DC-net: Dual-Consistency semi-supervised learning for 3D left atrium segmentation from MRI

Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that training network needs a large amount of labeled data, which is expensive and time-consuming. Using limited labeled data for accurate segment...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 78; s. 103870
Hlavní autoři: Wang, Junying, Liu, Xiaoli, Yin, Jianqin, Ding, Pengxiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2022
Témata:
ISSN:1746-8094, 1746-8108
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that training network needs a large amount of labeled data, which is expensive and time-consuming. Using limited labeled data for accurate segmentation is our key concern. Methods: In this work, we propose a novel dual-consistency semi-supervised learning method for left atrium segmentation from 3D MR images. Our framework can effectively leverage limited labeled data and abundant unlabeled data by enforcing consistent predictions under model-level and structure-level perturbations. As for model-level perturbations, we employ a shared encoder and two slightly different decoders. Different decoders can output different predictions. As for structure-level spatial contextual perturbations, two sub-volumes with an overlapping region are randomly cropped, taking as inputs under different spatial contexts. Therefore, the proposed method can maintain the invariance of segmentation results when perturbed by different spatial contexts, and be robust to slight perturbations of networks. Results: Our method are evaluated on the public Atrial Segmentation Challenge dataset. The evaluation metrics of Dice, Jaccard, ASD and 95HD are 90.05%, 82.01%, 1.74 voxel and 7.03 voxel when we use 20% labeled data and 80% unlabeled data. The results show that the proposed method outperforms other exiting semi-supervised methods. Conclusion and Significance: The proposed semi-supervised method can achieve accurate segmentation of left atrium by utilizing limited labeled data and abundant unlabeled data, offering an effective way for doctors to diagnose and treat atrial fibrillation. •We propose a novel dual-consistency semi-supervised learning method for 3D left atrium segmentation, which adds model-level and structure-level perturbations to encourage segmentation consistency.•We develop a method of structure-level spatial contextual perturbations for 3D medical images, which can maintain invariance of segmentation results by twice random crops.•We conduct experiments on the dataset of 2018 Left Atrial Segmentation Challenge, and the experimental results indicate that our method outperforms state-of-the-art semi-supervised methods, demonstrating the effectiveness of our approach.
AbstractList Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that training network needs a large amount of labeled data, which is expensive and time-consuming. Using limited labeled data for accurate segmentation is our key concern. Methods: In this work, we propose a novel dual-consistency semi-supervised learning method for left atrium segmentation from 3D MR images. Our framework can effectively leverage limited labeled data and abundant unlabeled data by enforcing consistent predictions under model-level and structure-level perturbations. As for model-level perturbations, we employ a shared encoder and two slightly different decoders. Different decoders can output different predictions. As for structure-level spatial contextual perturbations, two sub-volumes with an overlapping region are randomly cropped, taking as inputs under different spatial contexts. Therefore, the proposed method can maintain the invariance of segmentation results when perturbed by different spatial contexts, and be robust to slight perturbations of networks. Results: Our method are evaluated on the public Atrial Segmentation Challenge dataset. The evaluation metrics of Dice, Jaccard, ASD and 95HD are 90.05%, 82.01%, 1.74 voxel and 7.03 voxel when we use 20% labeled data and 80% unlabeled data. The results show that the proposed method outperforms other exiting semi-supervised methods. Conclusion and Significance: The proposed semi-supervised method can achieve accurate segmentation of left atrium by utilizing limited labeled data and abundant unlabeled data, offering an effective way for doctors to diagnose and treat atrial fibrillation. •We propose a novel dual-consistency semi-supervised learning method for 3D left atrium segmentation, which adds model-level and structure-level perturbations to encourage segmentation consistency.•We develop a method of structure-level spatial contextual perturbations for 3D medical images, which can maintain invariance of segmentation results by twice random crops.•We conduct experiments on the dataset of 2018 Left Atrial Segmentation Challenge, and the experimental results indicate that our method outperforms state-of-the-art semi-supervised methods, demonstrating the effectiveness of our approach.
ArticleNumber 103870
Author Ding, Pengxiang
Yin, Jianqin
Wang, Junying
Liu, Xiaoli
Author_xml – sequence: 1
  givenname: Junying
  surname: Wang
  fullname: Wang, Junying
– sequence: 2
  givenname: Xiaoli
  surname: Liu
  fullname: Liu, Xiaoli
– sequence: 3
  givenname: Jianqin
  surname: Yin
  fullname: Yin, Jianqin
  email: jqyin@bupt.edu.cn
– sequence: 4
  givenname: Pengxiang
  orcidid: 0000-0002-4049-7467
  surname: Ding
  fullname: Ding, Pengxiang
BookMark eNp9kM1KAzEQgINUsK2-gKe8wNb8tZsVL7L1p1ARRC9eQjY7KSm72ZKkhb69W1YvHnrKZGa-YeaboJHvPCB0S8mMErq4286quDMzRhjrE1zm5AKNaS4WmaREjv5iUogrNIlxS4iQORVj9L0sMw_pHi_3usnKzkcXE3hzxBFal8X9DsLBRahxAzp45zfYdgHzZf-3CesU3L7tezct-KST6zy2oWvx28fqGl1a3US4-X2n6Ov56bN8zdbvL6vycZ0ZTkjKoCIVWMEMVPMKCp1zSyQxIIucFnPelwomjCx0pbVhlpBaC8pqVsBC85oLPkVymGtCF2MAq4wbVklBu0ZRok6O1FadHKmTIzU46lH2D90F1-pwPA89DBD0Rx0cBBWN65VB7QKYpOrOncN_ALhcg2I
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108374
crossref_primary_10_1109_LSP_2023_3315144
crossref_primary_10_1007_s13369_024_09131_1
crossref_primary_10_1016_j_bspc_2023_105571
crossref_primary_10_1016_j_bspc_2023_105434
crossref_primary_10_1016_j_bspc_2025_107568
crossref_primary_10_1016_j_bspc_2023_105694
crossref_primary_10_1016_j_bspc_2023_105794
crossref_primary_10_1002_nbm_5143
crossref_primary_10_1016_j_eswa_2023_122903
crossref_primary_10_1016_j_bspc_2023_105636
crossref_primary_10_1016_j_compbiomed_2023_107368
crossref_primary_10_1016_j_neucom_2024_129326
crossref_primary_10_1016_j_bspc_2023_105902
crossref_primary_10_1109_TBME_2024_3380058
Cites_doi 10.1016/j.media.2020.101766
10.1109/TPAMI.2016.2644615
10.1109/3DV.2016.79
10.1016/j.media.2020.101832
10.1177/1747493019897870
10.1109/TMI.2018.2837502
10.1609/aaai.v35i10.17066
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103870
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103870
S1746809422003858
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-eb0bef42ceb5be9a73f080ce8971953ef4924c89abaac2f00da412d29e6a3d343
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000826932200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 21:57:30 EST 2025
Sat Nov 29 07:05:38 EST 2025
Fri Feb 23 02:38:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Left atrial segmentation
Consistency learning
Semi-supervised algorithm
Different perturbations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-eb0bef42ceb5be9a73f080ce8971953ef4924c89abaac2f00da412d29e6a3d343
ORCID 0000-0002-4049-7467
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2022_103870
crossref_primary_10_1016_j_bspc_2022_103870
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103870
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Ge, Cai (b8) 2021
Long, Shelhamer, Darrell (b14) 2015
Çiçek, Abdulkadir, Lienkamp (b17) 2016
Zhang, Lin, Chen (b19) 2017
Lippi, Sanchis-Gomar, Cervellin (b1) 2021; 16
Li, Zhang, He (b3) 2020
Prashant, Pai, Bhatt (b10) 2021
Yu, Wang, Li (b4) 2019
Xiong, Xia, Hu (b22) 2021; 67
Bernard, Lalande, Zotti (b2) 2018; 37
Tarvainen, Valpola (b21) 2017
Fang, Li (b24) 2020
Badrinarayanan, Kendall, Cipolla (b15) 2017; 39
McGann, Akoum, Patel (b23) 2014; 7
X. Luo, J. Chen, T. Song, et al., Semi-supervised medical image segmentation through dual-task consistency, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021, pp. 8801–8809.
Lai, Tian, Jiang (b11) 2021
F. Milletari, et al., V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571.
Hang, Feng, Liang (b6) 2020
Xia, Yang, Yu (b9) 2020; 65
Chen, Yuan, Zeng (b12) 2021
Shotton, Johnson, Cipolla (b13) 2008
Ronneberger, Fischer, Broxet (b16) 2015
Li, Chen, Xie (b20) 2020
Berthelot, Carlini, Goodfellow (b25) 2019
Wang, Zhang, Tian (b5) 2020
Lai (10.1016/j.bspc.2022.103870_b11) 2021
Wang (10.1016/j.bspc.2022.103870_b5) 2020
Xia (10.1016/j.bspc.2022.103870_b9) 2020; 65
McGann (10.1016/j.bspc.2022.103870_b23) 2014; 7
Ronneberger (10.1016/j.bspc.2022.103870_b16) 2015
Wu (10.1016/j.bspc.2022.103870_b8) 2021
Yu (10.1016/j.bspc.2022.103870_b4) 2019
Badrinarayanan (10.1016/j.bspc.2022.103870_b15) 2017; 39
Li (10.1016/j.bspc.2022.103870_b20) 2020
Shotton (10.1016/j.bspc.2022.103870_b13) 2008
Tarvainen (10.1016/j.bspc.2022.103870_b21) 2017
Çiçek (10.1016/j.bspc.2022.103870_b17) 2016
Zhang (10.1016/j.bspc.2022.103870_b19) 2017
Long (10.1016/j.bspc.2022.103870_b14) 2015
Prashant (10.1016/j.bspc.2022.103870_b10) 2021
Li (10.1016/j.bspc.2022.103870_b3) 2020
Hang (10.1016/j.bspc.2022.103870_b6) 2020
Chen (10.1016/j.bspc.2022.103870_b12) 2021
Fang (10.1016/j.bspc.2022.103870_b24) 2020
Bernard (10.1016/j.bspc.2022.103870_b2) 2018; 37
Xiong (10.1016/j.bspc.2022.103870_b22) 2021; 67
10.1016/j.bspc.2022.103870_b7
10.1016/j.bspc.2022.103870_b18
Lippi (10.1016/j.bspc.2022.103870_b1) 2021; 16
Berthelot (10.1016/j.bspc.2022.103870_b25) 2019
References_xml – start-page: 3431
  year: 2015
  end-page: 3440
  ident: b14
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition, Vol. 39
– volume: 65
  year: 2020
  ident: b9
  article-title: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation
  publication-title: Med. Image Anal.
– start-page: 408
  year: 2017
  end-page: 416
  ident: b19
  article-title: Deep adversarial networks for biomedical image segmentation utilizing unannotated images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 297
  year: 2021
  end-page: 306
  ident: b8
  article-title: Semi-supervised left Atrium segmentation with mutual consistency training
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 7
  start-page: 23
  year: 2014
  end-page: 30
  ident: b23
  article-title: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI
  publication-title: Circulation
– start-page: 532
  year: 2020
  end-page: 541
  ident: b24
  article-title: DMNet: Difference minimization network for semi-supervised segmentation in medical images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 614
  year: 2020
  end-page: 623
  ident: b20
  article-title: Self-loop uncertainty: A novel pseudo-label for semi-supervised medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 424
  year: 2016
  end-page: 432
  ident: b17
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: X. Luo, J. Chen, T. Song, et al., Semi-supervised medical image segmentation through dual-task consistency, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021, pp. 8801–8809.
– start-page: 5050
  year: 2019
  end-page: 5060
  ident: b25
  article-title: MixMatch: A holistic approach to semi-supervised learning
  publication-title: NeurIPS
– year: 2021
  ident: b10
  article-title: Contrastive semi-supervised learning for 2D medical image segmentation
– start-page: 1
  year: 2008
  end-page: 8
  ident: b13
  article-title: Semantic texton forests for image categorization and segmentation
  publication-title: 2008 IEEE Conference on Computer Vision and Pattern Recognition, Vol. 5
– start-page: 562
  year: 2020
  end-page: 571
  ident: b6
  article-title: Local and global structure-aware entropy regularized mean teacher model for 3d left atrium segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 2613
  year: 2021
  end-page: 2622
  ident: b12
  article-title: Semi-supervised semantic segmentation with cross pseudo supervision
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 37
  start-page: 2514
  year: 2018
  end-page: 2525
  ident: b2
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
– start-page: 234
  year: 2015
  end-page: 241
  ident: b16
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 552
  year: 2020
  end-page: 561
  ident: b3
  article-title: Shape-aware semi-supervised 3d semantic segmentation for medical images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b15
  article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 542
  year: 2020
  end-page: 551
  ident: b5
  article-title: Double-uncertainty weighted method for semi-supervised learning
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1195
  year: 2017
  end-page: 1204
  ident: b21
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: NIPS
– start-page: 605
  year: 2019
  end-page: 613
  ident: b4
  article-title: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: F. Milletari, et al., V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: 2016 Fourth International Conference on 3D Vision, 3DV, 2016, pp. 565–571.
– volume: 67
  year: 2021
  ident: b22
  article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging
  publication-title: Med. Image Anal.
– start-page: 1205
  year: 2021
  end-page: 1214
  ident: b11
  article-title: Semi-supervised semantic segmentation with directional context-aware consistency
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 217
  year: 2021
  end-page: 221
  ident: b1
  article-title: Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge
  publication-title: Int. J. Stroke
– start-page: 2613
  year: 2021
  ident: 10.1016/j.bspc.2022.103870_b12
  article-title: Semi-supervised semantic segmentation with cross pseudo supervision
– volume: 65
  year: 2020
  ident: 10.1016/j.bspc.2022.103870_b9
  article-title: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101766
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2022.103870_b15
  article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 532
  year: 2020
  ident: 10.1016/j.bspc.2022.103870_b24
  article-title: DMNet: Difference minimization network for semi-supervised segmentation in medical images
– start-page: 297
  year: 2021
  ident: 10.1016/j.bspc.2022.103870_b8
  article-title: Semi-supervised left Atrium segmentation with mutual consistency training
– start-page: 552
  year: 2020
  ident: 10.1016/j.bspc.2022.103870_b3
  article-title: Shape-aware semi-supervised 3d semantic segmentation for medical images
– ident: 10.1016/j.bspc.2022.103870_b18
  doi: 10.1109/3DV.2016.79
– volume: 67
  year: 2021
  ident: 10.1016/j.bspc.2022.103870_b22
  article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101832
– start-page: 1
  year: 2008
  ident: 10.1016/j.bspc.2022.103870_b13
  article-title: Semantic texton forests for image categorization and segmentation
– start-page: 605
  year: 2019
  ident: 10.1016/j.bspc.2022.103870_b4
  article-title: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation
– start-page: 1195
  year: 2017
  ident: 10.1016/j.bspc.2022.103870_b21
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– start-page: 3431
  year: 2015
  ident: 10.1016/j.bspc.2022.103870_b14
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 408
  year: 2017
  ident: 10.1016/j.bspc.2022.103870_b19
  article-title: Deep adversarial networks for biomedical image segmentation utilizing unannotated images
– start-page: 424
  year: 2016
  ident: 10.1016/j.bspc.2022.103870_b17
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– year: 2021
  ident: 10.1016/j.bspc.2022.103870_b10
– volume: 16
  start-page: 217
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2022.103870_b1
  article-title: Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge
  publication-title: Int. J. Stroke
  doi: 10.1177/1747493019897870
– start-page: 1205
  year: 2021
  ident: 10.1016/j.bspc.2022.103870_b11
  article-title: Semi-supervised semantic segmentation with directional context-aware consistency
– start-page: 5050
  year: 2019
  ident: 10.1016/j.bspc.2022.103870_b25
  article-title: MixMatch: A holistic approach to semi-supervised learning
– volume: 7
  start-page: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2022.103870_b23
  article-title: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI
  publication-title: Circulation
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  ident: 10.1016/j.bspc.2022.103870_b2
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
– ident: 10.1016/j.bspc.2022.103870_b7
  doi: 10.1609/aaai.v35i10.17066
– start-page: 614
  year: 2020
  ident: 10.1016/j.bspc.2022.103870_b20
  article-title: Self-loop uncertainty: A novel pseudo-label for semi-supervised medical image segmentation
– start-page: 542
  year: 2020
  ident: 10.1016/j.bspc.2022.103870_b5
  article-title: Double-uncertainty weighted method for semi-supervised learning
– start-page: 562
  year: 2020
  ident: 10.1016/j.bspc.2022.103870_b6
  article-title: Local and global structure-aware entropy regularized mean teacher model for 3d left atrium segmentation
– start-page: 234
  year: 2015
  ident: 10.1016/j.bspc.2022.103870_b16
  article-title: U-net: Convolutional networks for biomedical image segmentation
SSID ssj0048714
Score 2.3651052
Snippet Left atrial segmentation is very important for the treatment of atrial fibrillation. One factor limiting the automatic segmentation of the left atrium is that...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103870
SubjectTerms Consistency learning
Different perturbations
Left atrial segmentation
Semi-supervised algorithm
Title DC-net: Dual-Consistency semi-supervised learning for 3D left atrium segmentation from MRI
URI https://dx.doi.org/10.1016/j.bspc.2022.103870
Volume 78
WOSCitedRecordID wos000826932200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwN7QPwUGwz5gTeUKY0TYu9tWjYxBNMEA1W8RE7iVJnSLGuaqbzwt3MX22koaAIkXqLWiZPq7qtzd77vjpBXmcsUT5lwcldJx-eZcISQIShE4KZVIFlXSPvL-_DsjE-n4nw0-m65MDdlWFV8tRL1f1U1jIGykTr7F-rubwoD8BmUDkdQOxz_SPHRkVOpLuAXtbJ0uo6czbJjWDZqXjhNW-P60IClWdq4COYasgi-d-zGRdHO4drZ3PCSKk1C-fDx9Kct4I64r1mVxQyN2lqTDizt0WTBr0P2Jvm3rb7Z9yVmAhUtjk4LeVUW_RpkeoQBdq-LHr6R6b9yrqrZCk7NhiEL8HZtTpaJo1kuzTpxCZfe0MfSyLrl8b4ajE1cPlyvdcufX5Z-HYW43E-aGktTel5X-113Jdkoqf0J74uP8jy9M3qHbHlhIPiYbB2eHk_f2Xc5eHNddfj-txnalc4Q3HzS702bgbly8YDcN34GPdT4eEhGqnpEtgfVJx-TrxopB3QTJ3QDJ9TihAJOKIso4oRqnNAhTijihAJOnpDPJ8cXR28d02rDSZnrLh2VuInKfS9VSZAo-LOyHFyJVHER4j4rnAI_PeVCJlKmXu66mfQnXuYJ9UayjPnsKRlXV5V6RmiGXGaZ5jxJmK8mgicyyMMw47lk0pd8h0yslOLU1KHHdihlbBMOL2OUbIySjbVkd8jrfk6tq7DcenVghR8bO1LbhzFg5ZZ5u_847zm5t0b5CzJeLlq1R-6mN8uiWbw0kPoBOSaYuA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC-net%3A+Dual-Consistency+semi-supervised+learning+for+3D+left+atrium+segmentation+from+MRI&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Junying&rft.au=Liu%2C+Xiaoli&rft.au=Yin%2C+Jianqin&rft.au=Ding%2C+Pengxiang&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=78&rft_id=info:doi/10.1016%2Fj.bspc.2022.103870&rft.externalDocID=S1746809422003858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon