A hybrid load forecasting system based on data augmentation and ensemble learning under limited feature availability

Accurate power load forecasting is an important part of power system operation planning, it can ensure the stable operation of power systems and improve the efficiency of energy utilization. The power load is affected by many factors including temperature, season, population density, and so on, howe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 261; s. 125567
Hlavní autoři: Yang, Qing, Tian, Zhirui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2025
Témata:
ISSN:0957-4174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate power load forecasting is an important part of power system operation planning, it can ensure the stable operation of power systems and improve the efficiency of energy utilization. The power load is affected by many factors including temperature, season, population density, and so on, however due to privacy protection and other reasons, it is difficult to obtain some characteristic information that affects the load. The lack of characteristic data will reduce the accuracy of load forecasting and the generalization ability. To solve it, a new hybrid load forecasting framework is proposed, which is composed of two subsystems: a data preprocessing system and a high-precision forecasting system. Based on the load sequence itself, subsystem 1 obtains the trend data and denoising data by variational mode decomposition method, obtains the indicator variable for the weekend according to the one-hot encoding, and also introduces the electricity price data, thus obtaining the 4-dimensional extended data. Subsystem 2 constructs a hybrid prediction model by synthesizing various models, including deep learning and machine learning models, to forecast the expanded data. Finally, the multi-objective JAYA algorithm based on tent chaotic mapping and cross-perturbation strategy is used to ensemble the prediction results of the sub-models. To verify the superiority of the proposed forecasting framework, we conducted experiments using four sets of load data from New South Wales, Australia. The experimental results show that the average absolute percentage error of the hybrid framework on the four data sets are MAPEMarch=0.8070, MAPEJune=0.8296, MAPESeptember=0.7238 and MAPEDecember=0.7709, which are significantly lower than other models and provide a basis for power system scheduling management. •The problem of feature limitation is solved by data dimension extension.•The ability of the optimization algorithm is improved by using multiple improvement strategies.•Ensemble learning using improves the generalization ability of the prediction framework.•Multi-objective optimization algorithm improves the accuracy and stability of prediction.
AbstractList Accurate power load forecasting is an important part of power system operation planning, it can ensure the stable operation of power systems and improve the efficiency of energy utilization. The power load is affected by many factors including temperature, season, population density, and so on, however due to privacy protection and other reasons, it is difficult to obtain some characteristic information that affects the load. The lack of characteristic data will reduce the accuracy of load forecasting and the generalization ability. To solve it, a new hybrid load forecasting framework is proposed, which is composed of two subsystems: a data preprocessing system and a high-precision forecasting system. Based on the load sequence itself, subsystem 1 obtains the trend data and denoising data by variational mode decomposition method, obtains the indicator variable for the weekend according to the one-hot encoding, and also introduces the electricity price data, thus obtaining the 4-dimensional extended data. Subsystem 2 constructs a hybrid prediction model by synthesizing various models, including deep learning and machine learning models, to forecast the expanded data. Finally, the multi-objective JAYA algorithm based on tent chaotic mapping and cross-perturbation strategy is used to ensemble the prediction results of the sub-models. To verify the superiority of the proposed forecasting framework, we conducted experiments using four sets of load data from New South Wales, Australia. The experimental results show that the average absolute percentage error of the hybrid framework on the four data sets are MAPEMarch=0.8070, MAPEJune=0.8296, MAPESeptember=0.7238 and MAPEDecember=0.7709, which are significantly lower than other models and provide a basis for power system scheduling management. •The problem of feature limitation is solved by data dimension extension.•The ability of the optimization algorithm is improved by using multiple improvement strategies.•Ensemble learning using improves the generalization ability of the prediction framework.•Multi-objective optimization algorithm improves the accuracy and stability of prediction.
ArticleNumber 125567
Author Tian, Zhirui
Yang, Qing
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0009-0007-5093-2999
  surname: Yang
  fullname: Yang, Qing
  email: 19980025@dufe.edu.cn, yq201506@yeah.net
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian, China
– sequence: 2
  givenname: Zhirui
  orcidid: 0000-0001-7680-6770
  surname: Tian
  fullname: Tian, Zhirui
  email: zhiruitian@link.cuhk.edu.cn
  organization: School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
BookMark eNp9kMtqwzAQAHVIoUnaH-hJP2BXUiw_oJcQ-oJAL-1ZrKR1qmDLRVJS_Pe1SU899LSwyyzMrMjCDx4JueMs54yX98cc4zfkgoki50LKslqQJWtklRW8Kq7JKsYjY7xirFqStKWfow7O0m4AS9shoIGYnD_QOMaEPdUQ0dLBUwsJKJwOPfoEyU0b8Jaij9jrDmmHEPzMnbzFQDvXuzSBLUI6BaRwBteBdp1L4w25aqGLePs71-Tj6fF995Lt355fd9t9ZjaMpQwNFlbyCspKNKCNtFyULWclVgZsW5qCm7pkmjW61VLXcrqYWhorNo3Wotisibj8NWGIMWCrvoLrIYyKMzW3Ukc1t1JzK3VpNUH1H8i4i28Kk8L_6MMFxUnq7DCoaBx6g9ZNWZOyg_sP_wGeMIyR
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110980
crossref_primary_10_3390_en18164408
crossref_primary_10_1016_j_jenvman_2025_124540
crossref_primary_10_1016_j_enconman_2025_119484
crossref_primary_10_1016_j_energy_2025_136476
crossref_primary_10_1016_j_eswa_2024_126361
crossref_primary_10_1063_5_0281592
crossref_primary_10_1016_j_renene_2025_123277
Cites_doi 10.1016/j.cie.2022.108839
10.1016/j.egyr.2024.08.078
10.1016/j.eswa.2024.124875
10.1016/j.scitotenv.2024.174374
10.1016/j.cie.2024.110114
10.58496/BJML/2024/004
10.1016/j.epsr.2024.111051
10.1016/j.egyr.2024.07.030
10.1016/j.engappai.2024.108375
10.1016/j.eswa.2024.125055
10.1016/S0952-1976(98)00064-5
10.1016/j.eswa.2020.114094
10.1016/j.eswa.2024.124286
10.1016/j.epsr.2024.111119
10.1016/j.cma.2024.116840
10.1016/j.renene.2023.118932
10.1109/ACCESS.2024.3378515
10.58496/BJML/2023/001
10.1016/j.eswa.2023.123088
10.1016/j.ifacol.2020.12.760
10.1016/j.epsr.2024.110953
10.1016/j.eswa.2010.11.033
10.1016/j.apenergy.2022.120171
10.1016/j.engappai.2022.105530
10.1016/j.sigpro.2021.108026
10.1016/j.jclepro.2019.119252
10.1016/j.eswa.2023.120402
10.1016/j.eswa.2023.121647
10.1051/e3sconf/201911802050
10.1109/ICJECE.2021.3076124
10.1016/j.renene.2021.12.100
10.1016/j.eswa.2023.121527
10.1016/j.energy.2023.128225
10.1016/j.jup.2019.03.004
10.1016/j.eswa.2024.123751
10.1016/j.apenergy.2021.117178
10.1016/j.cie.2023.109677
10.1016/j.powtec.2024.119836
10.1016/j.cjche.2024.07.011
10.1016/j.enbuild.2023.113550
10.1016/j.engappai.2018.01.005
10.1016/j.knosys.2023.111034
10.1016/j.iswa.2024.200422
10.1016/j.apenergy.2024.124308
10.1016/j.ijlmm.2022.07.002
10.1016/j.eswa.2024.124751
10.1016/j.asoc.2020.106809
10.1016/j.eswa.2012.01.166
10.1016/j.energy.2018.06.012
10.1016/j.asoc.2022.108877
10.1016/j.enconman.2015.07.041
10.1016/j.eswa.2023.122686
10.1016/j.eswa.2023.120594
10.1016/j.eswa.2023.121512
10.1016/j.cie.2023.109837
10.1016/j.cie.2021.107598
10.1016/j.eswa.2021.115939
10.1016/j.rineng.2024.103033
10.1016/j.energy.2024.132976
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125567
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125567
S0957417424024345
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-ece4d517a6729abc5d126f106e7cadf6c41c860b09bfb5b8506ec85cd239bb243
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001352992900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:34:47 EST 2025
Sat Nov 29 03:07:44 EST 2025
Sat Jan 04 15:43:48 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Load forecasting
Multi-objective algorithm
Data preprocessing
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ece4d517a6729abc5d126f106e7cadf6c41c860b09bfb5b8506ec85cd239bb243
ORCID 0009-0007-5093-2999
0000-0001-7680-6770
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_125567
crossref_citationtrail_10_1016_j_eswa_2024_125567
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125567
PublicationCentury 2000
PublicationDate 2025-02-01
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sharma, Sharma, Singh, Arora, Gill, Singh (b39) 2022; 5
Sreekumar, Khan, Rana, Sajjadi, Kothari (b42) 2022; 328
Sarangi, Panda, Das, Abraham (b37) 2018; 70
Yao, Yuan, Tsai, Zhang, Lu, Ding (b57) 2023; 230
Xu, Song, Du, Zhang (b54) 2024
Zhang, Jánošík (b60) 2024; 241
Wan, Ye, Peng (b48) 2023; 117
Guo, Fang, Zhao, Wang (b14) 2021; 161
Sarker, Shanmugam, Azam, Thennadil (b38) 2024; 23
He, Zhao, Gao, Zhang, Zhang, Li (b17) 2025; 238
Salgotra, Mirjalili (b36) 2024; 258
Wang, Li, Shi, Jiang, Song, Li (b49) 2024; 12
Lindberg, Bakker, Sartori (b26) 2019; 58
Ke, Ge, Yin, Zhang, Zheng, Zhang, Li, Wang, Wang (b21) 2024; 237
Dibaj, Ettefagh, Hassannejad, Ehghaghi (b7) 2021; 167
Khalid, Wu, Wahid, Alam, Ullah (b22) 2021; PP
Lahouar, Slama (b24) 2015; 103
Haque, Rahman (b16) 2022; 122
Nadda, Singh, Roy, Yadav (b31) 2024
Zhang, Lin, Liu (b61) 2022; 185
Tian, Wang (b47) 2023; 215
Sun, Zheng, Zhao, Zhou, Li, Li, Xiong, Liu, Li (b43) 2024; 250
Fan, Wang, Wang, Zhang, Sun (b10) 2024; 308
Yunhua, X., Haojun, Z., & Nan, D. (2019). Short-term Load Forecasting Model Considering Meteorological Factors. In
Wang, Lu, Chang (b50) 2024; 946
Cao, Wang, Xia (b3) 2024; 132
Fan, Han, Wang, Jia, Peng, Huang, Hong (b9) 2023; 280
Nafea, Alameri, Majeed, Khalaf, AL-Ani (b32) 2024; 2024
Gu, Wang, Liu (b13) 2024; 191
Fadoul, Hassan, Çağlar (b8) 2024; 24
Dab, Henao, Nagarsheth, Dubé, Sansregret, Agbossou (b6) 2023; 299
(pp. 572–577).
Luo, Wang, Gao, Wang, Pang (b28) 2024; 12
Lee, Ko (b25) 2011; 38
Wang, Wang, Wang (b52) 2013; 40
Xu, Zheng, Zhu, chun Wong, Wang, Lin (b56) 2024; 254
Piya, Triki, Al Maimani, Mokhtarzadeh (b35) 2023; 175
Alsajri (b2) 2023; 2023
Luiz Junho Pereira, Antônio Oliver, Brendon Francisco, Simões Cunha Jr, Ferreira Gomes (b27) 2022; 187
Wang, Sun, Fathi, Eslami (b51) 2024; 10
Karim, Khalid, Aleryani, Tairan, Ali, Ali (b20) 2024; 12
Sheher, Shah, Mansoor, Habib, Ali (b40) 2023; 35
Mathew, Chikte, Sadanandan, Abdelaziz, Ijaz, Ghaoud (b29) 2024; 237
Tian, Gai (b45) 2023; 281
Song, Cai, Ma, Li (b41) 2024; 237
Moon, Hossain, Chon (b30) 2021; 183
Zhang, Wei, Li, Tan, Zhou (b62) 2018; 158
Golmohammadi, Abedsoltan, Goli, Ali (b12) 2024; 187
Xie, Li, Li, Huang, He (b53) 2023; 228
Tan, De, Li, Lin, Yang, Huang, Tan (b44) 2020; 248
Jamei, Ali, Karbasi, Karimi, Jahannemaei, Farooque, Yaseen (b19) 2024; 237
Feng, Wang, Wu, Liu, Liu, Xie (b11) 2024; 237
Neupane, Aryal, Rajabifard (b33) 2024; 255
Nie, Jiang, Zhang (b34) 2020; 97
Hafeez, Khan, Jan, Shah, Khan, Derhab (b15) 2021; 299
Alhmoud, Nawafleh (b1) 2021; 44
Chen, Wang, Tuo (b4) 2020; 53
Tian, Gai (b46) 2024; 245
Jameel, Abouhawwash (b18) 2024; 422
Cheng, Liu (b5) 2024; 376
Yuan, Li, Zhang, Zheng, Mao, Pei (b58) 2023; 185
Xu, Yao, Zheng, Chen (b55) 2024; 255
Kodogiannis, Anagnostakis (b23) 1999; 12
Golmohammadi (10.1016/j.eswa.2024.125567_b12) 2024; 187
Piya (10.1016/j.eswa.2024.125567_b35) 2023; 175
Zhang (10.1016/j.eswa.2024.125567_b60) 2024; 241
Cao (10.1016/j.eswa.2024.125567_b3) 2024; 132
Dibaj (10.1016/j.eswa.2024.125567_b7) 2021; 167
Fan (10.1016/j.eswa.2024.125567_b10) 2024; 308
Dab (10.1016/j.eswa.2024.125567_b6) 2023; 299
Luo (10.1016/j.eswa.2024.125567_b28) 2024; 12
Cheng (10.1016/j.eswa.2024.125567_b5) 2024; 376
Neupane (10.1016/j.eswa.2024.125567_b33) 2024; 255
Kodogiannis (10.1016/j.eswa.2024.125567_b23) 1999; 12
Wang (10.1016/j.eswa.2024.125567_b49) 2024; 12
Lindberg (10.1016/j.eswa.2024.125567_b26) 2019; 58
Moon (10.1016/j.eswa.2024.125567_b30) 2021; 183
Xu (10.1016/j.eswa.2024.125567_b54) 2024
Fadoul (10.1016/j.eswa.2024.125567_b8) 2024; 24
He (10.1016/j.eswa.2024.125567_b17) 2025; 238
Wang (10.1016/j.eswa.2024.125567_b52) 2013; 40
Alsajri (10.1016/j.eswa.2024.125567_b2) 2023; 2023
Xu (10.1016/j.eswa.2024.125567_b55) 2024; 255
Tan (10.1016/j.eswa.2024.125567_b44) 2020; 248
Sun (10.1016/j.eswa.2024.125567_b43) 2024; 250
Haque (10.1016/j.eswa.2024.125567_b16) 2022; 122
Ke (10.1016/j.eswa.2024.125567_b21) 2024; 237
Nadda (10.1016/j.eswa.2024.125567_b31) 2024
Nie (10.1016/j.eswa.2024.125567_b34) 2020; 97
Lahouar (10.1016/j.eswa.2024.125567_b24) 2015; 103
Luiz Junho Pereira (10.1016/j.eswa.2024.125567_b27) 2022; 187
Wang (10.1016/j.eswa.2024.125567_b51) 2024; 10
Sarangi (10.1016/j.eswa.2024.125567_b37) 2018; 70
Xie (10.1016/j.eswa.2024.125567_b53) 2023; 228
Yuan (10.1016/j.eswa.2024.125567_b58) 2023; 185
Guo (10.1016/j.eswa.2024.125567_b14) 2021; 161
Salgotra (10.1016/j.eswa.2024.125567_b36) 2024; 258
Chen (10.1016/j.eswa.2024.125567_b4) 2020; 53
Yao (10.1016/j.eswa.2024.125567_b57) 2023; 230
Alhmoud (10.1016/j.eswa.2024.125567_b1) 2021; 44
Tian (10.1016/j.eswa.2024.125567_b45) 2023; 281
10.1016/j.eswa.2024.125567_b59
Wan (10.1016/j.eswa.2024.125567_b48) 2023; 117
Xu (10.1016/j.eswa.2024.125567_b56) 2024; 254
Lee (10.1016/j.eswa.2024.125567_b25) 2011; 38
Sarker (10.1016/j.eswa.2024.125567_b38) 2024; 23
Tian (10.1016/j.eswa.2024.125567_b47) 2023; 215
Hafeez (10.1016/j.eswa.2024.125567_b15) 2021; 299
Sheher (10.1016/j.eswa.2024.125567_b40) 2023; 35
Tian (10.1016/j.eswa.2024.125567_b46) 2024; 245
Fan (10.1016/j.eswa.2024.125567_b9) 2023; 280
Sreekumar (10.1016/j.eswa.2024.125567_b42) 2022; 328
Gu (10.1016/j.eswa.2024.125567_b13) 2024; 191
Sharma (10.1016/j.eswa.2024.125567_b39) 2022; 5
Feng (10.1016/j.eswa.2024.125567_b11) 2024; 237
Jamei (10.1016/j.eswa.2024.125567_b19) 2024; 237
Mathew (10.1016/j.eswa.2024.125567_b29) 2024; 237
Wang (10.1016/j.eswa.2024.125567_b50) 2024; 946
Karim (10.1016/j.eswa.2024.125567_b20) 2024; 12
Song (10.1016/j.eswa.2024.125567_b41) 2024; 237
Zhang (10.1016/j.eswa.2024.125567_b61) 2022; 185
Jameel (10.1016/j.eswa.2024.125567_b18) 2024; 422
Nafea (10.1016/j.eswa.2024.125567_b32) 2024; 2024
Khalid (10.1016/j.eswa.2024.125567_b22) 2021; PP
Zhang (10.1016/j.eswa.2024.125567_b62) 2018; 158
References_xml – volume: 237
  year: 2024
  ident: b11
  article-title: Saturated load forecasting based on improved logistic regression and affinity propagation
  publication-title: Electric Power Systems Research
– volume: 185
  year: 2023
  ident: b58
  article-title: Research on real-time prediction of completion time based on AE-CNN-LSTM
  publication-title: Computers & Industrial Engineering
– volume: 241
  year: 2024
  ident: b60
  article-title: Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches
  publication-title: Expert Systems with Applications
– volume: 215
  year: 2023
  ident: b47
  article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer
  publication-title: Renewable Energy
– volume: 161
  year: 2021
  ident: b14
  article-title: The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality
  publication-title: Computers & Industrial Engineering
– reference: (pp. 572–577).
– volume: PP
  start-page: 1
  year: 2021
  ident: b22
  article-title: An effective scholarly search by combining inverted indices and structured search with citation networks analysis
  publication-title: IEEE Access
– volume: 40
  start-page: 418
  year: 2013
  end-page: 428
  ident: b52
  article-title: Cost estimation of plastic injection molding parts through integration of PSO and BP neural network
  publication-title: Expert Systems with Applications
– volume: 44
  start-page: 356
  year: 2021
  end-page: 363
  ident: b1
  article-title: Short-term load forecasting for Jordan power system based on NARX-ELMAN neural network and ARMA model
  publication-title: IEEE Canadian Journal of Electrical and Computer Engineering
– volume: 191
  year: 2024
  ident: b13
  article-title: A combined system based on data preprocessing and optimization algorithm for electricity load forecasting
  publication-title: Computers & Industrial Engineering
– volume: 245
  year: 2024
  ident: b46
  article-title: Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization
  publication-title: Expert Systems with Applications
– volume: 280
  year: 2023
  ident: b9
  article-title: A new intelligent hybrid forecasting method for power load considering uncertainty
  publication-title: Knowledge-Based Systems
– volume: 255
  year: 2024
  ident: b55
  article-title: A hybrid Monte Carlo quantile EMD-LSTM method for satellite in-orbit temperature prediction and data uncertainty quantification
  publication-title: Expert Systems with Applications
– volume: 422
  year: 2024
  ident: b18
  article-title: Multi-objective Mantis Search Algorithm (MOMSA): A novel approach for engineering design problems and validation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 187
  year: 2022
  ident: b27
  article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Systems with Applications
– volume: 23
  year: 2024
  ident: b38
  article-title: Enhancing smart grid load forecasting: An attention-based deep learning model integrated with federated learning and XAI for security and interpretability
  publication-title: Intelligent Systems with Applications
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 6
  ident: b2
  article-title: A review on machine learning strategies for real-world engineering applications
  publication-title: Babylonian Journal of Machine Learning
– volume: 38
  start-page: 5902
  year: 2011
  end-page: 5911
  ident: b25
  article-title: Short-term load forecasting using lifting scheme and ARIMA models
  publication-title: Expert Systems with Applications
– volume: 24
  year: 2024
  ident: b8
  article-title: Integrating autoencoder and decision tree models for enhanced energy consumption forecasting in microgrids: A meteorological data-driven approach in djibouti
  publication-title: Results in Engineering
– volume: 12
  start-page: 159
  year: 1999
  end-page: 173
  ident: b23
  article-title: A study of advanced learning algorithms for short-term load forecasting
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 53
  start-page: 12086
  year: 2020
  end-page: 12090
  ident: b4
  article-title: Short-term power load forecasting of GWO-KELM based on Kalman filter
  publication-title: IFAC-PapersOnLine
– year: 2024
  ident: b31
  article-title: A comparative assessment of CFD based LSTM and GRU for hydrodynamic predictions of gas-solid fluidized bed
  publication-title: Powder Technology
– volume: 35
  year: 2023
  ident: b40
  article-title: Summarization of scholarly articles using BERT and BiGRU: Deep learning-based extractive approach
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 122
  year: 2022
  ident: b16
  article-title: Short-term electrical load forecasting through heuristic configuration of regularized deep neural network
  publication-title: Applied Soft Computing
– volume: 237
  year: 2024
  ident: b21
  article-title: A general maximal margin hyper-sphere SVM for multi-class classification
  publication-title: Expert Systems with Applications
– volume: 183
  year: 2021
  ident: b30
  article-title: AR and ARMA model order selection for time-series modeling with ImageNet classification
  publication-title: Signal Processing
– volume: 103
  start-page: 1040
  year: 2015
  end-page: 1051
  ident: b24
  article-title: Day-ahead load forecast using random forest and expert input selection
  publication-title: Energy Conversion and Management
– volume: 58
  start-page: 63
  year: 2019
  end-page: 88
  ident: b26
  article-title: Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts
  publication-title: Utilities Policy
– volume: 258
  year: 2024
  ident: b36
  article-title: Multi-algorithm based evolutionary strategy with adaptive mutation mechanism for constraint engineering design problems
  publication-title: Expert Systems with Applications
– volume: 187
  year: 2024
  ident: b12
  article-title: Multi-objective dragonfly algorithm for optimizing a sustainable supply chain under resource sharing conditions
  publication-title: Computers & Industrial Engineering
– volume: 238
  year: 2025
  ident: b17
  article-title: Short-term load forecasting by GRU neural network and DDPG algorithm for adaptive optimization of hyperparameters
  publication-title: Electric Power Systems Research
– volume: 376
  year: 2024
  ident: b5
  article-title: Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks
  publication-title: Applied Energy
– volume: 255
  year: 2024
  ident: b33
  article-title: CNNs for remote extraction of urban features: A survey-driven benchmarking
  publication-title: Expert Systems with Applications
– volume: 5
  start-page: 564
  year: 2022
  end-page: 575
  ident: b39
  article-title: Micro-drill on Al/SiC composite by EDD process: An RSM-MOGOA based hybrid approach
  publication-title: International Journal of Lightweight Materials and Manufacture
– volume: 117
  year: 2023
  ident: b48
  article-title: Multi-period dynamic multi-objective emergency material distribution model under uncertain demand
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 237
  year: 2024
  ident: b41
  article-title: Modelling and forecasting high-frequency data with jumps based on a hybrid nonparametric regression and LSTM model
  publication-title: Expert Systems with Applications
– volume: 299
  year: 2023
  ident: b6
  article-title: Consensus-based time-series clustering approach to short-term load forecasting for residential electricity demand
  publication-title: Energy and Buildings
– volume: 281
  year: 2023
  ident: b45
  article-title: A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism
  publication-title: Energy
– year: 2024
  ident: b54
  article-title: Town gas daily load forecasting based on machine learning combinatorial algorithms: A case study in North China
  publication-title: Chinese Journal of Chemical Engineering
– volume: 237
  year: 2024
  ident: b29
  article-title: Medium-term feeder load forecasting and boosting peak accuracy prediction using the PWP-XGBoost model
  publication-title: Electric Power Systems Research
– volume: 250
  year: 2024
  ident: b43
  article-title: Modifying the one-hot encoding technique can enhance the adversarial robustness of the visual model for symbol recognition
  publication-title: Expert Systems with Applications
– volume: 230
  year: 2023
  ident: b57
  article-title: ESO: An enhanced snake optimizer for real-world engineering problems
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 2452
  year: 2024
  end-page: 2461
  ident: b49
  article-title: Load forecasting method based on CNN and extended LSTM
  publication-title: Energy Reports
– volume: 299
  year: 2021
  ident: b15
  article-title: A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid
  publication-title: Applied Energy
– volume: 12
  start-page: 42769
  year: 2024
  end-page: 42790
  ident: b20
  article-title: HADE: Exploiting human action recognition through fine-tuned deep learning methods
  publication-title: IEEE ACCESS
– volume: 70
  start-page: 67
  year: 2018
  end-page: 80
  ident: b37
  article-title: Design of optimal high pass and band stop FIR filters using adaptive cuckoo search algorithm
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 167
  year: 2021
  ident: b7
  article-title: A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults
  publication-title: Expert Systems with Applications
– volume: 237
  year: 2024
  ident: b19
  article-title: Monthly sodium adsorption ratio forecasting in rivers using a dual interpretable glass-box complementary intelligent system: Hybridization of ensemble TVF-EMD-VMD, Boruta-SHAP, and explainable GPR
  publication-title: Expert Systems with Applications
– volume: 254
  year: 2024
  ident: b56
  article-title: A complementary fused method using GRU and XGBoost models for long-term solar energy hourly forecasting
  publication-title: Expert Systems with Applications
– reference: Yunhua, X., Haojun, Z., & Nan, D. (2019). Short-term Load Forecasting Model Considering Meteorological Factors. In
– volume: 158
  start-page: 774
  year: 2018
  end-page: 781
  ident: b62
  article-title: Short term electricity load forecasting using a hybrid model
  publication-title: Energy
– volume: 308
  year: 2024
  ident: b10
  article-title: A novel multi-energy load forecasting method based on building flexibility feature recognition technology and multi-task learning model integrating LSTM
  publication-title: Energy
– volume: 228
  year: 2023
  ident: b53
  article-title: A decomposition-based multi-objective jaya algorithm for lot-streaming job shop scheduling with variable sublots and intermingling setting
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 2676
  year: 2024
  end-page: 2689
  ident: b28
  article-title: Stacking integration algorithm based on CNN-BiLSTM-attention with XGBoost for short-term electricity load forecasting
  publication-title: Energy Reports
– volume: 97
  year: 2020
  ident: b34
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Applied Soft Computing
– volume: 328
  year: 2022
  ident: b42
  article-title: Aggregated net-load forecasting using Markov-Chain Monte-Carlo regression and C-vine copula
  publication-title: Applied Energy
– volume: 10
  year: 2024
  ident: b51
  article-title: Improving the method of short-term forecasting of electric load in distribution networks using wavelet transform combined with ridgelet neural network optimized by Self-adapted Kho-Kho Optimization Algorithm
  publication-title: Heliyon
– volume: 248
  year: 2020
  ident: b44
  article-title: Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine
  publication-title: Journal of Cleaner Production
– volume: 185
  start-page: 611
  year: 2022
  end-page: 628
  ident: b61
  article-title: Short-term offshore wind power forecasting - A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM)
  publication-title: Renewable Energy
– volume: 946
  year: 2024
  ident: b50
  article-title: Application of observed data denoising based on variational mode decomposition in groundwater pollution source recognition
  publication-title: Science of the Total Environment
– volume: 2024
  start-page: 48
  year: 2024
  end-page: 55
  ident: b32
  article-title: A short review on supervised machine learning and deep learning techniques in computer vision
  publication-title: Babylonian Journal of Machine Learning
– volume: 132
  year: 2024
  ident: b3
  article-title: Combined electricity load-forecasting system based on weighted fuzzy time series and deep neural networks
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 175
  year: 2023
  ident: b35
  article-title: Optimization model for designing personalized tourism packages
  publication-title: Computers & Industrial Engineering
– volume: 175
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b35
  article-title: Optimization model for designing personalized tourism packages
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108839
– volume: 35
  issue: 9
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b40
  article-title: Summarization of scholarly articles using BERT and BiGRU: Deep learning-based extractive approach
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 12
  start-page: 2676
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b28
  article-title: Stacking integration algorithm based on CNN-BiLSTM-attention with XGBoost for short-term electricity load forecasting
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2024.08.078
– volume: 255
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b55
  article-title: A hybrid Monte Carlo quantile EMD-LSTM method for satellite in-orbit temperature prediction and data uncertainty quantification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124875
– volume: 946
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b50
  article-title: Application of observed data denoising based on variational mode decomposition in groundwater pollution source recognition
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2024.174374
– volume: 191
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b13
  article-title: A combined system based on data preprocessing and optimization algorithm for electricity load forecasting
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2024.110114
– volume: 2024
  start-page: 48
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b32
  article-title: A short review on supervised machine learning and deep learning techniques in computer vision
  publication-title: Babylonian Journal of Machine Learning
  doi: 10.58496/BJML/2024/004
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b29
  article-title: Medium-term feeder load forecasting and boosting peak accuracy prediction using the PWP-XGBoost model
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2024.111051
– volume: 12
  start-page: 2452
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b49
  article-title: Load forecasting method based on CNN and extended LSTM
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2024.07.030
– volume: 132
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b3
  article-title: Combined electricity load-forecasting system based on weighted fuzzy time series and deep neural networks
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108375
– volume: PP
  start-page: 1
  issue: 99
  year: 2021
  ident: 10.1016/j.eswa.2024.125567_b22
  article-title: An effective scholarly search by combining inverted indices and structured search with citation networks analysis
  publication-title: IEEE Access
– volume: 258
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b36
  article-title: Multi-algorithm based evolutionary strategy with adaptive mutation mechanism for constraint engineering design problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.125055
– volume: 12
  start-page: 159
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2024.125567_b23
  article-title: A study of advanced learning algorithms for short-term load forecasting
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/S0952-1976(98)00064-5
– volume: 10
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b51
  article-title: Improving the method of short-term forecasting of electric load in distribution networks using wavelet transform combined with ridgelet neural network optimized by Self-adapted Kho-Kho Optimization Algorithm
  publication-title: Heliyon
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2024.125567_b7
  article-title: A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114094
– volume: 254
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b56
  article-title: A complementary fused method using GRU and XGBoost models for long-term solar energy hourly forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124286
– volume: 238
  year: 2025
  ident: 10.1016/j.eswa.2024.125567_b17
  article-title: Short-term load forecasting by GRU neural network and DDPG algorithm for adaptive optimization of hyperparameters
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2024.111119
– volume: 422
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b18
  article-title: Multi-objective Mantis Search Algorithm (MOMSA): A novel approach for engineering design problems and validation
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2024.116840
– volume: 215
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b47
  article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2023.118932
– volume: 12
  start-page: 42769
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b20
  article-title: HADE: Exploiting human action recognition through fine-tuned deep learning methods
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2024.3378515
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b2
  article-title: A review on machine learning strategies for real-world engineering applications
  publication-title: Babylonian Journal of Machine Learning
  doi: 10.58496/BJML/2023/001
– volume: 245
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b46
  article-title: Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.123088
– volume: 53
  start-page: 12086
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2024.125567_b4
  article-title: Short-term power load forecasting of GWO-KELM based on Kalman filter
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.760
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b11
  article-title: Saturated load forecasting based on improved logistic regression and affinity propagation
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2024.110953
– volume: 38
  start-page: 5902
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2024.125567_b25
  article-title: Short-term load forecasting using lifting scheme and ARIMA models
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.11.033
– volume: 328
  year: 2022
  ident: 10.1016/j.eswa.2024.125567_b42
  article-title: Aggregated net-load forecasting using Markov-Chain Monte-Carlo regression and C-vine copula
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2022.120171
– volume: 117
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b48
  article-title: Multi-period dynamic multi-objective emergency material distribution model under uncertain demand
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105530
– volume: 183
  year: 2021
  ident: 10.1016/j.eswa.2024.125567_b30
  article-title: AR and ARMA model order selection for time-series modeling with ImageNet classification
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2021.108026
– volume: 248
  year: 2020
  ident: 10.1016/j.eswa.2024.125567_b44
  article-title: Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.119252
– volume: 228
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b53
  article-title: A decomposition-based multi-objective jaya algorithm for lot-streaming job shop scheduling with variable sublots and intermingling setting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120402
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b21
  article-title: A general maximal margin hyper-sphere SVM for multi-class classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121647
– ident: 10.1016/j.eswa.2024.125567_b59
  doi: 10.1051/e3sconf/201911802050
– volume: 44
  start-page: 356
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2024.125567_b1
  article-title: Short-term load forecasting for Jordan power system based on NARX-ELMAN neural network and ARMA model
  publication-title: IEEE Canadian Journal of Electrical and Computer Engineering
  doi: 10.1109/ICJECE.2021.3076124
– volume: 185
  start-page: 611
  year: 2022
  ident: 10.1016/j.eswa.2024.125567_b61
  article-title: Short-term offshore wind power forecasting - A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM)
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2021.12.100
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b41
  article-title: Modelling and forecasting high-frequency data with jumps based on a hybrid nonparametric regression and LSTM model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121527
– volume: 281
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b45
  article-title: A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128225
– volume: 58
  start-page: 63
  year: 2019
  ident: 10.1016/j.eswa.2024.125567_b26
  article-title: Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts
  publication-title: Utilities Policy
  doi: 10.1016/j.jup.2019.03.004
– volume: 250
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b43
  article-title: Modifying the one-hot encoding technique can enhance the adversarial robustness of the visual model for symbol recognition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123751
– volume: 299
  year: 2021
  ident: 10.1016/j.eswa.2024.125567_b15
  article-title: A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2021.117178
– volume: 185
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b58
  article-title: Research on real-time prediction of completion time based on AE-CNN-LSTM
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109677
– year: 2024
  ident: 10.1016/j.eswa.2024.125567_b31
  article-title: A comparative assessment of CFD based LSTM and GRU for hydrodynamic predictions of gas-solid fluidized bed
  publication-title: Powder Technology
  doi: 10.1016/j.powtec.2024.119836
– year: 2024
  ident: 10.1016/j.eswa.2024.125567_b54
  article-title: Town gas daily load forecasting based on machine learning combinatorial algorithms: A case study in North China
  publication-title: Chinese Journal of Chemical Engineering
  doi: 10.1016/j.cjche.2024.07.011
– volume: 299
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b6
  article-title: Consensus-based time-series clustering approach to short-term load forecasting for residential electricity demand
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2023.113550
– volume: 70
  start-page: 67
  year: 2018
  ident: 10.1016/j.eswa.2024.125567_b37
  article-title: Design of optimal high pass and band stop FIR filters using adaptive cuckoo search algorithm
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.01.005
– volume: 280
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b9
  article-title: A new intelligent hybrid forecasting method for power load considering uncertainty
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.111034
– volume: 23
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b38
  article-title: Enhancing smart grid load forecasting: An attention-based deep learning model integrated with federated learning and XAI for security and interpretability
  publication-title: Intelligent Systems with Applications
  doi: 10.1016/j.iswa.2024.200422
– volume: 376
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b5
  article-title: Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2024.124308
– volume: 5
  start-page: 564
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2024.125567_b39
  article-title: Micro-drill on Al/SiC composite by EDD process: An RSM-MOGOA based hybrid approach
  publication-title: International Journal of Lightweight Materials and Manufacture
  doi: 10.1016/j.ijlmm.2022.07.002
– volume: 255
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b33
  article-title: CNNs for remote extraction of urban features: A survey-driven benchmarking
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124751
– volume: 97
  year: 2020
  ident: 10.1016/j.eswa.2024.125567_b34
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106809
– volume: 40
  start-page: 418
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2024.125567_b52
  article-title: Cost estimation of plastic injection molding parts through integration of PSO and BP neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.166
– volume: 158
  start-page: 774
  year: 2018
  ident: 10.1016/j.eswa.2024.125567_b62
  article-title: Short term electricity load forecasting using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.012
– volume: 122
  year: 2022
  ident: 10.1016/j.eswa.2024.125567_b16
  article-title: Short-term electrical load forecasting through heuristic configuration of regularized deep neural network
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.108877
– volume: 103
  start-page: 1040
  year: 2015
  ident: 10.1016/j.eswa.2024.125567_b24
  article-title: Day-ahead load forecast using random forest and expert input selection
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2015.07.041
– volume: 241
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b60
  article-title: Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122686
– volume: 230
  year: 2023
  ident: 10.1016/j.eswa.2024.125567_b57
  article-title: ESO: An enhanced snake optimizer for real-world engineering problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120594
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b19
  article-title: Monthly sodium adsorption ratio forecasting in rivers using a dual interpretable glass-box complementary intelligent system: Hybridization of ensemble TVF-EMD-VMD, Boruta-SHAP, and explainable GPR
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121512
– volume: 187
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b12
  article-title: Multi-objective dragonfly algorithm for optimizing a sustainable supply chain under resource sharing conditions
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109837
– volume: 161
  year: 2021
  ident: 10.1016/j.eswa.2024.125567_b14
  article-title: The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107598
– volume: 187
  year: 2022
  ident: 10.1016/j.eswa.2024.125567_b27
  article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115939
– volume: 24
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b8
  article-title: Integrating autoencoder and decision tree models for enhanced energy consumption forecasting in microgrids: A meteorological data-driven approach in djibouti
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2024.103033
– volume: 308
  year: 2024
  ident: 10.1016/j.eswa.2024.125567_b10
  article-title: A novel multi-energy load forecasting method based on building flexibility feature recognition technology and multi-task learning model integrating LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132976
SSID ssj0017007
Score 2.513865
Snippet Accurate power load forecasting is an important part of power system operation planning, it can ensure the stable operation of power systems and improve the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125567
SubjectTerms Data preprocessing
Deep learning
Load forecasting
Machine learning
Multi-objective algorithm
Title A hybrid load forecasting system based on data augmentation and ensemble learning under limited feature availability
URI https://dx.doi.org/10.1016/j.eswa.2024.125567
Volume 261
WOSCitedRecordID wos001352992900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2SQ-99F016UNz6A0RgddgOK6qVG0PUSul0qoX5BfNRoSNdtlt-u8zxjYhURo1h14QQjAg5vN4PDPfmJAPWhQSHTcd5zUOciZpGZeFMjYkoFStUpFr3W82wY-Oivm8_DaZ1IELs2142xYXF-X5f1U1XkNlW-rsPdQ9CMULeI5KxyOqHY__pPhZdPLH0rCiZim0rSI0Sqz74mbXtTmyE5e2SQJbHRqJza8zzz9ydcm4rjVnlk_VhKiJ5ZmtosZRoaLaCJd12IpF47p8X0sN982TO_-yQJ4bpckHO-Mj1d_D5NkXA7t47M-TxWqzGEckaBaKmEehRR6z1O2-E6wsdT3XvZ1MbeczfqsJd9GE0wOz_m37QlF2cHXz9X7ZN-axobowFK6dVlZGZWVUTsYDskt5VqL12519OZx_HfJNPHHE-vDlnl7lKgFvfsntLszILTl-Sh779QTMHA6ekYlpn5MnYa8O8Kb7Belm4GABFhYwggU4TUEPC1i2YGEBY1gAwgICLCDAAnpYgIcFeFjAGBYvyY9Ph8cfP8d-x41YTZOki40yTGcpFzmuuYRUmU6pHcS54UroOlcsVUWeyKSUtcyk7XZoVJEpTaellJRNX5Gddtma1wRwZZAmPOclymIsoSVK4zJnWcGZQMdsj6ThJ1bKt6O3u6I01d_Vt0ei4Zlz14zlzruzoJvKu5POTawQanc8t3-vt7whj67GwFuy06025h15qLbdYr1673F2CaQfm6Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+load+forecasting+system+based+on+data+augmentation+and+ensemble+learning+under+limited+feature+availability&rft.jtitle=Expert+systems+with+applications&rft.au=Yang%2C+Qing&rft.au=Tian%2C+Zhirui&rft.date=2025-02-01&rft.issn=0957-4174&rft.volume=261&rft.spage=125567&rft_id=info:doi/10.1016%2Fj.eswa.2024.125567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon