Image-based intelligent detection of typical defects of complex subway tunnel surface
We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive, large-scale, and complex tunnel images without repeated parameter adjustments and high-cost annotation datasets. Our algorithm utilizes a multi-sc...
Gespeichert in:
| Veröffentlicht in: | Tunnelling and underground space technology Jg. 140; S. 105266 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.10.2023
|
| Schlagworte: | |
| ISSN: | 0886-7798 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive, large-scale, and complex tunnel images without repeated parameter adjustments and high-cost annotation datasets. Our algorithm utilizes a multi-scale, fusion-based encoder–decoder segmentation model to classify objects from high-resolution images of the tunnel surfaces. To enhance the accuracy of crack identification from complex backgrounds, we incorporate the Expanded Threshold Search (ETS) algorithm and the Local Window Extraction (LWE) algorithm. The acquisition device and the algorithm, implementing the multi-object dataset, have successfully tested, whereby it recognizes five objects and attains the highest Intersection over Union (39.3% for the crack object, 65.6% for the leakage object, and 75.7% for the rest).
[Display omitted]
•An image acquisition device is designed for tunnel.•A multi-object dataset of complex subway tunnel images is efficiently built.•An efficient and accurate hybrid model is proposed.•Comprehensive experimental results are provided. |
|---|---|
| AbstractList | We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive, large-scale, and complex tunnel images without repeated parameter adjustments and high-cost annotation datasets. Our algorithm utilizes a multi-scale, fusion-based encoder–decoder segmentation model to classify objects from high-resolution images of the tunnel surfaces. To enhance the accuracy of crack identification from complex backgrounds, we incorporate the Expanded Threshold Search (ETS) algorithm and the Local Window Extraction (LWE) algorithm. The acquisition device and the algorithm, implementing the multi-object dataset, have successfully tested, whereby it recognizes five objects and attains the highest Intersection over Union (39.3% for the crack object, 65.6% for the leakage object, and 75.7% for the rest).
[Display omitted]
•An image acquisition device is designed for tunnel.•A multi-object dataset of complex subway tunnel images is efficiently built.•An efficient and accurate hybrid model is proposed.•Comprehensive experimental results are provided. |
| ArticleNumber | 105266 |
| Author | Xu, Lizhi Wang, Yaodong Shi, Hongmei Yu, Zujun Zhu, Liqiang Dong, Anqi |
| Author_xml | – sequence: 1 givenname: Lizhi orcidid: 0000-0003-3770-4522 surname: Xu fullname: Xu, Lizhi email: 22110419@bjtu.edu.cn organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China – sequence: 2 givenname: Yaodong surname: Wang fullname: Wang, Yaodong email: ydwang@bjtu.edu.cn organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China – sequence: 3 givenname: Anqi orcidid: 0000-0002-0365-0733 surname: Dong fullname: Dong, Anqi email: anqid2@uci.edu organization: Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA – sequence: 4 givenname: Liqiang surname: Zhu fullname: Zhu, Liqiang email: lqzhu@bjtu.edu.cn organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China – sequence: 5 givenname: Hongmei surname: Shi fullname: Shi, Hongmei email: hmshi@bjtu.edu.cn organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China – sequence: 6 givenname: Zujun surname: Yu fullname: Yu, Zujun email: zjyu@bjtu.edu.cn organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China |
| BookMark | eNp9kMtqwzAQRbVIoUnaH-jKP-BUlmzZgm5K6CMQ6KZZC0keBQVFDpLS1n9fmXTVRVbD3OEM3LNAMz94QOihwqsKV-zxsErnmFYEE5qDhjA2Q3PcdaxsW97dokWMB4zzgfA52m2Ocg-lkhH6wvoEztk9-FT0kEAnO_hiMEUaT1ZLl0OTwzhFejieHPwU8ay-5Viks_fg8haM1HCHbox0Ee7_5hLtXl8-1-_l9uNts37elppinErg2EhZAWWN0qrFrepbTInSDRCOu57UjHNFOl5JXDespbXRNdSkpsaYBiq6ROTyV4chxgBGnII9yjCKCotJhjiISYaYZIiLjAx1_yBtk5yqpiCtu44-XVDIpb4sBBG1Ba-htyGLEf1gr-G_fSOAhQ |
| CitedBy_id | crossref_primary_10_1016_j_engfailanal_2025_109715 crossref_primary_10_1088_1361_6501_ad56ae crossref_primary_10_1177_14759217241267794 crossref_primary_10_1177_14759217241254748 crossref_primary_10_1016_j_tust_2024_105857 crossref_primary_10_1016_j_conbuildmat_2025_141179 crossref_primary_10_1016_j_eswa_2025_127638 crossref_primary_10_1016_j_tust_2024_106351 crossref_primary_10_1080_17499518_2025_2471796 crossref_primary_10_1007_s41064_025_00355_w crossref_primary_10_1016_j_autcon_2024_105678 crossref_primary_10_1088_2631_8695_ad36ae crossref_primary_10_3390_computers14050182 crossref_primary_10_1016_j_jrmge_2025_01_062 crossref_primary_10_1016_j_tust_2023_105572 crossref_primary_10_1109_JSEN_2024_3456093 crossref_primary_10_1109_JSEN_2024_3402730 crossref_primary_10_1016_j_undsp_2024_10_002 crossref_primary_10_1016_j_measurement_2025_118763 crossref_primary_10_1016_j_aei_2025_103609 crossref_primary_10_1080_17499518_2025_2460007 crossref_primary_10_1007_s10489_025_06294_8 crossref_primary_10_1109_JSEN_2024_3496926 |
| Cites_doi | 10.1016/j.aei.2017.03.003 10.1016/j.autcon.2017.06.008 10.1016/j.neucom.2019.01.036 10.1016/j.autcon.2015.02.003 10.1016/j.aei.2020.101206 10.1109/CVPR.2018.00745 10.1007/978-3-030-01228-1_26 10.1016/j.autcon.2019.04.005 10.1016/j.conbuildmat.2019.117367 10.1111/mice.12263 10.1016/j.tust.2019.103156 10.1016/j.measurement.2021.109316 10.1007/978-3-030-01234-2_49 10.1016/j.autcon.2010.12.005 10.1109/CVPRW56347.2022.00309 10.1016/j.tust.2020.103724 10.1016/j.tust.2020.103677 10.1109/ICCV.2017.324 10.1016/j.compstruc.2022.106918 10.1016/j.tust.2022.104472 10.1016/j.tust.2018.04.002 10.1016/j.autcon.2006.05.003 10.1109/CVPR.2017.189 10.1016/j.autcon.2021.103934 10.1109/CVPR.2017.634 10.3390/s20143973 10.1016/j.ultras.2015.05.008 10.1109/TSMC.1979.4310076 10.1109/CVPR.2015.7298965 10.1109/CVPR.2017.660 10.1109/CVPR.2015.7298594 10.1109/CVPR.2019.00326 10.1145/357994.358023 10.1109/CVPR.2016.90 10.1016/j.compind.2019.08.002 10.1109/CVPR.2018.00464 10.1016/j.autcon.2018.11.028 10.1111/mice.12367 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tust.2023.105266 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_tust_2023_105266 S0886779823002869 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSH SST SSZ T5K WUQ ZMT ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-e90faa1e365bcb707bd7032bc5e2908d24699b2891a0456734fc4e4243fff5e13 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037189300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-7798 |
| IngestDate | Sat Nov 29 07:12:47 EST 2025 Tue Nov 18 22:13:46 EST 2025 Sun Apr 06 06:53:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intelligent detection Structural health monitoring Semantic segmentation Subway tunnel Image processing algorithm Convolutional neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-e90faa1e365bcb707bd7032bc5e2908d24699b2891a0456734fc4e4243fff5e13 |
| ORCID | 0000-0002-0365-0733 0000-0003-3770-4522 |
| ParticipantIDs | crossref_primary_10_1016_j_tust_2023_105266 crossref_citationtrail_10_1016_j_tust_2023_105266 elsevier_sciencedirect_doi_10_1016_j_tust_2023_105266 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Tunnelling and underground space technology |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Beniwal, Ganguli (b1) 2015; 62 Huang, Li, Zhang (b12) 2018; 77 Huang, Sun, Xue, Wang (b14) 2017; 32 Xue, Li (b41) 2018; 33 Salman, Mathavan, Kamal, Rahman (b33) 2013 Poudel, Liwicki, Cipolla (b28) 2019 Wang, Zhou, Liu, Xiong, Gao, Wu, Latecki (b37) 2019 Huang, Ninić, Zhang (b13) 2021; 108 Kong (b15) 2016 Zhang, Suen (b44) 1984; 27 Rubio, Kashiwa, Laiteerapong, Deng, Nagai, Escalera, Nakayama, Matsuo, Prendinger (b32) 2019; 112 Xu, Li, Xie, Wu, Wang (b40) 2021; 178 Li, Xie, Gong, Yu, Xu, Sun, Wang (b18) 2021; 47 Rosso, Marasco, Aiello, Aloisio, Chiaia, Marano (b31) 2023; 275 Dung (b8) 2019; 99 Yu, Jang, Han (b43) 2007; 16 Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large kernel matters–improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4353–4361. O’Brien, Osborne, Perez-Duenas, Cunningham, Li (b25) 2023; 131 Chao, Geng, Huang, Zhu, Shi (b4) 2020; 14 Ren, Huang, Hong, Lu, Yin, Zou, Shen (b29) 2020; 234 Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. Krizhevsky, Sutskever, Hinton (b16) 2012; 25 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. Montero, Victores, Martinez, Jardón, Balaguer (b24) 2015; 59 Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2022. Resnest: Split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2736–2746. Zhao, Zhang, Xue, Zhou, Huang (b48) 2021; 132 Liu, Cao, Wang, Wang (b20) 2019; 104 Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1492–1500. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890. Simonyan, Zisserman (b34) 2014 Otsu (b26) 1979; 9 Liu, Wang, Yu, Zhu, Shi, Huang (b21) 2018 Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434. Victores, Martínez, Jardón, Balaguer (b36) 2011; 20 Lei, Liu, Shi, Tan, Lin, Wang (b17) 2021; 108 Berman, M., Triki, A.R., Blaschko, M.B., 2018. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4413–4421. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9. Dawood, Zhu, Zayed (b7) 2017; 81 Dang, Wang, Li, Park, Oh, Nguyen, Moon (b6) 2022; 124 Zhao, Zhang, Huang (b47) 2020; 95 Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3146–3154. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2980–2988. Xue, Yuan (b42) 2020; 20 Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818. Ronneberger, Fischer, Brox (b30) 2015 Cha, Choi, Büyüköztürk (b3) 2017; 32 Liu, Yao, Lu, Xie, Li (b22) 2019; 338 Lei (10.1016/j.tust.2023.105266_b17) 2021; 108 Montero (10.1016/j.tust.2023.105266_b24) 2015; 59 Yu (10.1016/j.tust.2023.105266_b43) 2007; 16 Rosso (10.1016/j.tust.2023.105266_b31) 2023; 275 Dung (10.1016/j.tust.2023.105266_b8) 2019; 99 Liu (10.1016/j.tust.2023.105266_b22) 2019; 338 10.1016/j.tust.2023.105266_b27 Ren (10.1016/j.tust.2023.105266_b29) 2020; 234 Liu (10.1016/j.tust.2023.105266_b20) 2019; 104 Huang (10.1016/j.tust.2023.105266_b14) 2017; 32 10.1016/j.tust.2023.105266_b46 10.1016/j.tust.2023.105266_b23 10.1016/j.tust.2023.105266_b45 Cha (10.1016/j.tust.2023.105266_b3) 2017; 32 Huang (10.1016/j.tust.2023.105266_b12) 2018; 77 Li (10.1016/j.tust.2023.105266_b18) 2021; 47 Beniwal (10.1016/j.tust.2023.105266_b1) 2015; 62 Otsu (10.1016/j.tust.2023.105266_b26) 1979; 9 Dang (10.1016/j.tust.2023.105266_b6) 2022; 124 Chao (10.1016/j.tust.2023.105266_b4) 2020; 14 Rubio (10.1016/j.tust.2023.105266_b32) 2019; 112 Dawood (10.1016/j.tust.2023.105266_b7) 2017; 81 Xue (10.1016/j.tust.2023.105266_b41) 2018; 33 Ronneberger (10.1016/j.tust.2023.105266_b30) 2015 Zhao (10.1016/j.tust.2023.105266_b47) 2020; 95 Zhao (10.1016/j.tust.2023.105266_b48) 2021; 132 10.1016/j.tust.2023.105266_b5 10.1016/j.tust.2023.105266_b2 Wang (10.1016/j.tust.2023.105266_b37) 2019 10.1016/j.tust.2023.105266_b9 Krizhevsky (10.1016/j.tust.2023.105266_b16) 2012; 25 Xu (10.1016/j.tust.2023.105266_b40) 2021; 178 Huang (10.1016/j.tust.2023.105266_b13) 2021; 108 O’Brien (10.1016/j.tust.2023.105266_b25) 2023; 131 10.1016/j.tust.2023.105266_b38 Xue (10.1016/j.tust.2023.105266_b42) 2020; 20 Liu (10.1016/j.tust.2023.105266_b21) 2018 Salman (10.1016/j.tust.2023.105266_b33) 2013 10.1016/j.tust.2023.105266_b35 10.1016/j.tust.2023.105266_b11 10.1016/j.tust.2023.105266_b10 Victores (10.1016/j.tust.2023.105266_b36) 2011; 20 Simonyan (10.1016/j.tust.2023.105266_b34) 2014 Zhang (10.1016/j.tust.2023.105266_b44) 1984; 27 Poudel (10.1016/j.tust.2023.105266_b28) 2019 10.1016/j.tust.2023.105266_b19 Kong (10.1016/j.tust.2023.105266_b15) 2016 10.1016/j.tust.2023.105266_b39 |
| References_xml | – volume: 33 start-page: 638 year: 2018 end-page: 654 ident: b41 article-title: A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 25 year: 2012 ident: b16 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 234 year: 2020 ident: b29 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Constr. Build. Mater. – reference: Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b26 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 47 year: 2021 ident: b18 article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system publication-title: Adv. Eng. Inform. – volume: 59 start-page: 99 year: 2015 end-page: 112 ident: b24 article-title: Past, present and future of robotic tunnel inspection publication-title: Autom. Constr. – volume: 108 year: 2021 ident: b13 article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives publication-title: Tunn. Undergr. Space Technol. – reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. – reference: Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large kernel matters–improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4353–4361. – reference: Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3146–3154. – volume: 104 start-page: 129 year: 2019 end-page: 139 ident: b20 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. Constr. – volume: 338 start-page: 139 year: 2019 end-page: 153 ident: b22 article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing – volume: 27 start-page: 236 year: 1984 end-page: 239 ident: b44 article-title: A fast parallel algorithm for thinning digital patterns publication-title: Commun. ACM – volume: 131 year: 2023 ident: b25 article-title: Automated crack classification for the CERN underground tunnel infrastructure using deep learning publication-title: Tunn. Undergr. Space Technol. – volume: 108 year: 2021 ident: b17 article-title: A novel tunnel-lining crack recognition system based on digital image technology publication-title: Tunn. Undergr. Space Technol. – start-page: 188 year: 2018 end-page: 192 ident: b21 article-title: Research on cracks image detection system for subway tunnel publication-title: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference – volume: 14 start-page: 75 year: 2020 end-page: 83 ident: b4 article-title: Refinement identification and evaluation of tunnel lining cracks publication-title: J. Highw. Transp. Res. Dev. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. – reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9. – reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890. – volume: 132 year: 2021 ident: b48 article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images publication-title: Autom. Constr. – volume: 20 start-page: 629 year: 2011 end-page: 636 ident: b36 article-title: Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration publication-title: Autom. Constr. – start-page: 2039 year: 2013 end-page: 2044 ident: b33 article-title: Pavement crack detection using the gabor filter publication-title: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) – reference: Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818. – volume: 95 year: 2020 ident: b47 article-title: Deep learning–based image instance segmentation for moisture marks of shield tunnel lining publication-title: Tunn. Undergr. Space Technol. – year: 2019 ident: b28 article-title: Fast-scnn: Fast semantic segmentation network – start-page: 1860 year: 2019 end-page: 1864 ident: b37 article-title: Lednet: A lightweight encoder-decoder network for real-time semantic segmentation publication-title: 2019 IEEE International Conference on Image Processing – volume: 77 start-page: 166 year: 2018 end-page: 176 ident: b12 article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel publication-title: Tunn. Undergr. Space Technol. – reference: Berman, M., Triki, A.R., Blaschko, M.B., 2018. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4413–4421. – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: b3 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civ. Infrastruct. Eng. – reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2980–2988. – volume: 178 year: 2021 ident: b40 article-title: Automatic defect detection and segmentation of tunnel surface using modified mask R-CNN publication-title: Measurement – reference: Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2022. Resnest: Split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2736–2746. – year: 2014 ident: b34 article-title: Very deep convolutional networks for large-scale image recognition – volume: 62 start-page: 112 year: 2015 end-page: 125 ident: b1 article-title: Defect detection around rebars in concrete using focused ultrasound and reverse time migration publication-title: Ultrasonics – volume: 99 start-page: 52 year: 2019 end-page: 58 ident: b8 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. Constr. – start-page: 140 year: 2016 end-page: 143 ident: b15 article-title: Analysis of tunnel monitoring results based on modulus maxima method of wavelet transform publication-title: 2016 9th International Symposium on Computational Intelligence and Design, Vol. 1 – volume: 20 start-page: 3973 year: 2020 ident: b42 article-title: Dynamic partition Gaussian crack detection algorithm based on projection curve distribution publication-title: Sensors – reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440. – volume: 16 start-page: 255 year: 2007 end-page: 261 ident: b43 article-title: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel publication-title: Autom. Constr. – start-page: 234 year: 2015 end-page: 241 ident: b30 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 124 year: 2022 ident: b6 article-title: Automatic tunnel lining crack evaluation and measurement using deep learning publication-title: Tunn. Undergr. Space Technol. – volume: 81 start-page: 149 year: 2017 end-page: 160 ident: b7 article-title: Machine vision-based model for spalling detection and quantification in subway networks publication-title: Autom. Constr. – volume: 275 year: 2023 ident: b31 article-title: Convolutional networks and transformers for intelligent road tunnel investigations publication-title: Comput. Struct. – volume: 32 start-page: 188 year: 2017 end-page: 201 ident: b14 article-title: Inspection equipment study for subway tunnel defects by grey-scale image processing publication-title: Adv. Eng. Inform. – volume: 112 year: 2019 ident: b32 article-title: Multi-class structural damage segmentation using fully convolutional networks publication-title: Comput. Ind. – reference: Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1492–1500. – volume: 32 start-page: 188 year: 2017 ident: 10.1016/j.tust.2023.105266_b14 article-title: Inspection equipment study for subway tunnel defects by grey-scale image processing publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2017.03.003 – volume: 81 start-page: 149 year: 2017 ident: 10.1016/j.tust.2023.105266_b7 article-title: Machine vision-based model for spalling detection and quantification in subway networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.06.008 – volume: 338 start-page: 139 year: 2019 ident: 10.1016/j.tust.2023.105266_b22 article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.036 – volume: 59 start-page: 99 year: 2015 ident: 10.1016/j.tust.2023.105266_b24 article-title: Past, present and future of robotic tunnel inspection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.02.003 – start-page: 1860 year: 2019 ident: 10.1016/j.tust.2023.105266_b37 article-title: Lednet: A lightweight encoder-decoder network for real-time semantic segmentation – volume: 47 year: 2021 ident: 10.1016/j.tust.2023.105266_b18 article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101206 – start-page: 2039 year: 2013 ident: 10.1016/j.tust.2023.105266_b33 article-title: Pavement crack detection using the gabor filter – ident: 10.1016/j.tust.2023.105266_b11 doi: 10.1109/CVPR.2018.00745 – volume: 14 start-page: 75 issue: 1 year: 2020 ident: 10.1016/j.tust.2023.105266_b4 article-title: Refinement identification and evaluation of tunnel lining cracks publication-title: J. Highw. Transp. Res. Dev. – ident: 10.1016/j.tust.2023.105266_b38 doi: 10.1007/978-3-030-01228-1_26 – volume: 25 year: 2012 ident: 10.1016/j.tust.2023.105266_b16 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2014 ident: 10.1016/j.tust.2023.105266_b34 – volume: 104 start-page: 129 year: 2019 ident: 10.1016/j.tust.2023.105266_b20 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.04.005 – volume: 234 year: 2020 ident: 10.1016/j.tust.2023.105266_b29 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117367 – volume: 32 start-page: 361 issue: 5 year: 2017 ident: 10.1016/j.tust.2023.105266_b3 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12263 – volume: 95 year: 2020 ident: 10.1016/j.tust.2023.105266_b47 article-title: Deep learning–based image instance segmentation for moisture marks of shield tunnel lining publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.103156 – volume: 178 year: 2021 ident: 10.1016/j.tust.2023.105266_b40 article-title: Automatic defect detection and segmentation of tunnel surface using modified mask R-CNN publication-title: Measurement doi: 10.1016/j.measurement.2021.109316 – ident: 10.1016/j.tust.2023.105266_b5 doi: 10.1007/978-3-030-01234-2_49 – volume: 20 start-page: 629 issue: 5 year: 2011 ident: 10.1016/j.tust.2023.105266_b36 article-title: Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration publication-title: Autom. Constr. doi: 10.1016/j.autcon.2010.12.005 – ident: 10.1016/j.tust.2023.105266_b45 doi: 10.1109/CVPRW56347.2022.00309 – volume: 108 year: 2021 ident: 10.1016/j.tust.2023.105266_b17 article-title: A novel tunnel-lining crack recognition system based on digital image technology publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103724 – volume: 108 year: 2021 ident: 10.1016/j.tust.2023.105266_b13 article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103677 – ident: 10.1016/j.tust.2023.105266_b19 doi: 10.1109/ICCV.2017.324 – volume: 275 year: 2023 ident: 10.1016/j.tust.2023.105266_b31 article-title: Convolutional networks and transformers for intelligent road tunnel investigations publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2022.106918 – volume: 124 year: 2022 ident: 10.1016/j.tust.2023.105266_b6 article-title: Automatic tunnel lining crack evaluation and measurement using deep learning publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104472 – volume: 77 start-page: 166 year: 2018 ident: 10.1016/j.tust.2023.105266_b12 article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2018.04.002 – volume: 16 start-page: 255 issue: 3 year: 2007 ident: 10.1016/j.tust.2023.105266_b43 article-title: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel publication-title: Autom. Constr. doi: 10.1016/j.autcon.2006.05.003 – ident: 10.1016/j.tust.2023.105266_b27 doi: 10.1109/CVPR.2017.189 – volume: 132 year: 2021 ident: 10.1016/j.tust.2023.105266_b48 article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103934 – ident: 10.1016/j.tust.2023.105266_b39 doi: 10.1109/CVPR.2017.634 – volume: 20 start-page: 3973 issue: 14 year: 2020 ident: 10.1016/j.tust.2023.105266_b42 article-title: Dynamic partition Gaussian crack detection algorithm based on projection curve distribution publication-title: Sensors doi: 10.3390/s20143973 – volume: 62 start-page: 112 year: 2015 ident: 10.1016/j.tust.2023.105266_b1 article-title: Defect detection around rebars in concrete using focused ultrasound and reverse time migration publication-title: Ultrasonics doi: 10.1016/j.ultras.2015.05.008 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.tust.2023.105266_b26 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – ident: 10.1016/j.tust.2023.105266_b23 doi: 10.1109/CVPR.2015.7298965 – ident: 10.1016/j.tust.2023.105266_b46 doi: 10.1109/CVPR.2017.660 – ident: 10.1016/j.tust.2023.105266_b35 doi: 10.1109/CVPR.2015.7298594 – ident: 10.1016/j.tust.2023.105266_b9 doi: 10.1109/CVPR.2019.00326 – volume: 131 year: 2023 ident: 10.1016/j.tust.2023.105266_b25 article-title: Automated crack classification for the CERN underground tunnel infrastructure using deep learning publication-title: Tunn. Undergr. Space Technol. – year: 2019 ident: 10.1016/j.tust.2023.105266_b28 – start-page: 188 year: 2018 ident: 10.1016/j.tust.2023.105266_b21 article-title: Research on cracks image detection system for subway tunnel – start-page: 140 year: 2016 ident: 10.1016/j.tust.2023.105266_b15 article-title: Analysis of tunnel monitoring results based on modulus maxima method of wavelet transform – volume: 27 start-page: 236 issue: 3 year: 1984 ident: 10.1016/j.tust.2023.105266_b44 article-title: A fast parallel algorithm for thinning digital patterns publication-title: Commun. ACM doi: 10.1145/357994.358023 – start-page: 234 year: 2015 ident: 10.1016/j.tust.2023.105266_b30 article-title: U-net: Convolutional networks for biomedical image segmentation – ident: 10.1016/j.tust.2023.105266_b10 doi: 10.1109/CVPR.2016.90 – volume: 112 year: 2019 ident: 10.1016/j.tust.2023.105266_b32 article-title: Multi-class structural damage segmentation using fully convolutional networks publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.08.002 – ident: 10.1016/j.tust.2023.105266_b2 doi: 10.1109/CVPR.2018.00464 – volume: 99 start-page: 52 year: 2019 ident: 10.1016/j.tust.2023.105266_b8 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.11.028 – volume: 33 start-page: 638 issue: 8 year: 2018 ident: 10.1016/j.tust.2023.105266_b41 article-title: A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12367 |
| SSID | ssj0005229 |
| Score | 2.4765654 |
| Snippet | We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105266 |
| SubjectTerms | Convolutional neural network Image processing algorithm Intelligent detection Semantic segmentation Structural health monitoring Subway tunnel |
| Title | Image-based intelligent detection of typical defects of complex subway tunnel surface |
| URI | https://dx.doi.org/10.1016/j.tust.2023.105266 |
| Volume | 140 |
| WOSCitedRecordID | wos001037189300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0886-7798 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005229 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6l0EM5oNKHyqPVHnqLXMXP9R6jigp6QEgEKe3FXa9nCyg1ITgQ-us74107LlSIInGxEse7Tma-zH4znpll7CMyaOOn1PkR1x8vAj_0VEqPEHE5A6N8oUNdbzYhDg7S8Vge9no_mlqYq4koy3SxkNMnVTWeQ2VT6ex_qLudFE_ga1Q6HlHteHyQ4vd_oYnwaHUq6mYQtuFm1S-gAt3ww-pmap_PQJvOUSeXw6J_Oc-vFXLSOWXA4LuZUfqvfKFR_cmkqW6kKrQZFYdQBB49cOhXd8L147n1_3-fnC4j-NbKfFPoGLvlkwi1SxEelhftpd9P3PALxPLPbpwiWGa8ueBZU0CzzFayNi5Bgm83om4Nsm3gdMe42zjD2aeKilHoFrRJcZDc6qRdr81HNDHNix4WMqhEPmOrgYgl2r3V4f7u-GsnDajeya79Iq6wyuYA3r7Tv8lLh5CMXrJ150nwoUXAButB-YqtdfpLvmbHHSzwDhZ4iwV-brjDAndYoFMOC9xigVsscIeFN-z4y-7o857n9tHwNP76ygM5MEr5ECZxrnMxEHmBdj7IdQyBHKRFECVS5uh5-4oIvggjoyOIgig0xsT4933LVsrzEt4xDkCdjFEUeZFGuRJKCb-IkXKrArQv1SbzGwFl2jWZp71OJlmTTXiWkVAzEmpmhbrJ-u2YqW2xcu_VcSP3zJFES_4yhMk947YeOW6bvViieYetVLM5vGfP9VV1ejn74ND0BwHBj4Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-based+intelligent+detection+of+typical+defects+of+complex+subway+tunnel+surface&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Xu%2C+Lizhi&rft.au=Wang%2C+Yaodong&rft.au=Dong%2C+Anqi&rft.au=Zhu%2C+Liqiang&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.volume=140&rft_id=info:doi/10.1016%2Fj.tust.2023.105266&rft.externalDocID=S0886779823002869 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |