DC-net: Dual-Consistency semi-supervised learning for 3D left atrium segmentation from MRI
Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that training network needs a large amount of labeled data, which is expensive and time-consuming. Using limited labeled data for accurate segment...
Saved in:
| Published in: | Biomedical signal processing and control Vol. 78; p. 103870 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2022
|
| Subjects: | |
| ISSN: | 1746-8094, 1746-8108 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that training network needs a large amount of labeled data, which is expensive and time-consuming. Using limited labeled data for accurate segmentation is our key concern. Methods: In this work, we propose a novel dual-consistency semi-supervised learning method for left atrium segmentation from 3D MR images. Our framework can effectively leverage limited labeled data and abundant unlabeled data by enforcing consistent predictions under model-level and structure-level perturbations. As for model-level perturbations, we employ a shared encoder and two slightly different decoders. Different decoders can output different predictions. As for structure-level spatial contextual perturbations, two sub-volumes with an overlapping region are randomly cropped, taking as inputs under different spatial contexts. Therefore, the proposed method can maintain the invariance of segmentation results when perturbed by different spatial contexts, and be robust to slight perturbations of networks. Results: Our method are evaluated on the public Atrial Segmentation Challenge dataset. The evaluation metrics of Dice, Jaccard, ASD and 95HD are 90.05%, 82.01%, 1.74 voxel and 7.03 voxel when we use 20% labeled data and 80% unlabeled data. The results show that the proposed method outperforms other exiting semi-supervised methods. Conclusion and Significance: The proposed semi-supervised method can achieve accurate segmentation of left atrium by utilizing limited labeled data and abundant unlabeled data, offering an effective way for doctors to diagnose and treat atrial fibrillation.
•We propose a novel dual-consistency semi-supervised learning method for 3D left atrium segmentation, which adds model-level and structure-level perturbations to encourage segmentation consistency.•We develop a method of structure-level spatial contextual perturbations for 3D medical images, which can maintain invariance of segmentation results by twice random crops.•We conduct experiments on the dataset of 2018 Left Atrial Segmentation Challenge, and the experimental results indicate that our method outperforms state-of-the-art semi-supervised methods, demonstrating the effectiveness of our approach. |
|---|---|
| AbstractList | Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that training network needs a large amount of labeled data, which is expensive and time-consuming. Using limited labeled data for accurate segmentation is our key concern. Methods: In this work, we propose a novel dual-consistency semi-supervised learning method for left atrium segmentation from 3D MR images. Our framework can effectively leverage limited labeled data and abundant unlabeled data by enforcing consistent predictions under model-level and structure-level perturbations. As for model-level perturbations, we employ a shared encoder and two slightly different decoders. Different decoders can output different predictions. As for structure-level spatial contextual perturbations, two sub-volumes with an overlapping region are randomly cropped, taking as inputs under different spatial contexts. Therefore, the proposed method can maintain the invariance of segmentation results when perturbed by different spatial contexts, and be robust to slight perturbations of networks. Results: Our method are evaluated on the public Atrial Segmentation Challenge dataset. The evaluation metrics of Dice, Jaccard, ASD and 95HD are 90.05%, 82.01%, 1.74 voxel and 7.03 voxel when we use 20% labeled data and 80% unlabeled data. The results show that the proposed method outperforms other exiting semi-supervised methods. Conclusion and Significance: The proposed semi-supervised method can achieve accurate segmentation of left atrium by utilizing limited labeled data and abundant unlabeled data, offering an effective way for doctors to diagnose and treat atrial fibrillation.
•We propose a novel dual-consistency semi-supervised learning method for 3D left atrium segmentation, which adds model-level and structure-level perturbations to encourage segmentation consistency.•We develop a method of structure-level spatial contextual perturbations for 3D medical images, which can maintain invariance of segmentation results by twice random crops.•We conduct experiments on the dataset of 2018 Left Atrial Segmentation Challenge, and the experimental results indicate that our method outperforms state-of-the-art semi-supervised methods, demonstrating the effectiveness of our approach. |
| ArticleNumber | 103870 |
| Author | Ding, Pengxiang Yin, Jianqin Wang, Junying Liu, Xiaoli |
| Author_xml | – sequence: 1 givenname: Junying surname: Wang fullname: Wang, Junying – sequence: 2 givenname: Xiaoli surname: Liu fullname: Liu, Xiaoli – sequence: 3 givenname: Jianqin surname: Yin fullname: Yin, Jianqin email: jqyin@bupt.edu.cn – sequence: 4 givenname: Pengxiang orcidid: 0000-0002-4049-7467 surname: Ding fullname: Ding, Pengxiang |
| BookMark | eNp9kM1KAzEQgINUsK2-gKe8wNb8tZsVL7L1p1ARRC9eQjY7KSm72ZKkhb69W1YvHnrKZGa-YeaboJHvPCB0S8mMErq4286quDMzRhjrE1zm5AKNaS4WmaREjv5iUogrNIlxS4iQORVj9L0sMw_pHi_3usnKzkcXE3hzxBFal8X9DsLBRahxAzp45zfYdgHzZf-3CesU3L7tezct-KST6zy2oWvx28fqGl1a3US4-X2n6Ov56bN8zdbvL6vycZ0ZTkjKoCIVWMEMVPMKCp1zSyQxIIucFnPelwomjCx0pbVhlpBaC8pqVsBC85oLPkVymGtCF2MAq4wbVklBu0ZRok6O1FadHKmTIzU46lH2D90F1-pwPA89DBD0Rx0cBBWN65VB7QKYpOrOncN_ALhcg2I |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108374 crossref_primary_10_1109_LSP_2023_3315144 crossref_primary_10_1007_s13369_024_09131_1 crossref_primary_10_1016_j_bspc_2023_105571 crossref_primary_10_1016_j_bspc_2023_105434 crossref_primary_10_1016_j_bspc_2025_107568 crossref_primary_10_1016_j_bspc_2023_105694 crossref_primary_10_1016_j_bspc_2023_105794 crossref_primary_10_1002_nbm_5143 crossref_primary_10_1016_j_eswa_2023_122903 crossref_primary_10_1016_j_bspc_2023_105636 crossref_primary_10_1016_j_compbiomed_2023_107368 crossref_primary_10_1016_j_neucom_2024_129326 crossref_primary_10_1016_j_bspc_2023_105902 crossref_primary_10_1109_TBME_2024_3380058 |
| Cites_doi | 10.1016/j.media.2020.101766 10.1109/TPAMI.2016.2644615 10.1109/3DV.2016.79 10.1016/j.media.2020.101832 10.1177/1747493019897870 10.1109/TMI.2018.2837502 10.1609/aaai.v35i10.17066 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2022.103870 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2022_103870 S1746809422003858 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-eb0bef42ceb5be9a73f080ce8971953ef4924c89abaac2f00da412d29e6a3d343 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000826932200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 21:57:30 EST 2025 Sat Nov 29 07:05:38 EST 2025 Fri Feb 23 02:38:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Left atrial segmentation Consistency learning Semi-supervised algorithm Different perturbations |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-eb0bef42ceb5be9a73f080ce8971953ef4924c89abaac2f00da412d29e6a3d343 |
| ORCID | 0000-0002-4049-7467 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2022_103870 crossref_primary_10_1016_j_bspc_2022_103870 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103870 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wu, Ge, Cai (b8) 2021 Long, Shelhamer, Darrell (b14) 2015 Çiçek, Abdulkadir, Lienkamp (b17) 2016 Zhang, Lin, Chen (b19) 2017 Lippi, Sanchis-Gomar, Cervellin (b1) 2021; 16 Li, Zhang, He (b3) 2020 Prashant, Pai, Bhatt (b10) 2021 Yu, Wang, Li (b4) 2019 Xiong, Xia, Hu (b22) 2021; 67 Bernard, Lalande, Zotti (b2) 2018; 37 Tarvainen, Valpola (b21) 2017 Fang, Li (b24) 2020 Badrinarayanan, Kendall, Cipolla (b15) 2017; 39 McGann, Akoum, Patel (b23) 2014; 7 X. Luo, J. Chen, T. Song, et al., Semi-supervised medical image segmentation through dual-task consistency, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021, pp. 8801–8809. Lai, Tian, Jiang (b11) 2021 F. Milletari, et al., V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571. Hang, Feng, Liang (b6) 2020 Xia, Yang, Yu (b9) 2020; 65 Chen, Yuan, Zeng (b12) 2021 Shotton, Johnson, Cipolla (b13) 2008 Ronneberger, Fischer, Broxet (b16) 2015 Li, Chen, Xie (b20) 2020 Berthelot, Carlini, Goodfellow (b25) 2019 Wang, Zhang, Tian (b5) 2020 Lai (10.1016/j.bspc.2022.103870_b11) 2021 Wang (10.1016/j.bspc.2022.103870_b5) 2020 Xia (10.1016/j.bspc.2022.103870_b9) 2020; 65 McGann (10.1016/j.bspc.2022.103870_b23) 2014; 7 Ronneberger (10.1016/j.bspc.2022.103870_b16) 2015 Wu (10.1016/j.bspc.2022.103870_b8) 2021 Yu (10.1016/j.bspc.2022.103870_b4) 2019 Badrinarayanan (10.1016/j.bspc.2022.103870_b15) 2017; 39 Li (10.1016/j.bspc.2022.103870_b20) 2020 Shotton (10.1016/j.bspc.2022.103870_b13) 2008 Tarvainen (10.1016/j.bspc.2022.103870_b21) 2017 Çiçek (10.1016/j.bspc.2022.103870_b17) 2016 Zhang (10.1016/j.bspc.2022.103870_b19) 2017 Long (10.1016/j.bspc.2022.103870_b14) 2015 Prashant (10.1016/j.bspc.2022.103870_b10) 2021 Li (10.1016/j.bspc.2022.103870_b3) 2020 Hang (10.1016/j.bspc.2022.103870_b6) 2020 Chen (10.1016/j.bspc.2022.103870_b12) 2021 Fang (10.1016/j.bspc.2022.103870_b24) 2020 Bernard (10.1016/j.bspc.2022.103870_b2) 2018; 37 Xiong (10.1016/j.bspc.2022.103870_b22) 2021; 67 10.1016/j.bspc.2022.103870_b7 10.1016/j.bspc.2022.103870_b18 Lippi (10.1016/j.bspc.2022.103870_b1) 2021; 16 Berthelot (10.1016/j.bspc.2022.103870_b25) 2019 |
| References_xml | – start-page: 3431 year: 2015 end-page: 3440 ident: b14 article-title: Fully convolutional networks for semantic segmentation publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition, Vol. 39 – volume: 65 year: 2020 ident: b9 article-title: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation publication-title: Med. Image Anal. – start-page: 408 year: 2017 end-page: 416 ident: b19 article-title: Deep adversarial networks for biomedical image segmentation utilizing unannotated images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 297 year: 2021 end-page: 306 ident: b8 article-title: Semi-supervised left Atrium segmentation with mutual consistency training publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 7 start-page: 23 year: 2014 end-page: 30 ident: b23 article-title: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI publication-title: Circulation – start-page: 532 year: 2020 end-page: 541 ident: b24 article-title: DMNet: Difference minimization network for semi-supervised segmentation in medical images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 614 year: 2020 end-page: 623 ident: b20 article-title: Self-loop uncertainty: A novel pseudo-label for semi-supervised medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 424 year: 2016 end-page: 432 ident: b17 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: X. Luo, J. Chen, T. Song, et al., Semi-supervised medical image segmentation through dual-task consistency, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021, pp. 8801–8809. – start-page: 5050 year: 2019 end-page: 5060 ident: b25 article-title: MixMatch: A holistic approach to semi-supervised learning publication-title: NeurIPS – year: 2021 ident: b10 article-title: Contrastive semi-supervised learning for 2D medical image segmentation – start-page: 1 year: 2008 end-page: 8 ident: b13 article-title: Semantic texton forests for image categorization and segmentation publication-title: 2008 IEEE Conference on Computer Vision and Pattern Recognition, Vol. 5 – start-page: 562 year: 2020 end-page: 571 ident: b6 article-title: Local and global structure-aware entropy regularized mean teacher model for 3d left atrium segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 2613 year: 2021 end-page: 2622 ident: b12 article-title: Semi-supervised semantic segmentation with cross pseudo supervision publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 37 start-page: 2514 year: 2018 end-page: 2525 ident: b2 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? publication-title: IEEE Trans. Med. Imaging – start-page: 234 year: 2015 end-page: 241 ident: b16 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 552 year: 2020 end-page: 561 ident: b3 article-title: Shape-aware semi-supervised 3d semantic segmentation for medical images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b15 article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 542 year: 2020 end-page: 551 ident: b5 article-title: Double-uncertainty weighted method for semi-supervised learning publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1195 year: 2017 end-page: 1204 ident: b21 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: NIPS – start-page: 605 year: 2019 end-page: 613 ident: b4 article-title: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: F. Milletari, et al., V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571. – volume: 67 year: 2021 ident: b22 article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging publication-title: Med. Image Anal. – start-page: 1205 year: 2021 end-page: 1214 ident: b11 article-title: Semi-supervised semantic segmentation with directional context-aware consistency publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 16 start-page: 217 year: 2021 end-page: 221 ident: b1 article-title: Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge publication-title: Int. J. Stroke – start-page: 2613 year: 2021 ident: 10.1016/j.bspc.2022.103870_b12 article-title: Semi-supervised semantic segmentation with cross pseudo supervision – volume: 65 year: 2020 ident: 10.1016/j.bspc.2022.103870_b9 article-title: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101766 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.bspc.2022.103870_b15 article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – start-page: 532 year: 2020 ident: 10.1016/j.bspc.2022.103870_b24 article-title: DMNet: Difference minimization network for semi-supervised segmentation in medical images – start-page: 297 year: 2021 ident: 10.1016/j.bspc.2022.103870_b8 article-title: Semi-supervised left Atrium segmentation with mutual consistency training – start-page: 552 year: 2020 ident: 10.1016/j.bspc.2022.103870_b3 article-title: Shape-aware semi-supervised 3d semantic segmentation for medical images – ident: 10.1016/j.bspc.2022.103870_b18 doi: 10.1109/3DV.2016.79 – volume: 67 year: 2021 ident: 10.1016/j.bspc.2022.103870_b22 article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101832 – start-page: 1 year: 2008 ident: 10.1016/j.bspc.2022.103870_b13 article-title: Semantic texton forests for image categorization and segmentation – start-page: 605 year: 2019 ident: 10.1016/j.bspc.2022.103870_b4 article-title: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation – start-page: 1195 year: 2017 ident: 10.1016/j.bspc.2022.103870_b21 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – start-page: 3431 year: 2015 ident: 10.1016/j.bspc.2022.103870_b14 article-title: Fully convolutional networks for semantic segmentation – start-page: 408 year: 2017 ident: 10.1016/j.bspc.2022.103870_b19 article-title: Deep adversarial networks for biomedical image segmentation utilizing unannotated images – start-page: 424 year: 2016 ident: 10.1016/j.bspc.2022.103870_b17 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – year: 2021 ident: 10.1016/j.bspc.2022.103870_b10 – volume: 16 start-page: 217 issue: 2 year: 2021 ident: 10.1016/j.bspc.2022.103870_b1 article-title: Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge publication-title: Int. J. Stroke doi: 10.1177/1747493019897870 – start-page: 1205 year: 2021 ident: 10.1016/j.bspc.2022.103870_b11 article-title: Semi-supervised semantic segmentation with directional context-aware consistency – start-page: 5050 year: 2019 ident: 10.1016/j.bspc.2022.103870_b25 article-title: MixMatch: A holistic approach to semi-supervised learning – volume: 7 start-page: 23 issue: 1 year: 2014 ident: 10.1016/j.bspc.2022.103870_b23 article-title: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI publication-title: Circulation – volume: 37 start-page: 2514 issue: 11 year: 2018 ident: 10.1016/j.bspc.2022.103870_b2 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 – ident: 10.1016/j.bspc.2022.103870_b7 doi: 10.1609/aaai.v35i10.17066 – start-page: 614 year: 2020 ident: 10.1016/j.bspc.2022.103870_b20 article-title: Self-loop uncertainty: A novel pseudo-label for semi-supervised medical image segmentation – start-page: 542 year: 2020 ident: 10.1016/j.bspc.2022.103870_b5 article-title: Double-uncertainty weighted method for semi-supervised learning – start-page: 562 year: 2020 ident: 10.1016/j.bspc.2022.103870_b6 article-title: Local and global structure-aware entropy regularized mean teacher model for 3d left atrium segmentation – start-page: 234 year: 2015 ident: 10.1016/j.bspc.2022.103870_b16 article-title: U-net: Convolutional networks for biomedical image segmentation |
| SSID | ssj0048714 |
| Score | 2.3651052 |
| Snippet | Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103870 |
| SubjectTerms | Consistency learning Different perturbations Left atrial segmentation Semi-supervised algorithm |
| Title | DC-net: Dual-Consistency semi-supervised learning for 3D left atrium segmentation from MRI |
| URI | https://dx.doi.org/10.1016/j.bspc.2022.103870 |
| Volume | 78 |
| WOSCitedRecordID | wos000826932200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65Tg_toUpfSvqI9tBbRQQsBLa3KKRKqjaKqlSyekHLMlhEmFBjIvcP9Hd3lt3FjptGzaEXZC_LGjGfZ2eG-WYIeSc9mYVhLp0o4LETcOBOxsLAkSxyJeTKB-jrzH6Ozs7iyYSfj0a_LBfmuorqOl4uefNfRY1jKGxFnb2HuIdFcQA_o9DxiGLH4z8JPjlyaugDfkknKqfvyNkueoZlC7PSabtG6YcWLc3KxkVUriFL8HvPbpyX3QznTmeGl1RrEsqXr6c3XgH3xH3NqiynyqhtNOnA0h5NFvwqZG-Sf7v6p90vVSZQ2anRSSmuqnLQQaZHGGL3RznANzH9V86hni7x1HQ9ZIHers3Jslo2ClQVZN3d2Kph3cnH6FFVtl03FPlDxetow-V-1jaqBKXv768m36ynvbHPDdmHNrHtMlVrpGqNVK_xgGz5UcjjMdk6PD2efLJ7Onp1fZX44cYN_UpnCm7eye0mzprZcrFNnhh_gx5qnDwlI6ifkcdrVSifk-8aMR_oJl7oBl6oxQtFvFCWUIUXqvFC1_FCFV4o4uUF-fbx-OLoxDEtN_DP6boLBzI3gyLwJWRhBlxErECXQkLMI_W-FU-hvy5jLjIhpF-4bi4Cz899DgeC5SxgL8m4vqphh9AgLCB3Y_CAsYCznPuFJ0UEOFmCdyB2iWefUipNPXrVFqVK_y6fXfJ-uKbR1VjunB3ah58ae1LbiSli6Y7rXt3rV16TRyuMvyHjxbyDt-ShvF6U7XzPAOk3Gj2X1A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC-net%3A+Dual-Consistency+semi-supervised+learning+for+3D+left+atrium+segmentation+from+MRI&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Junying&rft.au=Liu%2C+Xiaoli&rft.au=Yin%2C+Jianqin&rft.au=Ding%2C+Pengxiang&rft.date=2022-09-01&rft.issn=1746-8094&rft.volume=78&rft.spage=103870&rft_id=info:doi/10.1016%2Fj.bspc.2022.103870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103870 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |