-title: Comput. Ind. Eng.
– start-page: 832
  year: 2004
  end-page: 842
  ident: b24
  article-title: Indicator-based selection in multiobjective search
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 17
  start-page: 1031
  year: 2013
  end-page: 1046
  ident: b12
  article-title: Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set
  publication-title: Soft Comput.
– volume: 20
  start-page: 403
  year: 2015
  end-page: 417
  ident: b19
  article-title: Automatic component-wise design of multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– year: 2021
  ident: b2
  article-title: A greedy cooperative co-evolutionary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 282
  start-page: 835
  year: 2020
  end-page: 845
  ident: b17
  article-title: Automatic algorithm design for hybrid flowshop scheduling problems
  publication-title: European J. Oper. Res.
– start-page: 108
  year: 2007
  end-page: 122
  ident: b11
  article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement
  publication-title: International Workshop on Hybrid Metaheuristics
– volume: 52
  start-page: 5999
  year: 2022
  end-page: 6012
  ident: b38
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b22
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 173
  year: 2018
  end-page: 187
  ident: b25
  article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 72
  year: 2022
  ident: b4
  article-title: A self-organizing weighted optimization based framework for large-scale multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 1
  start-page: 14
  year: 2011
  end-page: 23
  ident: b21
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 59
  start-page: 2838
  year: 2021
  end-page: 2856
  ident: b33
  article-title: Learning dispatching rules for single machine scheduling with dynamic arrivals based on decision trees and feature construction
  publication-title: Int. J. Prod. Res.
– volume: 163
  year: 2022
  ident: b29
  article-title: Flow shop scheduling with two distinct job due dates
  publication-title: Comput. Ind. Eng.
– volume: 246
  year: 2022
  ident: b1
  article-title: Constrained multi-objective evolutionary algorithm with an improved two-archive strategy
  publication-title: Knowl.-Based Syst.
– volume: 204
  year: 2022
  ident: b27
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert Syst. Appl.
– volume: 157
  year: 2021
  ident: 10.1016/j.asoc.2023.110187_b30
  article-title: Heuristics and iterated greedy algorithms for the distributed mixed no-idle flowshop with sequence-dependent setup times
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107337
– volume: 175
  start-page: 367
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2023.110187_b35
  article-title: Variable neighbourhood search: methods and applications
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-009-0657-6
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2023.110187_b22
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 50
  start-page: 4984
  issue: 12
  year: 2020
  ident: 10.1016/j.asoc.2023.110187_b23
  article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2916088
– volume: 72
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b4
  article-title: A self-organizing weighted optimization based framework for large-scale multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101084
– volume: 238
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b32
  article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107819
– volume: 27
  start-page: 490
  year: 2015
  ident: 10.1016/j.asoc.2023.110187_b13
  article-title: Performance evaluation of automatically tuned continuous optimizers on different benchmark sets
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.006
– volume: 93
  start-page: 322
  year: 2018
  ident: 10.1016/j.asoc.2023.110187_b18
  article-title: A closed loop based facility layout design using a cuckoo search algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.038
– start-page: 832
  year: 2004
  ident: 10.1016/j.asoc.2023.110187_b24
  article-title: Indicator-based selection in multiobjective search
– volume: 17
  start-page: 1031
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2023.110187_b12
  article-title: Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0946-x
– volume: 246
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b1
  article-title: Constrained multi-objective evolutionary algorithm with an improved two-archive strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108732
– volume: 15
  start-page: 57
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b37
  article-title: A modified teaching learning metaheuristic algorithm with opposite-based learning for permutation flow-shop scheduling problem
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-020-00487-5
– volume: 71
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b5
  article-title: Multi-objective evolutionary algorithm based on decomposition with an external archive and local-neighborhood based adaptation of weights
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101079
– volume: 17
  start-page: 6687
  issue: 10
  year: 2020
  ident: 10.1016/j.asoc.2023.110187_b6
  article-title: Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3043734
– volume: 291
  start-page: 218
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110187_b15
  article-title: Multi-trip time-dependent vehicle routing problem with time windows
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2020.09.022
– volume: 282
  start-page: 835
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.110187_b17
  article-title: Automatic algorithm design for hybrid flowshop scheduling problems
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2019.10.004
– volume: 23
  start-page: 949
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2023.110187_b28
  article-title: Accelerating large-scale multiobjective optimization via problem reformulation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2896002
– volume: 28
  start-page: 195
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110187_b20
  article-title: Automatically designing state-of-the-art multi-and many-objective evolutionary algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00263
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2023.110187_b26
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 2002
  ident: 10.1016/j.asoc.2023.110187_b8
  article-title: A racing algorithm for configuring metaheuristics
– volume: 52
  start-page: 5999
  issue: 7
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b38
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3041494
– volume: 1
  start-page: 14
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2023.110187_b21
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– start-page: 311
  year: 2010
  ident: 10.1016/j.asoc.2023.110187_b10
  article-title: F-race and iterated F-race: An overview
  publication-title: Exp. Methods Anal. Optim. Algorithms
  doi: 10.1007/978-3-642-02538-9_13
– volume: 136
  start-page: 325
  year: 2019
  ident: 10.1016/j.asoc.2023.110187_b34
  article-title: A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.07.036
– volume: 3
  start-page: 43
  year: 2016
  ident: 10.1016/j.asoc.2023.110187_b14
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Oper. Res. Perspect.
– volume: 60
  start-page: 3534
  issue: 11
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b31
  article-title: The evolution of production scheduling from industry 3.0 through industry 4.0
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1925772
– volume: 163
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b29
  article-title: Flow shop scheduling with two distinct job due dates
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107835
– year: 2009
  ident: 10.1016/j.asoc.2023.110187_b9
– volume: 20
  start-page: 403
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2023.110187_b19
  article-title: Automatic component-wise design of multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2474158
– volume: 106
  year: 2021
  ident: 10.1016/j.asoc.2023.110187_b36
  article-title: A collaborative variable neighborhood descent algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107305
– volume: 24
  start-page: 201
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2023.110187_b7
  article-title: A survey of automatic parameter tuning methods for metaheuristics
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2921598
– volume: 59
  start-page: 2838
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2023.110187_b33
  article-title: Learning dispatching rules for single machine scheduling with dynamic arrivals based on decision trees and feature construction
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1741716
– start-page: 108
  year: 2007
  ident: 10.1016/j.asoc.2023.110187_b11
  article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement
– year: 2022
  ident: 10.1016/j.asoc.2023.110187_b3
  article-title: Preference incorporation in MOEA/D using an outranking approach with imprecise model parameters
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101097
– year: 2021
  ident: 10.1016/j.asoc.2023.110187_b2
  article-title: A greedy cooperative co-evolutionary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 173
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2023.110187_b25
  article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2791283
– volume: 22
  start-page: 119
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110187_b16
  article-title: A computational approach to quantify the benefits of ridesharing for policy makers and travellers
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2954982
– volume: 204
  issue: 15
  year: 2022
  ident: 10.1016/j.asoc.2023.110187_b27
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert Syst. Appl.
SSID ssj0016928
Score 2.4216776
Snippet Multi-objective evolutionary algorithms (MOEAs) have become an important choice for solving multi-objective optimization problems. The performance of MOEAs is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110187
SubjectTerms Automatic algorithm design
Decision tree
Hybrid flowshop scheduling problem
I/F-race
Multi-objective evolutionary algorithm
Title Real-time data-driven automatic design of multi-objective evolutionary algorithm: A case study on production scheduling
URI https://dx.doi.org/10.1016/j.asoc.2023.110187
Volume 138
WOSCitedRecordID wos001030419900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qjlJR-4Ra6SOHYSbgsqAlRVCIq0t8hObMgqSpZtdumdP844dryhRRUgcYlWlh1HM9-OZ8bzQOhFok0RdKGN10aSRLKUyFQwwlklVBIbm0MPzSbS09Nsscg_zGY_xlyYbZO2bXZxka_-K6thDJhtUmf_gt3-pTAAv4Hp8AS2w_OPGP8RVD9iWsYHJvqTVGsjzwKx6TtbnbUaYjaGe3UTTEg6ubRCL1Bb92Emkk40X7p13X-1jvyghNPO1qI11wsrWyfWQAesYzitmvEEHAvaOuX2HKT8ELa-6ccZUy_1q1p0nuXKjp2omjSq9pFCGxcV4Cee1DadpCXfxnc6t0U8CRK0vrQr-TRW_PKMJLlzSio7lqUxyblt7OJlti0Jc0X-W1fE8kgAtI_MtibNIXJH-q91tT-ZzcxeYISBzszoDbQfpywH0bg_f3e8eO8vo3g-tOj1H-dyr2yY4OWdfq_fTHSWs7votjM28NyC5B6aqfY-ujM28sBOrj9A3z1m8AQz2GMGW8zgTuNLmMFTzGCPmZd4jg1i8IAY3LV4hxi8Q8xD9PnN8dnrt8R15CAlEKknqoq5CKnOKaU65KHMwOphURWVoVYhlxEM0VJIMANkqBNRiljSqJKqkjTnUtFHaK_tWnWAMNNS57BO8kwkNIb5FVOyZDSu0lBwfoiikY5F6crVm64pTTHGJS4LQ_vC0L6wtD9EgV-zssVarp3NRvYUTt20amQBaLpm3eN_XPcE3dr9EZ6ivX69Uc_QzXLb1-fr5w50PwEo6qgV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+data-driven+automatic+design+of+multi-objective+evolutionary+algorithm%3A+A+case+study+on+production+scheduling&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Biao&rft.au=Meng%2C+Lei-lei&rft.au=Lu%2C+Chao&rft.au=Li%2C+Jun-qing&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=138&rft_id=info:doi/10.1016%2Fj.asoc.2023.110187&rft.externalDocID=S1568494623002053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon