An adaptive fuzzy predictive control of nonlinear processes based on Multi-Kernel least squares support vector regression

In this paper, an adaptive fuzzy Generalized Predictive Control (GPC) is proposed for discrete-time nonlinear systems via Takagi–Sugeno system based Multi-Kernel Least Squares Support Vector Regression (TS-LSSVR). The proposed adaptive TS-LSSVR strategy is constructed using a multi-kernel least squa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 73; S. 572 - 590
Hauptverfasser: Boulkaibet, I., Belarbi, K., Bououden, S., Chadli, M., Marwala, T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2018
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, an adaptive fuzzy Generalized Predictive Control (GPC) is proposed for discrete-time nonlinear systems via Takagi–Sugeno system based Multi-Kernel Least Squares Support Vector Regression (TS-LSSVR). The proposed adaptive TS-LSSVR strategy is constructed using a multi-kernel least squares support vector regression where the learning procedure of the proposed TS-LSSVR is achieved in three steps: In the first step, which is an offline step, the antecedent parameters of the TS-LSSVR are initialized using a fuzzy c-means clustering algorithm. The second step, which is an online step, deals with the adaptation of the antecedent parameters which can be implemented using a back-propagation algorithm. Finally, the last online step is to use the Fixed-Budget Kernel Recursive Least Squares algorithm to obtain the consequent parameters. Furthermore, an adaptive generalized predictive control for nonlinear systems is introduced by integrating the proposed adaptive TS-LSSVR into the generalized predictive controller (GPC). The reliability of the proposed adaptive TS-LSSVR GPC controller is investigated by controlling two nonlinear systems: A surge tank and continuous stirred tank reactor (CSTR) systems. The proposed TS-LSSVR GPC controller has demonstrated good results and efficiently controlled the nonlinear plants. Furthermore, the adaptive TS-LSSVR GPC has the ability to deal with disturbances and variations in the nonlinear systems. •An adaptive TS system based on LSSVR was introduced for system identification.•The adaptive TS-LSSVR was integrated within the generalized predictive controller.•The proposed adaptive TS-LSSVR GPC controller was used to control nonlinear systems.•The adaptive TS-LSSVR GPC has shown good performance in controlling nonlinear systems.
AbstractList In this paper, an adaptive fuzzy Generalized Predictive Control (GPC) is proposed for discrete-time nonlinear systems via Takagi–Sugeno system based Multi-Kernel Least Squares Support Vector Regression (TS-LSSVR). The proposed adaptive TS-LSSVR strategy is constructed using a multi-kernel least squares support vector regression where the learning procedure of the proposed TS-LSSVR is achieved in three steps: In the first step, which is an offline step, the antecedent parameters of the TS-LSSVR are initialized using a fuzzy c-means clustering algorithm. The second step, which is an online step, deals with the adaptation of the antecedent parameters which can be implemented using a back-propagation algorithm. Finally, the last online step is to use the Fixed-Budget Kernel Recursive Least Squares algorithm to obtain the consequent parameters. Furthermore, an adaptive generalized predictive control for nonlinear systems is introduced by integrating the proposed adaptive TS-LSSVR into the generalized predictive controller (GPC). The reliability of the proposed adaptive TS-LSSVR GPC controller is investigated by controlling two nonlinear systems: A surge tank and continuous stirred tank reactor (CSTR) systems. The proposed TS-LSSVR GPC controller has demonstrated good results and efficiently controlled the nonlinear plants. Furthermore, the adaptive TS-LSSVR GPC has the ability to deal with disturbances and variations in the nonlinear systems. •An adaptive TS system based on LSSVR was introduced for system identification.•The adaptive TS-LSSVR was integrated within the generalized predictive controller.•The proposed adaptive TS-LSSVR GPC controller was used to control nonlinear systems.•The adaptive TS-LSSVR GPC has shown good performance in controlling nonlinear systems.
Author Bououden, S.
Boulkaibet, I.
Chadli, M.
Marwala, T.
Belarbi, K.
Author_xml – sequence: 1
  givenname: I.
  surname: Boulkaibet
  fullname: Boulkaibet, I.
  email: ilyes@aims.ac.za
  organization: Institute for Intelligent Systems, University of Johannesburg, South Africa
– sequence: 2
  givenname: K.
  surname: Belarbi
  fullname: Belarbi, K.
  email: kbelarbi@yahoo.com
  organization: Department of Electronics, Faculty of Engineering, University of Constantine 1, Algeria
– sequence: 3
  givenname: S.
  surname: Bououden
  fullname: Bououden, S.
  email: ss_bououden@yahoo.fr
  organization: Faculty of Sciences and Technology, University Abbes Laghrour, Khenchela, Algeria
– sequence: 4
  givenname: M.
  surname: Chadli
  fullname: Chadli, M.
  email: mohammed.chadli@u-picardie.fr
  organization: University of Picardie Jules Verne Amiens, France
– sequence: 5
  givenname: T.
  surname: Marwala
  fullname: Marwala, T.
  email: tmarwala@uj.ac.za
  organization: Institute for Intelligent Systems, University of Johannesburg, South Africa
BookMark eNp9kN9OwyAUh4mZidv0BbziBVqB0pYm3iyL_-KMN3pNGD01LBUq0CXb00vVKy-WnOSQc_ggv2-BZtZZQOiakpwSWt3schWczhmhIiepOD9DcypqljWVoLN0LiuR8YZXF2gRwo4kqGFijg4ri1Wrhmj2gLvxeDzgwUNr9M9AOxu967HrcPqwNxaUT3unIQQIeKsCtNhZ_DL20WTP4C30uAcVIg5fo_LpThiHwfmI96Cj89jDR5oG4-wlOu9UH-Dqry_R-_3d2_ox27w-PK1Xm0wXhMQMtlQIXgGtaMmaulS0YLxuWVmRrhJbXtS85rppKOOFalQtCOt0oUAwmuJyViyR-H1XexeCh05qE1U0UzRlekmJnBTKnZwUykmhJKk4Tyj7hw7efCp_OA3d_kKQQu0NeBm0AauTVJ8cyNaZU_g3bs2O1A
CitedBy_id crossref_primary_10_1155_2020_2420171
crossref_primary_10_3390_cryst10050347
crossref_primary_10_1007_s41403_023_00450_7
crossref_primary_10_1007_s00521_021_06194_1
crossref_primary_10_1016_j_asoc_2019_106030
crossref_primary_10_1016_j_ifacol_2020_06_075
crossref_primary_10_1080_00223131_2022_2032858
crossref_primary_10_1080_0952813X_2022_2090614
crossref_primary_10_3233_JIFS_179434
crossref_primary_10_3390_s21062236
crossref_primary_10_1007_s10973_020_09279_6
crossref_primary_10_3390_electronics10040384
crossref_primary_10_1007_s12053_020_09897_x
crossref_primary_10_1007_s12555_020_0095_4
crossref_primary_10_1007_s12555_020_0483_9
crossref_primary_10_3390_s21072307
crossref_primary_10_1016_j_egyr_2023_05_093
crossref_primary_10_1016_j_scitotenv_2020_136765
crossref_primary_10_1016_j_asoc_2019_105503
crossref_primary_10_1016_j_asoc_2022_109642
Cites_doi 10.1016/0005-1098(78)90001-8
10.1109/TSMC.1985.6313399
10.1007/s11071-013-0875-y
10.1109/ICICIC.2006.159
10.1016/j.engappai.2013.12.012
10.1109/TSMC.1973.5408575
10.1360/aas-007-1182
10.1049/iet-cta.2016.0231
10.1016/0005-1098(89)90053-8
10.1109/TFUZZ.2004.834812
10.1002/rnc.1094
10.1109/ICASSP.2006.1661394
10.1109/ACC.2000.879562
10.1016/j.cjche.2015.10.009
10.1007/s11071-014-1733-2
10.1162/089976698300017269
10.1109/21.256541
10.1109/ICASSP.2010.5495350
10.1016/j.watres.2016.04.039
10.1109/3477.907564
10.1002/acs.919
10.1007/BF00994018
10.1021/i200022a025
10.1109/91.890326
10.1016/0005-1098(93)90049-Y
10.1016/j.neucom.2016.03.066
10.1016/j.fss.2008.11.022
10.1049/ip-cta:19949975
10.1016/S0959-1524(02)00067-7
10.1016/j.neunet.2017.08.005
10.1016/0005-1098(87)90087-2
10.1016/0005-1098(94)00166-G
10.1109/CDC.2010.5717046
10.1016/j.neucom.2009.10.002
10.1109/ISIC.1996.556214
10.1016/j.ins.2014.11.050
10.1080/01969727308546046
10.1109/ISIC.1999.796689
10.1109/TFUZZ.2003.817839
10.1021/ie503807e
10.1098/rsta.1909.0016
10.1109/TFUZZ.2011.2174997
10.1007/BF02916590
10.1109/ICSMC.2005.1571568
10.1093/ietfec/e89-a.10.2787
10.1016/j.jprocont.2007.10.008
10.1080/00207179208934317
10.1016/j.eswa.2017.06.039
10.1109/9.250485
10.1109/TIE.2007.896492
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.08.044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 590
ExternalDocumentID 10_1016_j_asoc_2018_08_044
S156849461830509X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-eb18846e16152975a13247d2560f68b437474c991243a9a7802fc3ae821494423
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450124900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:22:14 EST 2025
Sat Nov 29 07:49:50 EST 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Takagi–Sugeno fuzzy system
Least square support vector regression
Fixed-budget kernel recursive least-squares
Fuzzy c-means clustering
Generalized predictive control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-eb18846e16152975a13247d2560f68b437474c991243a9a7802fc3ae821494423
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_08_044
crossref_primary_10_1016_j_asoc_2018_08_044
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_08_044
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References S. Van Vaerenbergh, J. Vía, I. Santamaria, A sliding-window kernel RLS algorithm and its application to nonlinear channel identification, in: 2006 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, Toulouse, France, 2006, pp. 789–792.
Vogt, Kecman (b51) 2005
Poggio, Mukherjee, Rifkin, Raklin, Verri (b53) 2016
Pan, Sun, Liu, Yu (b69) 2017; 95
Marchetti, Mellichamp, Seborg (b7) 1983; 22
Juang, Hsieh (b41) 2009; 160
Jang (b27) 1993; 23
Iplikci (b35) 2006; 20
Zadeh (b9) 1973; 3
Zhang, Wang (b38) 2008; 18
Mercer (b50) 1909; 209
Clarke, Mohtadi (b62) 1989; 25
Iplikci (b34) 2006; 89
M.L. Hadjili, V. Wertz, Generalized predictive control using Takagi-Sugeno fuzzy models, in: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, 1999, pp. 405–410.
Cortes, Vapnik (b31) 1995; 20
Lu, Tsai (b60) 2008; 55
Camacho (b3) 1993; 38
Sousa, Kaymak (b19) 2001; 31
J.A. Rossner, B. Kouvaritakis, Robustness and efficiency of generalized predictive control algorithms with guaranteed stability, in: Proc. IEE. Pr D, Vol. 141, 1994, pp. IS4-162.
Richalet (b4) 1993; 29
Liu, Ganigué, Sharma, Yuan (b68) 2016; 98
Vapnik (b29) 1995
Clarke, Mohtadi (b2) 1989; 25
Feng, Lu, Chen (b45) 2015; 23
Shin, Kim, Park, Kim (b46) 2010; 73
Bououden, Chadli, Allouani, Filali (b24) 2013; 9
D. Soloway, P.J. Haley, Neural generalized predictive control: a Newton–Raphson algorithm, in: Proceedings of the IEEE International Symposium on Intelligent Control, Dearborn, MI, U.S.A. 1996, pp. 277–282.
Yugeng, Zhang (b63) 1997; 40
Y. Zhang, T. Chai, H. Wang, J. Fu, Generalized predictive control method for a class of nonlinear systems using ANFIS and multiple models, in: 49th IEEE Conference on Decision and Control, Atlanta, GA, 2010, pp. 15–17.
Kecman, Huang, Vogt (b54) 2005
Huang, Lou, Gong, Edgar (b15) 2000; 8
S. Van Vaerenbergh, I. Santamaría, W. Liu, J.C. Príncipe, Fixed-budget kernel recursive least-squares, in: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, pp. 1882–1885.
Dunn (b49) 1973
Takagi, Sugeno (b17) 1985; 15
Li, Su, Chu (b37) 2007; 33
Brujin, Verbruggen (b6) 1984; 25
Liu, Pan, Huang (b58) 2014; 54
Eski, Temürlenk (b66) 2013; 73
Scho lkopf, Burges, Smola (b30) 1999
Guo, Guan (b36) 2015; 79
Chiang, Hao (b39) 2004; 12
Richalet, Rault, Testud, Papon (b5) 1978; 14
Juang, Hsieh (b48) 2012; 20
Wang, Gao, Qiu, Ahn (b11) 2016; 11
Driankov, Hellendoorn, Reinfrank (b10) 1993
Bououden, Chadli, Karimi (b12) 2015; vol. 108
Iplikci (b33) 2006; 16
Chen, Billings (b13) 1992; 56
Oviedo, Vandewalle, Wertz (b67) 2006
Boulkaibet, Belarbi, Bououden, Marwala, Chadli (b42) 2017
Chang, Tsai (b23) 2013; 15
Ławryńczuk (b47) 2016; 205
Camacho, Bordons (b61) 1999
D. Matko, K. KavSek-Biasizzo, I. Skrjanc, G. Music, Generalized predictive control of a thermal plant using fuzzy model, in: American Control Conference, 2000. Proceedings of the, Vol. 3, 2000, 2000, pp. 2053–2057.
Mendes, Araújo, Matias, Seco, Belchior (b57) 2014; 29
Bououden, Chadli, Karimi (b25) 2015; 299
Bezdek (b56) 1981
Lanckriet, Cristianini, Bartlett, El Ghaoui, Jordan (b55) 2004; 5
J.S.R. Jang, Fuzzy modeling using generalized neural networks and Kalman filter algorithm, in: Proc. of the Ninth National Conf. on Artificial Intelligence, AAAI-91, 1991, pp. 762–767.
Clarke, Mothadi, Tuffs (b8) 1989; 23
Lu, Tsai (b59) 2004; 218
Tsai, Chu, Jang, Shieh (b16) 2002; 13
Prett, Garcia (b1) 1988
Rossiter, Kouvaritakiss, Gossners (b64) 1995; 31
Mollov, Babuška, Abonyi, Verbruggen (b18) 2004; 12
C.T. Lin, S.F. Liang, C.M. Yeh, K.W. Fan, Fuzzy neural network design using support vector regression for function approximation with outliers, in: Proc. IEEE Internat. Conf. on System, Man and Cybernetics, Vol. 3, 2005, pp. 2763–2768.
Q. Li, B. Qu, Z. Ge, X. Zhan, Study of fuzzy generalized predictive control algorithm on nonlinear systems, in First International Conference on Innovative Computing. Information and Control, ICICIC’06, Vol. 1, 2006, pp. 437–440.
Girosi (b32) 1998; 10
T.M. Huang, V. Kecman, Bias Term b in SVMs again, in: Proceedings of the 12th European Symposium on Artificial Neural Networks, ESANN 2004, Bruges, Belgium, 2004, pp. 441–448.
Pan, Pan, Yu (b70) 2015
Juang (10.1016/j.asoc.2018.08.044_b41) 2009; 160
Pan (10.1016/j.asoc.2018.08.044_b69) 2017; 95
10.1016/j.asoc.2018.08.044_b21
10.1016/j.asoc.2018.08.044_b65
10.1016/j.asoc.2018.08.044_b20
10.1016/j.asoc.2018.08.044_b22
Kecman (10.1016/j.asoc.2018.08.044_b54) 2005
10.1016/j.asoc.2018.08.044_b28
Clarke (10.1016/j.asoc.2018.08.044_b8) 1989; 23
Bououden (10.1016/j.asoc.2018.08.044_b25) 2015; 299
Richalet (10.1016/j.asoc.2018.08.044_b5) 1978; 14
10.1016/j.asoc.2018.08.044_b26
Juang (10.1016/j.asoc.2018.08.044_b48) 2012; 20
Bououden (10.1016/j.asoc.2018.08.044_b24) 2013; 9
Feng (10.1016/j.asoc.2018.08.044_b45) 2015; 23
Rossiter (10.1016/j.asoc.2018.08.044_b64) 1995; 31
Dunn (10.1016/j.asoc.2018.08.044_b49) 1973
Camacho (10.1016/j.asoc.2018.08.044_b3) 1993; 38
Boulkaibet (10.1016/j.asoc.2018.08.044_b42) 2017
Pan (10.1016/j.asoc.2018.08.044_b70) 2015
Marchetti (10.1016/j.asoc.2018.08.044_b7) 1983; 22
Driankov (10.1016/j.asoc.2018.08.044_b10) 1993
Oviedo (10.1016/j.asoc.2018.08.044_b67) 2006
Poggio (10.1016/j.asoc.2018.08.044_b53) 2016
Mercer (10.1016/j.asoc.2018.08.044_b50) 1909; 209
Chang (10.1016/j.asoc.2018.08.044_b23) 2013; 15
Zhang (10.1016/j.asoc.2018.08.044_b38) 2008; 18
Girosi (10.1016/j.asoc.2018.08.044_b32) 1998; 10
Vogt (10.1016/j.asoc.2018.08.044_b51) 2005
Clarke (10.1016/j.asoc.2018.08.044_b62) 1989; 25
Bezdek (10.1016/j.asoc.2018.08.044_b56) 1981
Clarke (10.1016/j.asoc.2018.08.044_b2) 1989; 25
Brujin (10.1016/j.asoc.2018.08.044_b6) 1984; 25
Yugeng (10.1016/j.asoc.2018.08.044_b63) 1997; 40
Chiang (10.1016/j.asoc.2018.08.044_b39) 2004; 12
Bououden (10.1016/j.asoc.2018.08.044_b12) 2015; vol. 108
Zadeh (10.1016/j.asoc.2018.08.044_b9) 1973; 3
Cortes (10.1016/j.asoc.2018.08.044_b31) 1995; 20
Liu (10.1016/j.asoc.2018.08.044_b68) 2016; 98
10.1016/j.asoc.2018.08.044_b43
10.1016/j.asoc.2018.08.044_b44
Takagi (10.1016/j.asoc.2018.08.044_b17) 1985; 15
10.1016/j.asoc.2018.08.044_b40
Mendes (10.1016/j.asoc.2018.08.044_b57) 2014; 29
Lu (10.1016/j.asoc.2018.08.044_b60) 2008; 55
Prett (10.1016/j.asoc.2018.08.044_b1) 1988
Lu (10.1016/j.asoc.2018.08.044_b59) 2004; 218
Lanckriet (10.1016/j.asoc.2018.08.044_b55) 2004; 5
Liu (10.1016/j.asoc.2018.08.044_b58) 2014; 54
Sousa (10.1016/j.asoc.2018.08.044_b19) 2001; 31
Camacho (10.1016/j.asoc.2018.08.044_b61) 1999
Scho lkopf (10.1016/j.asoc.2018.08.044_b30) 1999
Ławryńczuk (10.1016/j.asoc.2018.08.044_b47) 2016; 205
Guo (10.1016/j.asoc.2018.08.044_b36) 2015; 79
Iplikci (10.1016/j.asoc.2018.08.044_b35) 2006; 20
Chen (10.1016/j.asoc.2018.08.044_b13) 1992; 56
Richalet (10.1016/j.asoc.2018.08.044_b4) 1993; 29
Li (10.1016/j.asoc.2018.08.044_b37) 2007; 33
10.1016/j.asoc.2018.08.044_b52
Eski (10.1016/j.asoc.2018.08.044_b66) 2013; 73
Huang (10.1016/j.asoc.2018.08.044_b15) 2000; 8
Jang (10.1016/j.asoc.2018.08.044_b27) 1993; 23
Iplikci (10.1016/j.asoc.2018.08.044_b33) 2006; 16
Shin (10.1016/j.asoc.2018.08.044_b46) 2010; 73
Wang (10.1016/j.asoc.2018.08.044_b11) 2016; 11
10.1016/j.asoc.2018.08.044_b14
Mollov (10.1016/j.asoc.2018.08.044_b18) 2004; 12
Vapnik (10.1016/j.asoc.2018.08.044_b29) 1995
Iplikci (10.1016/j.asoc.2018.08.044_b34) 2006; 89
Tsai (10.1016/j.asoc.2018.08.044_b16) 2002; 13
References_xml – reference: T.M. Huang, V. Kecman, Bias Term b in SVMs again, in: Proceedings of the 12th European Symposium on Artificial Neural Networks, ESANN 2004, Bruges, Belgium, 2004, pp. 441–448.
– year: 1999
  ident: b30
  article-title: Advances in Kernel Methods: Support Vector Learning
– volume: 23
  start-page: 2048
  year: 2015
  end-page: 2052
  ident: b45
  article-title: Nonlinear model predictive control based on support vector machine and genetic algorithm
  publication-title: Chin. J. Chem. Eng.
– year: 2017
  ident: b42
  article-title: A new T-S fuzzy model predictive control for nonlinear processes
  publication-title: Expert Syst. Appl.
– reference: M.L. Hadjili, V. Wertz, Generalized predictive control using Takagi-Sugeno fuzzy models, in: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, 1999, pp. 405–410.
– reference: S. Van Vaerenbergh, I. Santamaría, W. Liu, J.C. Príncipe, Fixed-budget kernel recursive least-squares, in: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, pp. 1882–1885.
– year: 1993
  ident: b10
  article-title: An Introduction to Fuzzy Control
– volume: 25
  start-page: 69
  year: 1984
  end-page: 74
  ident: b6
  article-title: Model algorithmic control using impulse response model
  publication-title: J. A
– volume: 55
  start-page: 1366
  year: 2008
  end-page: 1375
  ident: b60
  article-title: Adaptive predictive control with recurrent neural network for industrial processes: An application to temperature control of a variable-frequency oil-cooling machine
  publication-title: IEEE Trans. Ind. Electron.
– volume: 29
  start-page: 70
  year: 2014
  end-page: 78
  ident: b57
  article-title: Automatic extraction of the fuzzy control system by a hierarchical genetic algorithm
  publication-title: Eng. Appl. Artif. Intell.
– year: 2006
  ident: b67
  article-title: Fuzzy Logic, Identification and Predictive Control
– start-page: 32
  year: 1973
  end-page: 57
  ident: b49
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
– reference: J.S.R. Jang, Fuzzy modeling using generalized neural networks and Kalman filter algorithm, in: Proc. of the Ninth National Conf. on Artificial Intelligence, AAAI-91, 1991, pp. 762–767.
– volume: 12
  start-page: 1
  year: 2004
  end-page: 11
  ident: b39
  article-title: Support vector learning mechanism for fuzzy rule-based modeling: a new approach
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 22
  start-page: 488
  year: 1983
  end-page: 495
  ident: b7
  article-title: Predictive control based on discrete convolution models
  publication-title: Ind. Eng. Chem. Process Des. Dev.
– volume: 95
  start-page: 134
  year: 2017
  end-page: 142
  ident: b69
  article-title: Composite learning from adaptive backstepping neural network control
  publication-title: Neural Netw.
– volume: 73
  start-page: 1443
  year: 2013
  end-page: 1454
  ident: b66
  article-title: Design of neural network-based control systems for active steering system
  publication-title: Nonlinear Dyn.
– volume: 15
  start-page: 116
  year: 1985
  end-page: 132
  ident: b17
  article-title: Fuzzy identification of systems and its application to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 218
  start-page: 557
  year: 2004
  end-page: 567
  ident: b59
  article-title: Adaptive neural predictive control for industrial multivariable processes
  publication-title: J. Syst. Control Eng.
– volume: 31
  start-page: 54
  year: 2001
  end-page: 65
  ident: b19
  article-title: Model prediction control using fuzzy decision functions
  publication-title: IEEE Transactions on System, Man, and Cybernetics— part B: Cybernetics
– volume: 10
  start-page: 1455
  year: 1998
  end-page: 1480
  ident: b32
  article-title: An equivalence between sparse approximation and support vector machines
  publication-title: Neural Comput.
– volume: 31
  start-page: 86
  year: 1995
  end-page: 877
  ident: b64
  article-title: Feasibility and stability results for constrained stable generalized predictive control
  publication-title: Automatica
– reference: D. Soloway, P.J. Haley, Neural generalized predictive control: a Newton–Raphson algorithm, in: Proceedings of the IEEE International Symposium on Intelligent Control, Dearborn, MI, U.S.A. 1996, pp. 277–282.
– volume: 79
  start-page: 1163
  year: 2015
  end-page: 1168
  ident: b36
  article-title: Nonlinear generalized predictive control based on online least squares support vector machines
  publication-title: Nonlinear Dynam.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b31
  article-title: Support-Vector networks
  publication-title: Mach. Learn.
– start-page: 232
  year: 2015
  end-page: 236
  ident: b70
  article-title: Composite learning control with application to inverted pendulums
  publication-title: Chinese Automation Congress (CAC) 2015
– volume: 98
  start-page: 376
  year: 2016
  end-page: 383
  ident: b68
  article-title: Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks
  publication-title: Water Res.
– volume: 54
  start-page: 338
  year: 2014
  end-page: 350
  ident: b58
  article-title: Development of a novel adaptive soft-sensor using variational Bayesian PLS with accounting for online identification of key variables
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 1182
  year: 2007
  end-page: 1188
  ident: b37
  article-title: Generalized predictive control with online least squares support vector machines
  publication-title: Acta Automat. Sinica
– year: 1988
  ident: b1
  article-title: Fundamental Process Control
– volume: 25
  start-page: 859
  year: 1989
  end-page: 875
  ident: b2
  article-title: Properties of generalized predictive control
  publication-title: Automatica
– reference: Y. Zhang, T. Chai, H. Wang, J. Fu, Generalized predictive control method for a class of nonlinear systems using ANFIS and multiple models, in: 49th IEEE Conference on Decision and Control, Atlanta, GA, 2010, pp. 15–17.
– reference: Q. Li, B. Qu, Z. Ge, X. Zhan, Study of fuzzy generalized predictive control algorithm on nonlinear systems, in First International Conference on Innovative Computing. Information and Control, ICICIC’06, Vol. 1, 2006, pp. 437–440.
– volume: 5
  start-page: 27
  year: 2004
  end-page: 72
  ident: b55
  article-title: Learning the kernel matrix with semi-definite programming
  publication-title: J. Mach. Learn. Res.
– volume: 89
  start-page: 2787
  year: 2006
  end-page: 2794
  ident: b34
  article-title: Support vector machines based generalized predictive control of chaotic systems
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 20
  start-page: 599
  year: 2006
  end-page: 621
  ident: b35
  article-title: Online trained support vector machines-based generalized predictive control of non-linear systems
  publication-title: Internat. J. Adapt. Control Signal Process.
– year: 1999
  ident: b61
  publication-title: Model Predictive Control
– volume: 16
  start-page: 843
  year: 2006
  end-page: 862
  ident: b33
  article-title: Support vector machines-based generalized predictive control
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 18
  start-page: 439
  year: 2008
  end-page: 448
  ident: b38
  article-title: Support vector machine based predictive functional control design for output temperature of coking furnace
  publication-title: J. Process Control
– volume: 11
  start-page: 1205
  year: 2016
  end-page: 1213
  ident: b11
  article-title: Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches
  publication-title: IET Control Theory Appl.
– year: 1981
  ident: b56
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– start-page: 131
  year: 2016
  end-page: 141
  ident: b53
  article-title: Uncertainty in Geometric Computations
– volume: 20
  start-page: 372
  year: 2012
  end-page: 384
  ident: b48
  article-title: A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 8
  start-page: 665
  year: 2000
  end-page: 678
  ident: b15
  article-title: Fuzzy model predictive control
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 15
  start-page: 133
  year: 2013
  end-page: 141
  ident: b23
  article-title: Adaptive stable generalized predictive control using TSK fuzzy model for nonlinear discrete-time systems with time-delays
  publication-title: Int. J. Fuzzy Syst.
– volume: 40
  start-page: 54
  year: 1997
  end-page: 63
  ident: b63
  article-title: Study on the closed-loop properties of GPC
  publication-title: Sci. China (Ser. E)
– reference: D. Matko, K. KavSek-Biasizzo, I. Skrjanc, G. Music, Generalized predictive control of a thermal plant using fuzzy model, in: American Control Conference, 2000. Proceedings of the, Vol. 3, 2000, 2000, pp. 2053–2057.
– volume: 209
  start-page: 415
  year: 1909
  end-page: 446
  ident: b50
  article-title: Functions of positive and negative type, and their connection with the theory of integral equations
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Containing Pap. Math. Phys. Character
– volume: 25
  start-page: 859
  year: 1989
  end-page: 875
  ident: b62
  article-title: Prosperities of generalized predictive control
  publication-title: Automatica
– volume: 29
  start-page: 1251
  year: 1993
  end-page: 1274
  ident: b4
  article-title: Industrial applications of model based predictive control
  publication-title: Automatica
– volume: 9
  start-page: 3741
  year: 2013
  end-page: 3758
  ident: b24
  article-title: A new approach for fuzzy predictive adaptive controller design using particle swarm optimization algorithm
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: vol. 108
  start-page: 195
  year: 2015
  end-page: 205
  ident: b12
  publication-title: Control of Uncertain Highly Nonlinear Biological Process Based on Takagi-Sugeno Fuzzy Models
– volume: 14
  start-page: 413
  year: 1978
  end-page: 428
  ident: b5
  article-title: Model predictive heuristic control: Applications to industrial processes
  publication-title: Automatica
– reference: S. Van Vaerenbergh, J. Vía, I. Santamaria, A sliding-window kernel RLS algorithm and its application to nonlinear channel identification, in: 2006 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, Toulouse, France, 2006, pp. 789–792.
– volume: 205
  start-page: 311
  year: 2016
  end-page: 328
  ident: b47
  article-title: Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models
  publication-title: Neurocomputing
– volume: 73
  start-page: 1031
  year: 2010
  end-page: 1037
  ident: b46
  article-title: Model predictive flight control using adaptive support vector regression
  publication-title: Neurocomputing
– volume: 13
  start-page: 423
  year: 2002
  end-page: 435
  ident: b16
  article-title: Developing a robust model predictive control architecture through regional knowledge analysis of artificial neural networks
  publication-title: J. Process Control
– volume: 12
  start-page: 661
  year: 2004
  end-page: 675
  ident: b18
  article-title: Effective optimization for fuzzy model predictive control
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b27
  article-title: ANFIS: Adaptive-network-based fuzzy inference systems
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 23
  start-page: 137
  year: 1989
  end-page: 148
  ident: b8
  article-title: Generalized predictive control - Part 1. The basic algorithm
  publication-title: Automatica
– volume: 38
  start-page: 327
  year: 1993
  end-page: 332
  ident: b3
  article-title: Constrained generalized predictive control
  publication-title: IEEE Trans. Automat. Control
– year: 1995
  ident: b29
  article-title: The Nature of Statistical Learning Theory
– volume: 160
  start-page: 2486
  year: 2009
  end-page: 2504
  ident: b41
  article-title: TS-fuzzy system-based support vector regression
  publication-title: Fuzzy Sets and Systems
– volume: 56
  start-page: 319
  year: 1992
  end-page: 346
  ident: b13
  article-title: Neural networks for nonlinear dynamic system modelling and identification
  publication-title: Int. J. Control
– volume: 299
  start-page: 143
  year: 2015
  end-page: 158
  ident: b25
  article-title: An ant colony optimization-based fuzzy predictive control approach for nonlinear processes
  publication-title: Inform. Sci.
– start-page: 133
  year: 2005
  end-page: 158
  ident: b51
  article-title: Active-set methods for support vector machines
  publication-title: Support Vector Machines: Theory and Applications
– year: 2005
  ident: b54
  article-title: Iterative single data algorithm for training kernel machines from huge data sets: Theory and performance
  publication-title: Support vector machines: Theory and Applications
– volume: 3
  start-page: 28
  year: 1973
  end-page: 44
  ident: b9
  article-title: Outline of a new approach to the analysis of complex systems and decision processes
  publication-title: IEEE Trans. Syst. Man, Cybern. Part B
– reference: C.T. Lin, S.F. Liang, C.M. Yeh, K.W. Fan, Fuzzy neural network design using support vector regression for function approximation with outliers, in: Proc. IEEE Internat. Conf. on System, Man and Cybernetics, Vol. 3, 2005, pp. 2763–2768.
– reference: J.A. Rossner, B. Kouvaritakis, Robustness and efficiency of generalized predictive control algorithms with guaranteed stability, in: Proc. IEE. Pr D, Vol. 141, 1994, pp. IS4-162.
– volume: 14
  start-page: 413
  year: 1978
  ident: 10.1016/j.asoc.2018.08.044_b5
  article-title: Model predictive heuristic control: Applications to industrial processes
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90001-8
– volume: 15
  start-page: 116
  year: 1985
  ident: 10.1016/j.asoc.2018.08.044_b17
  article-title: Fuzzy identification of systems and its application to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313399
– year: 1995
  ident: 10.1016/j.asoc.2018.08.044_b29
– volume: 73
  start-page: 1443
  year: 2013
  ident: 10.1016/j.asoc.2018.08.044_b66
  article-title: Design of neural network-based control systems for active steering system
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0875-y
– ident: 10.1016/j.asoc.2018.08.044_b22
  doi: 10.1109/ICICIC.2006.159
– start-page: 131
  year: 2016
  ident: 10.1016/j.asoc.2018.08.044_b53
– volume: 29
  start-page: 70
  issue: 10
  year: 2014
  ident: 10.1016/j.asoc.2018.08.044_b57
  article-title: Automatic extraction of the fuzzy control system by a hierarchical genetic algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.12.012
– year: 2005
  ident: 10.1016/j.asoc.2018.08.044_b54
  article-title: Iterative single data algorithm for training kernel machines from huge data sets: Theory and performance
– volume: 3
  start-page: 28
  issue: 1
  year: 1973
  ident: 10.1016/j.asoc.2018.08.044_b9
  article-title: Outline of a new approach to the analysis of complex systems and decision processes
  publication-title: IEEE Trans. Syst. Man, Cybern. Part B
  doi: 10.1109/TSMC.1973.5408575
– year: 1993
  ident: 10.1016/j.asoc.2018.08.044_b10
– volume: 33
  start-page: 1182
  issue: 11
  year: 2007
  ident: 10.1016/j.asoc.2018.08.044_b37
  article-title: Generalized predictive control with online least squares support vector machines
  publication-title: Acta Automat. Sinica
  doi: 10.1360/aas-007-1182
– volume: 11
  start-page: 1205
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2018.08.044_b11
  article-title: Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2016.0231
– volume: 25
  start-page: 859
  issue: 6
  year: 1989
  ident: 10.1016/j.asoc.2018.08.044_b62
  article-title: Prosperities of generalized predictive control
  publication-title: Automatica
  doi: 10.1016/0005-1098(89)90053-8
– start-page: 232
  year: 2015
  ident: 10.1016/j.asoc.2018.08.044_b70
  article-title: Composite learning control with application to inverted pendulums
– volume: 12
  start-page: 661
  issue: 5
  year: 2004
  ident: 10.1016/j.asoc.2018.08.044_b18
  article-title: Effective optimization for fuzzy model predictive control
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2004.834812
– volume: 16
  start-page: 843
  issue: 17
  year: 2006
  ident: 10.1016/j.asoc.2018.08.044_b33
  article-title: Support vector machines-based generalized predictive control
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.1094
– volume: 5
  start-page: 27
  year: 2004
  ident: 10.1016/j.asoc.2018.08.044_b55
  article-title: Learning the kernel matrix with semi-definite programming
  publication-title: J. Mach. Learn. Res.
– year: 2006
  ident: 10.1016/j.asoc.2018.08.044_b67
– volume: vol. 108
  start-page: 195
  year: 2015
  ident: 10.1016/j.asoc.2018.08.044_b12
– ident: 10.1016/j.asoc.2018.08.044_b44
  doi: 10.1109/ICASSP.2006.1661394
– ident: 10.1016/j.asoc.2018.08.044_b21
  doi: 10.1109/ACC.2000.879562
– volume: 23
  start-page: 2048
  issue: 12
  year: 2015
  ident: 10.1016/j.asoc.2018.08.044_b45
  article-title: Nonlinear model predictive control based on support vector machine and genetic algorithm
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2015.10.009
– volume: 79
  start-page: 1163
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2018.08.044_b36
  article-title: Nonlinear generalized predictive control based on online least squares support vector machines
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-014-1733-2
– volume: 10
  start-page: 1455
  issue: 6
  year: 1998
  ident: 10.1016/j.asoc.2018.08.044_b32
  article-title: An equivalence between sparse approximation and support vector machines
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017269
– volume: 218
  start-page: 557
  issue: 7
  year: 2004
  ident: 10.1016/j.asoc.2018.08.044_b59
  article-title: Adaptive neural predictive control for industrial multivariable processes
  publication-title: J. Syst. Control Eng.
– year: 1999
  ident: 10.1016/j.asoc.2018.08.044_b61
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.asoc.2018.08.044_b27
  article-title: ANFIS: Adaptive-network-based fuzzy inference systems
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– ident: 10.1016/j.asoc.2018.08.044_b43
  doi: 10.1109/ICASSP.2010.5495350
– ident: 10.1016/j.asoc.2018.08.044_b52
– volume: 98
  start-page: 376
  year: 2016
  ident: 10.1016/j.asoc.2018.08.044_b68
  article-title: Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.039
– volume: 31
  start-page: 54
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2018.08.044_b19
  article-title: Model prediction control using fuzzy decision functions
  publication-title: IEEE Transactions on System, Man, and Cybernetics— part B: Cybernetics
  doi: 10.1109/3477.907564
– volume: 20
  start-page: 599
  issue: 10
  year: 2006
  ident: 10.1016/j.asoc.2018.08.044_b35
  article-title: Online trained support vector machines-based generalized predictive control of non-linear systems
  publication-title: Internat. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.919
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2018.08.044_b31
  article-title: Support-Vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 22
  start-page: 488
  year: 1983
  ident: 10.1016/j.asoc.2018.08.044_b7
  article-title: Predictive control based on discrete convolution models
  publication-title: Ind. Eng. Chem. Process Des. Dev.
  doi: 10.1021/i200022a025
– volume: 8
  start-page: 665
  year: 2000
  ident: 10.1016/j.asoc.2018.08.044_b15
  article-title: Fuzzy model predictive control
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.890326
– volume: 29
  start-page: 1251
  year: 1993
  ident: 10.1016/j.asoc.2018.08.044_b4
  article-title: Industrial applications of model based predictive control
  publication-title: Automatica
  doi: 10.1016/0005-1098(93)90049-Y
– volume: 205
  start-page: 311
  year: 2016
  ident: 10.1016/j.asoc.2018.08.044_b47
  article-title: Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.066
– volume: 160
  start-page: 2486
  year: 2009
  ident: 10.1016/j.asoc.2018.08.044_b41
  article-title: TS-fuzzy system-based support vector regression
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2008.11.022
– ident: 10.1016/j.asoc.2018.08.044_b65
  doi: 10.1049/ip-cta:19949975
– volume: 13
  start-page: 423
  year: 2002
  ident: 10.1016/j.asoc.2018.08.044_b16
  article-title: Developing a robust model predictive control architecture through regional knowledge analysis of artificial neural networks
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(02)00067-7
– volume: 95
  start-page: 134
  year: 2017
  ident: 10.1016/j.asoc.2018.08.044_b69
  article-title: Composite learning from adaptive backstepping neural network control
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.08.005
– volume: 23
  start-page: 137
  year: 1989
  ident: 10.1016/j.asoc.2018.08.044_b8
  article-title: Generalized predictive control - Part 1. The basic algorithm
  publication-title: Automatica
  doi: 10.1016/0005-1098(87)90087-2
– volume: 31
  start-page: 86
  issue: 6
  year: 1995
  ident: 10.1016/j.asoc.2018.08.044_b64
  article-title: Feasibility and stability results for constrained stable generalized predictive control
  publication-title: Automatica
  doi: 10.1016/0005-1098(94)00166-G
– volume: 25
  start-page: 69
  issue: 2
  year: 1984
  ident: 10.1016/j.asoc.2018.08.044_b6
  article-title: Model algorithmic control using impulse response model
  publication-title: J. A
– ident: 10.1016/j.asoc.2018.08.044_b28
  doi: 10.1109/CDC.2010.5717046
– volume: 73
  start-page: 1031
  issue: 4–6
  year: 2010
  ident: 10.1016/j.asoc.2018.08.044_b46
  article-title: Model predictive flight control using adaptive support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.10.002
– ident: 10.1016/j.asoc.2018.08.044_b14
  doi: 10.1109/ISIC.1996.556214
– start-page: 133
  year: 2005
  ident: 10.1016/j.asoc.2018.08.044_b51
  article-title: Active-set methods for support vector machines
– volume: 299
  start-page: 143
  year: 2015
  ident: 10.1016/j.asoc.2018.08.044_b25
  article-title: An ant colony optimization-based fuzzy predictive control approach for nonlinear processes
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.11.050
– volume: 9
  start-page: 3741
  issue: 9
  year: 2013
  ident: 10.1016/j.asoc.2018.08.044_b24
  article-title: A new approach for fuzzy predictive adaptive controller design using particle swarm optimization algorithm
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 25
  start-page: 859
  issue: 6
  year: 1989
  ident: 10.1016/j.asoc.2018.08.044_b2
  article-title: Properties of generalized predictive control
  publication-title: Automatica
  doi: 10.1016/0005-1098(89)90053-8
– start-page: 32
  issue: 3
  year: 1973
  ident: 10.1016/j.asoc.2018.08.044_b49
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– ident: 10.1016/j.asoc.2018.08.044_b20
  doi: 10.1109/ISIC.1999.796689
– year: 1999
  ident: 10.1016/j.asoc.2018.08.044_b30
– year: 1981
  ident: 10.1016/j.asoc.2018.08.044_b56
– volume: 12
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2018.08.044_b39
  article-title: Support vector learning mechanism for fuzzy rule-based modeling: a new approach
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2003.817839
– volume: 54
  start-page: 338
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2018.08.044_b58
  article-title: Development of a novel adaptive soft-sensor using variational Bayesian PLS with accounting for online identification of key variables
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503807e
– volume: 15
  start-page: 133
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2018.08.044_b23
  article-title: Adaptive stable generalized predictive control using TSK fuzzy model for nonlinear discrete-time systems with time-delays
  publication-title: Int. J. Fuzzy Syst.
– volume: 209
  start-page: 415
  year: 1909
  ident: 10.1016/j.asoc.2018.08.044_b50
  article-title: Functions of positive and negative type, and their connection with the theory of integral equations
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Containing Pap. Math. Phys. Character
  doi: 10.1098/rsta.1909.0016
– volume: 20
  start-page: 372
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2018.08.044_b48
  article-title: A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2174997
– volume: 40
  start-page: 54
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2018.08.044_b63
  article-title: Study on the closed-loop properties of GPC
  publication-title: Sci. China (Ser. E)
  doi: 10.1007/BF02916590
– ident: 10.1016/j.asoc.2018.08.044_b26
– ident: 10.1016/j.asoc.2018.08.044_b40
  doi: 10.1109/ICSMC.2005.1571568
– volume: 89
  start-page: 2787
  issue: 10
  year: 2006
  ident: 10.1016/j.asoc.2018.08.044_b34
  article-title: Support vector machines based generalized predictive control of chaotic systems
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
  doi: 10.1093/ietfec/e89-a.10.2787
– volume: 18
  start-page: 439
  issue: 5
  year: 2008
  ident: 10.1016/j.asoc.2018.08.044_b38
  article-title: Support vector machine based predictive functional control design for output temperature of coking furnace
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2007.10.008
– volume: 56
  start-page: 319
  year: 1992
  ident: 10.1016/j.asoc.2018.08.044_b13
  article-title: Neural networks for nonlinear dynamic system modelling and identification
  publication-title: Int. J. Control
  doi: 10.1080/00207179208934317
– year: 2017
  ident: 10.1016/j.asoc.2018.08.044_b42
  article-title: A new T-S fuzzy model predictive control for nonlinear processes
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.06.039
– year: 1988
  ident: 10.1016/j.asoc.2018.08.044_b1
– volume: 38
  start-page: 327
  issue: 2
  year: 1993
  ident: 10.1016/j.asoc.2018.08.044_b3
  article-title: Constrained generalized predictive control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.250485
– volume: 55
  start-page: 1366
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2018.08.044_b60
  article-title: Adaptive predictive control with recurrent neural network for industrial processes: An application to temperature control of a variable-frequency oil-cooling machine
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2007.896492
SSID ssj0016928
Score 2.3529117
Snippet In this paper, an adaptive fuzzy Generalized Predictive Control (GPC) is proposed for discrete-time nonlinear systems via Takagi–Sugeno system based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 572
SubjectTerms Fixed-budget kernel recursive least-squares
Fuzzy c-means clustering
Generalized predictive control
Least square support vector regression
Takagi–Sugeno fuzzy system
Title An adaptive fuzzy predictive control of nonlinear processes based on Multi-Kernel least squares support vector regression
URI https://dx.doi.org/10.1016/j.asoc.2018.08.044
Volume 73
WOSCitedRecordID wos000450124900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4HL-BYbA_nALUrVxm7jHKtpaAMxITGk3iLHcaCjSrsmqbb9Jftzec923DBgYgcuUWUlTpr3y3u_Z78PQt4VgjEVD0WY5QqLaisViizWIecJ2HclkmKsTLOJ-PRUzGbJ517vps2F2SzishSXl8nqv4oaxkDYmDp7D3H7SWEAfoPQ4Qhih-M_CX5aBjKXK1vPu7m-vsI6APnc6DUfmY7hG7ZIBpa6tskCugrQpuW4f2DycsOPel3qBXaWqOqgumgwVymomhVy9mBj1vuDtf5mQ2nLLs9tyW0FWt6ErTd1ayOlbWb9Q87dRsjJwI9r8LMzG18w6Jy8bJx2_OJHD7_L3GZ2fxp0Vy5GohMF4pTtRIQ8cUuQThvHrKNOx7atj7PMY9tY9Delb9cfzgcS8IzBesIUZbVlJX-tsH3L8vl4xDbU7TzFOVKcI8XunJw_IDsRuFSiT3amJ0ezD36HapKYvr3-P7iELBs7ePtJ_kx6OkTm7AnZdR4InVrkPCU9XT4jj9vuHtQp--fkalrSFkjUAIlugUQdkOiyoB5I1AOJGiDRZUm7QKIGSNQBiTogUQskugXSC_L1_dHZ4XHoGnWEig2HdQj2XgCP1eg9YKa2HAFNj3Nk08VEZJyBz8oVeCIRZzKRsRhGhWJSiwj8cw6E_iXpw7PqV4QW8K7lRIJqSRjY8Az4J1M5V1FWRFHOR3tk1L7JVLkq9thMZZH-XYZ7JPDXrGwNlzvPHrcCSh0LtewyBbzdcd3-ve7ymjzafhIHpF-vG_2GPFSbel6t3zqw_QSYjKzY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+fuzzy+predictive+control+of+nonlinear+processes+based+on+Multi-Kernel+least+squares+support+vector+regression&rft.jtitle=Applied+soft+computing&rft.au=Boulkaibet%2C+I.&rft.au=Belarbi%2C+K.&rft.au=Bououden%2C+S.&rft.au=Chadli%2C+M.&rft.date=2018-12-01&rft.issn=1568-4946&rft.volume=73&rft.spage=572&rft.epage=590&rft_id=info:doi/10.1016%2Fj.asoc.2018.08.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_08_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon