Image-based intelligent detection of typical defects of complex subway tunnel surface

We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive, large-scale, and complex tunnel images without repeated parameter adjustments and high-cost annotation datasets. Our algorithm utilizes a multi-sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tunnelling and underground space technology Jg. 140; S. 105266
Hauptverfasser: Xu, Lizhi, Wang, Yaodong, Dong, Anqi, Zhu, Liqiang, Shi, Hongmei, Yu, Zujun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2023
Schlagworte:
ISSN:0886-7798
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive, large-scale, and complex tunnel images without repeated parameter adjustments and high-cost annotation datasets. Our algorithm utilizes a multi-scale, fusion-based encoder–decoder segmentation model to classify objects from high-resolution images of the tunnel surfaces. To enhance the accuracy of crack identification from complex backgrounds, we incorporate the Expanded Threshold Search (ETS) algorithm and the Local Window Extraction (LWE) algorithm. The acquisition device and the algorithm, implementing the multi-object dataset, have successfully tested, whereby it recognizes five objects and attains the highest Intersection over Union (39.3% for the crack object, 65.6% for the leakage object, and 75.7% for the rest). [Display omitted] •An image acquisition device is designed for tunnel.•A multi-object dataset of complex subway tunnel images is efficiently built.•An efficient and accurate hybrid model is proposed.•Comprehensive experimental results are provided.
AbstractList We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive, large-scale, and complex tunnel images without repeated parameter adjustments and high-cost annotation datasets. Our algorithm utilizes a multi-scale, fusion-based encoder–decoder segmentation model to classify objects from high-resolution images of the tunnel surfaces. To enhance the accuracy of crack identification from complex backgrounds, we incorporate the Expanded Threshold Search (ETS) algorithm and the Local Window Extraction (LWE) algorithm. The acquisition device and the algorithm, implementing the multi-object dataset, have successfully tested, whereby it recognizes five objects and attains the highest Intersection over Union (39.3% for the crack object, 65.6% for the leakage object, and 75.7% for the rest). [Display omitted] •An image acquisition device is designed for tunnel.•A multi-object dataset of complex subway tunnel images is efficiently built.•An efficient and accurate hybrid model is proposed.•Comprehensive experimental results are provided.
ArticleNumber 105266
Author Xu, Lizhi
Wang, Yaodong
Shi, Hongmei
Yu, Zujun
Zhu, Liqiang
Dong, Anqi
Author_xml – sequence: 1
  givenname: Lizhi
  orcidid: 0000-0003-3770-4522
  surname: Xu
  fullname: Xu, Lizhi
  email: 22110419@bjtu.edu.cn
  organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 2
  givenname: Yaodong
  surname: Wang
  fullname: Wang, Yaodong
  email: ydwang@bjtu.edu.cn
  organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 3
  givenname: Anqi
  orcidid: 0000-0002-0365-0733
  surname: Dong
  fullname: Dong, Anqi
  email: anqid2@uci.edu
  organization: Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
– sequence: 4
  givenname: Liqiang
  surname: Zhu
  fullname: Zhu, Liqiang
  email: lqzhu@bjtu.edu.cn
  organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 5
  givenname: Hongmei
  surname: Shi
  fullname: Shi, Hongmei
  email: hmshi@bjtu.edu.cn
  organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 6
  givenname: Zujun
  surname: Yu
  fullname: Yu, Zujun
  email: zjyu@bjtu.edu.cn
  organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
BookMark eNp9kMtqwzAQRbVIoUnaH-jKP-BUlmzZgm5K6CMQ6KZZC0keBQVFDpLS1n9fmXTVRVbD3OEM3LNAMz94QOihwqsKV-zxsErnmFYEE5qDhjA2Q3PcdaxsW97dokWMB4zzgfA52m2Ocg-lkhH6wvoEztk9-FT0kEAnO_hiMEUaT1ZLl0OTwzhFejieHPwU8ay-5Viks_fg8haM1HCHbox0Ee7_5hLtXl8-1-_l9uNts37elppinErg2EhZAWWN0qrFrepbTInSDRCOu57UjHNFOl5JXDespbXRNdSkpsaYBiq6ROTyV4chxgBGnII9yjCKCotJhjiISYaYZIiLjAx1_yBtk5yqpiCtu44-XVDIpb4sBBG1Ba-htyGLEf1gr-G_fSOAhQ
CitedBy_id crossref_primary_10_1016_j_engfailanal_2025_109715
crossref_primary_10_1088_1361_6501_ad56ae
crossref_primary_10_1177_14759217241267794
crossref_primary_10_1177_14759217241254748
crossref_primary_10_1016_j_tust_2024_105857
crossref_primary_10_1016_j_conbuildmat_2025_141179
crossref_primary_10_1016_j_eswa_2025_127638
crossref_primary_10_1016_j_tust_2024_106351
crossref_primary_10_1080_17499518_2025_2471796
crossref_primary_10_1007_s41064_025_00355_w
crossref_primary_10_1016_j_autcon_2024_105678
crossref_primary_10_1088_2631_8695_ad36ae
crossref_primary_10_3390_computers14050182
crossref_primary_10_1016_j_jrmge_2025_01_062
crossref_primary_10_1016_j_tust_2023_105572
crossref_primary_10_1109_JSEN_2024_3456093
crossref_primary_10_1109_JSEN_2024_3402730
crossref_primary_10_1016_j_undsp_2024_10_002
crossref_primary_10_1016_j_measurement_2025_118763
crossref_primary_10_1016_j_aei_2025_103609
crossref_primary_10_1080_17499518_2025_2460007
crossref_primary_10_1007_s10489_025_06294_8
crossref_primary_10_1109_JSEN_2024_3496926
Cites_doi 10.1016/j.aei.2017.03.003
10.1016/j.autcon.2017.06.008
10.1016/j.neucom.2019.01.036
10.1016/j.autcon.2015.02.003
10.1016/j.aei.2020.101206
10.1109/CVPR.2018.00745
10.1007/978-3-030-01228-1_26
10.1016/j.autcon.2019.04.005
10.1016/j.conbuildmat.2019.117367
10.1111/mice.12263
10.1016/j.tust.2019.103156
10.1016/j.measurement.2021.109316
10.1007/978-3-030-01234-2_49
10.1016/j.autcon.2010.12.005
10.1109/CVPRW56347.2022.00309
10.1016/j.tust.2020.103724
10.1016/j.tust.2020.103677
10.1109/ICCV.2017.324
10.1016/j.compstruc.2022.106918
10.1016/j.tust.2022.104472
10.1016/j.tust.2018.04.002
10.1016/j.autcon.2006.05.003
10.1109/CVPR.2017.189
10.1016/j.autcon.2021.103934
10.1109/CVPR.2017.634
10.3390/s20143973
10.1016/j.ultras.2015.05.008
10.1109/TSMC.1979.4310076
10.1109/CVPR.2015.7298965
10.1109/CVPR.2017.660
10.1109/CVPR.2015.7298594
10.1109/CVPR.2019.00326
10.1145/357994.358023
10.1109/CVPR.2016.90
10.1016/j.compind.2019.08.002
10.1109/CVPR.2018.00464
10.1016/j.autcon.2018.11.028
10.1111/mice.12367
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tust.2023.105266
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_tust_2023_105266
S0886779823002869
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-e90faa1e365bcb707bd7032bc5e2908d24699b2891a0456734fc4e4243fff5e13
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037189300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-7798
IngestDate Sat Nov 29 07:12:47 EST 2025
Tue Nov 18 22:13:46 EST 2025
Sun Apr 06 06:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Intelligent detection
Structural health monitoring
Semantic segmentation
Subway tunnel
Image processing algorithm
Convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-e90faa1e365bcb707bd7032bc5e2908d24699b2891a0456734fc4e4243fff5e13
ORCID 0000-0002-0365-0733
0000-0003-3770-4522
ParticipantIDs crossref_primary_10_1016_j_tust_2023_105266
crossref_citationtrail_10_1016_j_tust_2023_105266
elsevier_sciencedirect_doi_10_1016_j_tust_2023_105266
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Tunnelling and underground space technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Beniwal, Ganguli (b1) 2015; 62
Huang, Li, Zhang (b12) 2018; 77
Huang, Sun, Xue, Wang (b14) 2017; 32
Xue, Li (b41) 2018; 33
Salman, Mathavan, Kamal, Rahman (b33) 2013
Poudel, Liwicki, Cipolla (b28) 2019
Wang, Zhou, Liu, Xiong, Gao, Wu, Latecki (b37) 2019
Huang, Ninić, Zhang (b13) 2021; 108
Kong (b15) 2016
Zhang, Suen (b44) 1984; 27
Rubio, Kashiwa, Laiteerapong, Deng, Nagai, Escalera, Nakayama, Matsuo, Prendinger (b32) 2019; 112
Xu, Li, Xie, Wu, Wang (b40) 2021; 178
Li, Xie, Gong, Yu, Xu, Sun, Wang (b18) 2021; 47
Rosso, Marasco, Aiello, Aloisio, Chiaia, Marano (b31) 2023; 275
Dung (b8) 2019; 99
Yu, Jang, Han (b43) 2007; 16
Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large kernel matters–improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4353–4361.
O’Brien, Osborne, Perez-Duenas, Cunningham, Li (b25) 2023; 131
Chao, Geng, Huang, Zhu, Shi (b4) 2020; 14
Ren, Huang, Hong, Lu, Yin, Zou, Shen (b29) 2020; 234
Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141.
Krizhevsky, Sutskever, Hinton (b16) 2012; 25
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Montero, Victores, Martinez, Jardón, Balaguer (b24) 2015; 59
Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2022. Resnest: Split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2736–2746.
Zhao, Zhang, Xue, Zhou, Huang (b48) 2021; 132
Liu, Cao, Wang, Wang (b20) 2019; 104
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1492–1500.
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890.
Simonyan, Zisserman (b34) 2014
Otsu (b26) 1979; 9
Liu, Wang, Yu, Zhu, Shi, Huang (b21) 2018
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440.
Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434.
Victores, Martínez, Jardón, Balaguer (b36) 2011; 20
Lei, Liu, Shi, Tan, Lin, Wang (b17) 2021; 108
Berman, M., Triki, A.R., Blaschko, M.B., 2018. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4413–4421.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9.
Dawood, Zhu, Zayed (b7) 2017; 81
Dang, Wang, Li, Park, Oh, Nguyen, Moon (b6) 2022; 124
Zhao, Zhang, Huang (b47) 2020; 95
Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3146–3154.
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2980–2988.
Xue, Yuan (b42) 2020; 20
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818.
Ronneberger, Fischer, Brox (b30) 2015
Cha, Choi, Büyüköztürk (b3) 2017; 32
Liu, Yao, Lu, Xie, Li (b22) 2019; 338
Lei (10.1016/j.tust.2023.105266_b17) 2021; 108
Montero (10.1016/j.tust.2023.105266_b24) 2015; 59
Yu (10.1016/j.tust.2023.105266_b43) 2007; 16
Rosso (10.1016/j.tust.2023.105266_b31) 2023; 275
Dung (10.1016/j.tust.2023.105266_b8) 2019; 99
Liu (10.1016/j.tust.2023.105266_b22) 2019; 338
10.1016/j.tust.2023.105266_b27
Ren (10.1016/j.tust.2023.105266_b29) 2020; 234
Liu (10.1016/j.tust.2023.105266_b20) 2019; 104
Huang (10.1016/j.tust.2023.105266_b14) 2017; 32
10.1016/j.tust.2023.105266_b46
10.1016/j.tust.2023.105266_b23
10.1016/j.tust.2023.105266_b45
Cha (10.1016/j.tust.2023.105266_b3) 2017; 32
Huang (10.1016/j.tust.2023.105266_b12) 2018; 77
Li (10.1016/j.tust.2023.105266_b18) 2021; 47
Beniwal (10.1016/j.tust.2023.105266_b1) 2015; 62
Otsu (10.1016/j.tust.2023.105266_b26) 1979; 9
Dang (10.1016/j.tust.2023.105266_b6) 2022; 124
Chao (10.1016/j.tust.2023.105266_b4) 2020; 14
Rubio (10.1016/j.tust.2023.105266_b32) 2019; 112
Dawood (10.1016/j.tust.2023.105266_b7) 2017; 81
Xue (10.1016/j.tust.2023.105266_b41) 2018; 33
Ronneberger (10.1016/j.tust.2023.105266_b30) 2015
Zhao (10.1016/j.tust.2023.105266_b47) 2020; 95
Zhao (10.1016/j.tust.2023.105266_b48) 2021; 132
10.1016/j.tust.2023.105266_b5
10.1016/j.tust.2023.105266_b2
Wang (10.1016/j.tust.2023.105266_b37) 2019
10.1016/j.tust.2023.105266_b9
Krizhevsky (10.1016/j.tust.2023.105266_b16) 2012; 25
Xu (10.1016/j.tust.2023.105266_b40) 2021; 178
Huang (10.1016/j.tust.2023.105266_b13) 2021; 108
O’Brien (10.1016/j.tust.2023.105266_b25) 2023; 131
10.1016/j.tust.2023.105266_b38
Xue (10.1016/j.tust.2023.105266_b42) 2020; 20
Liu (10.1016/j.tust.2023.105266_b21) 2018
Salman (10.1016/j.tust.2023.105266_b33) 2013
10.1016/j.tust.2023.105266_b35
10.1016/j.tust.2023.105266_b11
10.1016/j.tust.2023.105266_b10
Victores (10.1016/j.tust.2023.105266_b36) 2011; 20
Simonyan (10.1016/j.tust.2023.105266_b34) 2014
Zhang (10.1016/j.tust.2023.105266_b44) 1984; 27
Poudel (10.1016/j.tust.2023.105266_b28) 2019
10.1016/j.tust.2023.105266_b19
Kong (10.1016/j.tust.2023.105266_b15) 2016
10.1016/j.tust.2023.105266_b39
References_xml – volume: 33
  start-page: 638
  year: 2018
  end-page: 654
  ident: b41
  article-title: A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 25
  year: 2012
  ident: b16
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 234
  year: 2020
  ident: b29
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Constr. Build. Mater.
– reference: Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 418–434.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b26
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 47
  year: 2021
  ident: b18
  article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system
  publication-title: Adv. Eng. Inform.
– volume: 59
  start-page: 99
  year: 2015
  end-page: 112
  ident: b24
  article-title: Past, present and future of robotic tunnel inspection
  publication-title: Autom. Constr.
– volume: 108
  year: 2021
  ident: b13
  article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
  publication-title: Tunn. Undergr. Space Technol.
– reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141.
– reference: Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large kernel matters–improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4353–4361.
– reference: Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3146–3154.
– volume: 104
  start-page: 129
  year: 2019
  end-page: 139
  ident: b20
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. Constr.
– volume: 338
  start-page: 139
  year: 2019
  end-page: 153
  ident: b22
  article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
– volume: 27
  start-page: 236
  year: 1984
  end-page: 239
  ident: b44
  article-title: A fast parallel algorithm for thinning digital patterns
  publication-title: Commun. ACM
– volume: 131
  year: 2023
  ident: b25
  article-title: Automated crack classification for the CERN underground tunnel infrastructure using deep learning
  publication-title: Tunn. Undergr. Space Technol.
– volume: 108
  year: 2021
  ident: b17
  article-title: A novel tunnel-lining crack recognition system based on digital image technology
  publication-title: Tunn. Undergr. Space Technol.
– start-page: 188
  year: 2018
  end-page: 192
  ident: b21
  article-title: Research on cracks image detection system for subway tunnel
  publication-title: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference
– volume: 14
  start-page: 75
  year: 2020
  end-page: 83
  ident: b4
  article-title: Refinement identification and evaluation of tunnel lining cracks
  publication-title: J. Highw. Transp. Res. Dev.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9.
– reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890.
– volume: 132
  year: 2021
  ident: b48
  article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images
  publication-title: Autom. Constr.
– volume: 20
  start-page: 629
  year: 2011
  end-page: 636
  ident: b36
  article-title: Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration
  publication-title: Autom. Constr.
– start-page: 2039
  year: 2013
  end-page: 2044
  ident: b33
  article-title: Pavement crack detection using the gabor filter
  publication-title: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)
– reference: Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801–818.
– volume: 95
  year: 2020
  ident: b47
  article-title: Deep learning–based image instance segmentation for moisture marks of shield tunnel lining
  publication-title: Tunn. Undergr. Space Technol.
– year: 2019
  ident: b28
  article-title: Fast-scnn: Fast semantic segmentation network
– start-page: 1860
  year: 2019
  end-page: 1864
  ident: b37
  article-title: Lednet: A lightweight encoder-decoder network for real-time semantic segmentation
  publication-title: 2019 IEEE International Conference on Image Processing
– volume: 77
  start-page: 166
  year: 2018
  end-page: 176
  ident: b12
  article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel
  publication-title: Tunn. Undergr. Space Technol.
– reference: Berman, M., Triki, A.R., Blaschko, M.B., 2018. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4413–4421.
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: b3
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2980–2988.
– volume: 178
  year: 2021
  ident: b40
  article-title: Automatic defect detection and segmentation of tunnel surface using modified mask R-CNN
  publication-title: Measurement
– reference: Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2022. Resnest: Split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2736–2746.
– year: 2014
  ident: b34
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 62
  start-page: 112
  year: 2015
  end-page: 125
  ident: b1
  article-title: Defect detection around rebars in concrete using focused ultrasound and reverse time migration
  publication-title: Ultrasonics
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  ident: b8
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
– start-page: 140
  year: 2016
  end-page: 143
  ident: b15
  article-title: Analysis of tunnel monitoring results based on modulus maxima method of wavelet transform
  publication-title: 2016 9th International Symposium on Computational Intelligence and Design, Vol. 1
– volume: 20
  start-page: 3973
  year: 2020
  ident: b42
  article-title: Dynamic partition Gaussian crack detection algorithm based on projection curve distribution
  publication-title: Sensors
– reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440.
– volume: 16
  start-page: 255
  year: 2007
  end-page: 261
  ident: b43
  article-title: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel
  publication-title: Autom. Constr.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b30
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 124
  year: 2022
  ident: b6
  article-title: Automatic tunnel lining crack evaluation and measurement using deep learning
  publication-title: Tunn. Undergr. Space Technol.
– volume: 81
  start-page: 149
  year: 2017
  end-page: 160
  ident: b7
  article-title: Machine vision-based model for spalling detection and quantification in subway networks
  publication-title: Autom. Constr.
– volume: 275
  year: 2023
  ident: b31
  article-title: Convolutional networks and transformers for intelligent road tunnel investigations
  publication-title: Comput. Struct.
– volume: 32
  start-page: 188
  year: 2017
  end-page: 201
  ident: b14
  article-title: Inspection equipment study for subway tunnel defects by grey-scale image processing
  publication-title: Adv. Eng. Inform.
– volume: 112
  year: 2019
  ident: b32
  article-title: Multi-class structural damage segmentation using fully convolutional networks
  publication-title: Comput. Ind.
– reference: Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1492–1500.
– volume: 32
  start-page: 188
  year: 2017
  ident: 10.1016/j.tust.2023.105266_b14
  article-title: Inspection equipment study for subway tunnel defects by grey-scale image processing
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2017.03.003
– volume: 81
  start-page: 149
  year: 2017
  ident: 10.1016/j.tust.2023.105266_b7
  article-title: Machine vision-based model for spalling detection and quantification in subway networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.06.008
– volume: 338
  start-page: 139
  year: 2019
  ident: 10.1016/j.tust.2023.105266_b22
  article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.036
– volume: 59
  start-page: 99
  year: 2015
  ident: 10.1016/j.tust.2023.105266_b24
  article-title: Past, present and future of robotic tunnel inspection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.02.003
– start-page: 1860
  year: 2019
  ident: 10.1016/j.tust.2023.105266_b37
  article-title: Lednet: A lightweight encoder-decoder network for real-time semantic segmentation
– volume: 47
  year: 2021
  ident: 10.1016/j.tust.2023.105266_b18
  article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101206
– start-page: 2039
  year: 2013
  ident: 10.1016/j.tust.2023.105266_b33
  article-title: Pavement crack detection using the gabor filter
– ident: 10.1016/j.tust.2023.105266_b11
  doi: 10.1109/CVPR.2018.00745
– volume: 14
  start-page: 75
  issue: 1
  year: 2020
  ident: 10.1016/j.tust.2023.105266_b4
  article-title: Refinement identification and evaluation of tunnel lining cracks
  publication-title: J. Highw. Transp. Res. Dev.
– ident: 10.1016/j.tust.2023.105266_b38
  doi: 10.1007/978-3-030-01228-1_26
– volume: 25
  year: 2012
  ident: 10.1016/j.tust.2023.105266_b16
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2014
  ident: 10.1016/j.tust.2023.105266_b34
– volume: 104
  start-page: 129
  year: 2019
  ident: 10.1016/j.tust.2023.105266_b20
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.005
– volume: 234
  year: 2020
  ident: 10.1016/j.tust.2023.105266_b29
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117367
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  ident: 10.1016/j.tust.2023.105266_b3
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: 95
  year: 2020
  ident: 10.1016/j.tust.2023.105266_b47
  article-title: Deep learning–based image instance segmentation for moisture marks of shield tunnel lining
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.103156
– volume: 178
  year: 2021
  ident: 10.1016/j.tust.2023.105266_b40
  article-title: Automatic defect detection and segmentation of tunnel surface using modified mask R-CNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109316
– ident: 10.1016/j.tust.2023.105266_b5
  doi: 10.1007/978-3-030-01234-2_49
– volume: 20
  start-page: 629
  issue: 5
  year: 2011
  ident: 10.1016/j.tust.2023.105266_b36
  article-title: Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2010.12.005
– ident: 10.1016/j.tust.2023.105266_b45
  doi: 10.1109/CVPRW56347.2022.00309
– volume: 108
  year: 2021
  ident: 10.1016/j.tust.2023.105266_b17
  article-title: A novel tunnel-lining crack recognition system based on digital image technology
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103724
– volume: 108
  year: 2021
  ident: 10.1016/j.tust.2023.105266_b13
  article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103677
– ident: 10.1016/j.tust.2023.105266_b19
  doi: 10.1109/ICCV.2017.324
– volume: 275
  year: 2023
  ident: 10.1016/j.tust.2023.105266_b31
  article-title: Convolutional networks and transformers for intelligent road tunnel investigations
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2022.106918
– volume: 124
  year: 2022
  ident: 10.1016/j.tust.2023.105266_b6
  article-title: Automatic tunnel lining crack evaluation and measurement using deep learning
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104472
– volume: 77
  start-page: 166
  year: 2018
  ident: 10.1016/j.tust.2023.105266_b12
  article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.04.002
– volume: 16
  start-page: 255
  issue: 3
  year: 2007
  ident: 10.1016/j.tust.2023.105266_b43
  article-title: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2006.05.003
– ident: 10.1016/j.tust.2023.105266_b27
  doi: 10.1109/CVPR.2017.189
– volume: 132
  year: 2021
  ident: 10.1016/j.tust.2023.105266_b48
  article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103934
– ident: 10.1016/j.tust.2023.105266_b39
  doi: 10.1109/CVPR.2017.634
– volume: 20
  start-page: 3973
  issue: 14
  year: 2020
  ident: 10.1016/j.tust.2023.105266_b42
  article-title: Dynamic partition Gaussian crack detection algorithm based on projection curve distribution
  publication-title: Sensors
  doi: 10.3390/s20143973
– volume: 62
  start-page: 112
  year: 2015
  ident: 10.1016/j.tust.2023.105266_b1
  article-title: Defect detection around rebars in concrete using focused ultrasound and reverse time migration
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2015.05.008
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.tust.2023.105266_b26
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– ident: 10.1016/j.tust.2023.105266_b23
  doi: 10.1109/CVPR.2015.7298965
– ident: 10.1016/j.tust.2023.105266_b46
  doi: 10.1109/CVPR.2017.660
– ident: 10.1016/j.tust.2023.105266_b35
  doi: 10.1109/CVPR.2015.7298594
– ident: 10.1016/j.tust.2023.105266_b9
  doi: 10.1109/CVPR.2019.00326
– volume: 131
  year: 2023
  ident: 10.1016/j.tust.2023.105266_b25
  article-title: Automated crack classification for the CERN underground tunnel infrastructure using deep learning
  publication-title: Tunn. Undergr. Space Technol.
– year: 2019
  ident: 10.1016/j.tust.2023.105266_b28
– start-page: 188
  year: 2018
  ident: 10.1016/j.tust.2023.105266_b21
  article-title: Research on cracks image detection system for subway tunnel
– start-page: 140
  year: 2016
  ident: 10.1016/j.tust.2023.105266_b15
  article-title: Analysis of tunnel monitoring results based on modulus maxima method of wavelet transform
– volume: 27
  start-page: 236
  issue: 3
  year: 1984
  ident: 10.1016/j.tust.2023.105266_b44
  article-title: A fast parallel algorithm for thinning digital patterns
  publication-title: Commun. ACM
  doi: 10.1145/357994.358023
– start-page: 234
  year: 2015
  ident: 10.1016/j.tust.2023.105266_b30
  article-title: U-net: Convolutional networks for biomedical image segmentation
– ident: 10.1016/j.tust.2023.105266_b10
  doi: 10.1109/CVPR.2016.90
– volume: 112
  year: 2019
  ident: 10.1016/j.tust.2023.105266_b32
  article-title: Multi-class structural damage segmentation using fully convolutional networks
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.08.002
– ident: 10.1016/j.tust.2023.105266_b2
  doi: 10.1109/CVPR.2018.00464
– volume: 99
  start-page: 52
  year: 2019
  ident: 10.1016/j.tust.2023.105266_b8
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.028
– volume: 33
  start-page: 638
  issue: 8
  year: 2018
  ident: 10.1016/j.tust.2023.105266_b41
  article-title: A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12367
SSID ssj0005229
Score 2.4765654
Snippet We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105266
SubjectTerms Convolutional neural network
Image processing algorithm
Intelligent detection
Semantic segmentation
Structural health monitoring
Subway tunnel
Title Image-based intelligent detection of typical defects of complex subway tunnel surface
URI https://dx.doi.org/10.1016/j.tust.2023.105266
Volume 140
WOSCitedRecordID wos001037189300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0886-7798
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005229
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgM9VDxFW0B74BYZ-bHrzR4jVEQ5VEikUuBivC_aKrhp6rQpv54Z79oxLaoAiYuVbLzrZOfT7DeTeRDymicGTp2SR0Y4HjEHNutIJyxSsRWllsZkTjXNJsTh4Wg6lR8Hg69tLszlTFTVaLWS8_8qahgDYWPq7F-Iu1sUBuA1CB2uIHa4_pHgD76DiojwdDJNMQhfcLMeGltb3fLD-nru_5-xXThHE1xuV8OLpboqgZMuMQIG3i1cqX-JF5o0n8za7EbMQltgcgh64MECt8P6lrt-uvT2_4_jk7UH32uZzyUYxuH4REIdQoTH1Xl365fjMP0csPyt76dI1xFvwXnWJtCso5W8jsuB4PtG1J1C9gWcbil372c4fVNjMgo-ApsUp_mNStrN2fwJF8Z1wcICBpXLe2QzFVyC3tscH-xPP_TCgJpOdt0XCYlVPgbw5pN-T156hGTykGwHS4KOPQIekYGtHpOtXn3JJ-SohwXawwLtsEDPHA1YoAELOBSwQD0WqMcCDVh4So7e7U_evo9CH41Iw6-vIytjV5aJzXKutBKxUAb0fKo0t6mMRyZluZQKLO-kRIIvMuY0syxlmXOO2yR7Rjaqs8o-JxTMf8MMc9JxBbRGg7WTaCWdylScGGF2SNJuUKFDkXnsdTIr2mjC0wI3tcBNLfym7pBhN2fuS6zceTdv970IJNGTvwJgcse83X-ct0cerNH8gmzUi6V9Se7ry_rkYvEqoOknE5qQiw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-based+intelligent+detection+of+typical+defects+of+complex+subway+tunnel+surface&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Xu%2C+Lizhi&rft.au=Wang%2C+Yaodong&rft.au=Dong%2C+Anqi&rft.au=Zhu%2C+Liqiang&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.volume=140&rft_id=info:doi/10.1016%2Fj.tust.2023.105266&rft.externalDocID=S0886779823002869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon