Evaluation of students' performance during the academic period using the XG-Boost Classifier-Enhanced AEO hybrid model

The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to not only pinpoint potential challenges but also to craft targeted strategies and interventions that are tailored to the unique needs of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 238; S. 122136
Hauptverfasser: Cheng, Biqian, Liu, Yuping, Jia, Yunjian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.03.2024
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to not only pinpoint potential challenges but also to craft targeted strategies and interventions that are tailored to the unique needs of students. This multifaceted approach enables educational institutions to proactively address issues within the education system, fostering a more equitable and effective learning environment for all, while simultaneously fostering a culture of continuous improvement and accountability in the pursuit of educational excellence. Hence, the current investigation aims to classify and predict the students' performance by examining and comparing the machine learning and artificial neural network assessments. Five methods of the Random Forest Classifier, the Decision Tree Classifier, the K Neighbors Classifier, the MLP Classifier, and the XG-Boost Classifier are used. These methods' performances are compared through the accuracy, precision, recall, and F1-score indicators. This comparison is applied to the base data and balanced data, which is carried out by the SVM-SMOTE technique. Finally, five metaheuristic algorithms are applied to the selected method to evaluate the performance indicators of the hybrid models. The results indicate that applying the SVM-SMOTE technique improves the methods' performance, in which the XG-Boost represented the best performance. As a result, the metaheuristic algorithms are applied to the XG-Boost, yielding to 9.33%, 8.44%, 9.33%, and 9.27% enhancement of the Accuracy, Precision, Recall and F1-Score values. Subsequently, the Enhanced Artificial Ecosystem-Based Optimization +XG-Boost hybrid method provides the accuracy and F1-score values of 0.9417 and 0.9413. These results underscore the potential of combining machine learning techniques with metaheuristic algorithms to enhance the accuracy and effectiveness of predicting and classifying students' performance, thus providing valuable insights for educational administrators to address issues and improve the education system.
AbstractList The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to not only pinpoint potential challenges but also to craft targeted strategies and interventions that are tailored to the unique needs of students. This multifaceted approach enables educational institutions to proactively address issues within the education system, fostering a more equitable and effective learning environment for all, while simultaneously fostering a culture of continuous improvement and accountability in the pursuit of educational excellence. Hence, the current investigation aims to classify and predict the students' performance by examining and comparing the machine learning and artificial neural network assessments. Five methods of the Random Forest Classifier, the Decision Tree Classifier, the K Neighbors Classifier, the MLP Classifier, and the XG-Boost Classifier are used. These methods' performances are compared through the accuracy, precision, recall, and F1-score indicators. This comparison is applied to the base data and balanced data, which is carried out by the SVM-SMOTE technique. Finally, five metaheuristic algorithms are applied to the selected method to evaluate the performance indicators of the hybrid models. The results indicate that applying the SVM-SMOTE technique improves the methods' performance, in which the XG-Boost represented the best performance. As a result, the metaheuristic algorithms are applied to the XG-Boost, yielding to 9.33%, 8.44%, 9.33%, and 9.27% enhancement of the Accuracy, Precision, Recall and F1-Score values. Subsequently, the Enhanced Artificial Ecosystem-Based Optimization +XG-Boost hybrid method provides the accuracy and F1-score values of 0.9417 and 0.9413. These results underscore the potential of combining machine learning techniques with metaheuristic algorithms to enhance the accuracy and effectiveness of predicting and classifying students' performance, thus providing valuable insights for educational administrators to address issues and improve the education system.
ArticleNumber 122136
Author Liu, Yuping
Jia, Yunjian
Cheng, Biqian
Author_xml – sequence: 1
  givenname: Biqian
  surname: Cheng
  fullname: Cheng, Biqian
  email: biqiancheng1@126.com
  organization: Postdoctoral Station, China University of Political Science and Law, Beijing100088, Beijing, China
– sequence: 2
  givenname: Yuping
  surname: Liu
  fullname: Liu, Yuping
  organization: School Of Criminal Justice, China University of Political Science and Law, Beijing100088, Beijing, China
– sequence: 3
  givenname: Yunjian
  orcidid: 0009-0007-6711-7819
  surname: Jia
  fullname: Jia, Yunjian
  organization: College of Communication Engineering, Chongqing University, Chongqing, 400044, China
BookMark eNp9kDtPwzAYRS1UJErhDzB5Y0rxI81DYilVKEiVuoDEZjn2Z-oqiSvbKeq_p6GwMHS6w9W50j3XaNS5DhC6o2RKCc0etlMIX3LKCONTyhjl2QUa0yLnSZaXfITGpJzlSUrz9Apdh7AlhOaE5GO0r_ay6WW0rsPO4BB7DV0M93gH3jjfyk4B1r233SeOG8BSSQ2tVUNvncZ9-Gs-lsmTcyHiRSNDsMaCT6puMwxoPK_WeHOovdW4dRqaG3RpZBPg9jcn6P25elu8JKv18nUxXyWKExITKKTOVZnqmsvaEF1mvJQzms6AlSbT1KRMZdSYOiM8UykwoEBNURQKSqqI5hNUnHaVdyF4MELZ-PM2emkbQYkY_ImtGPyJwZ84-Tui7B-687aV_nAeejxBcDy1PyoQQVkYFFgPKgrt7Dn8GzFSjd4
CitedBy_id crossref_primary_10_3390_mca30030059
crossref_primary_10_1016_j_patcog_2024_111265
crossref_primary_10_7717_peerj_cs_3090
crossref_primary_10_1007_s11042_025_20718_0
crossref_primary_10_1016_j_engappai_2025_112192
crossref_primary_10_1016_j_aei_2024_102459
crossref_primary_10_1016_j_ijhydene_2024_09_295
crossref_primary_10_1016_j_rechem_2025_102456
crossref_primary_10_1016_j_istruc_2024_107734
crossref_primary_10_3390_fi17040182
crossref_primary_10_1007_s10489_024_05483_1
crossref_primary_10_1063_5_0235356
crossref_primary_10_1371_journal_pone_0314823
crossref_primary_10_1038_s41598_025_12353_4
crossref_primary_10_3390_pr13030754
crossref_primary_10_1016_j_chroma_2025_466014
crossref_primary_10_7717_peerj_cs_3032
crossref_primary_10_1016_j_neucom_2025_130538
Cites_doi 10.29252/edcj.12.35.19
10.1007/s10489-012-0374-8
10.5120/ijca2019918466
10.1177/003754970107600201
10.1016/j.eswa.2023.120576
10.3390/app10113894
10.1109/ACCESS.2020.2981905
10.1016/j.fss.2018.11.006
10.1109/ACCESS.2020.2986809
10.1109/TSMCC.2010.2053532
10.1007/s00521-019-04452-x
10.20448/2003.31.17.23
10.1016/j.aci.2018.08.003
10.1016/j.amc.2006.11.033
10.1088/1757-899X/928/3/032019
10.1109/ACCESS.2020.3027654
10.1007/978-3-319-30298-0_70
10.3390/app112311534
10.3233/APC210137
10.1016/j.energy.2023.127069
10.13189/wjcat.2014.020203
10.1016/j.compbiomed.2021.104664
10.1016/j.epsr.2016.09.002
10.1109/TKDE.2019.2924374
10.3389/fnagi.2017.00329
10.1016/j.jsp.2011.03.006
10.1109/ACCESS.2021.3052884
10.1504/IJKESDP.2011.039875
10.3389/fpsyg.2020.00233
10.1016/j.asoc.2015.02.014
10.1016/j.aej.2021.02.009
10.1007/s10462-018-9620-8
10.1007/s10639-020-10316-y
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.122136
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_122136
S0957417423026386
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-e8ad7c94db3abf0d9639a5145e29f6d1f42c61ffb6036c4e2e1e1f888ce91c0d3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001096456400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:07:44 EST 2025
Tue Nov 18 20:55:30 EST 2025
Fri Feb 23 02:34:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic optimization algorithms
XG-Boost Classifier
Student performance evaluation
Machine learning methods
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-e8ad7c94db3abf0d9639a5145e29f6d1f42c61ffb6036c4e2e1e1f888ce91c0d3
ORCID 0009-0007-6711-7819
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_122136
crossref_primary_10_1016_j_eswa_2023_122136
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122136
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Huang, Yin, Chen, Xiong, Su, Hu (b0120) 2021; 33
Al-Shehri, Al-Qarni, Al-Saati, Batoaq, Badukhen, Alrashed, Olatunji (b0020) 2017
Mahdavi, Fesanghary, Damangir (b0130) 2007; 188
Tair, El-Halees (b0230) 2012; 2
Hlosta, Zdrahal, Zendulka (b0090) 2017
Eid, Kamel, Korashy, Khurshaid (b0055) 2020; 8
Özlem, Güngör (b0170) 2012; 106
Costa-Mendes, Oliveira, Castelli, Cruz-Jesus (b0045) 2021; 26
Chandra, Nandhini (b0030) 2010; 47
Mercer, Nellis, Martínez, Kirk (b0145) 2011; 49
Baker, Yacef (b0025) 2009; 1
Nguyen, Cooper, Kamei (b0150) 2011; 3
Ghorbani, Ghousi (b0070) 2020; 8
Osmanbegovic, Suljic (b0165) 2012; 10
639–644.
Sarkar, Khan, Singh, Noorwali, Chakraborty, Pani (b0215) 2021; 9
De Albuquerque, Bezerra, de Souza, do Nascimento, L. B. P., de Mesquita Sá, J. J., & do Nascimento, J. C. (b0050) 2015; 2015
Yu, Li (b0250) 2015; 30
Ahmed, Elaraby (b0015) 2014; 2
Hamza, Kommers (b0075) 2018; 3
Prabha, Yadav, Rani, Singh (b0185) 2021; 136
Abdi, Zandipayam (b0005) 2019; 12
Geem, Kim, Loganathan (b0065) 2001; 76
Zafari, Sadeghi-Niaraki, Choi, Esmaeily (b0255) 2021; 11
Abidine, M. B., & Fergani, B. (2016). Comparing HMM, LDA, SVM and Smote-SVM algorithms in classifying human activities.
Kumar, Garg (b0115) 2019
Hu, Song (b0095) 2019; 1324
Hussain, Zhu, Zhang, Abidi, Ali (b0100) 2019; 52
Shakibi, Faal, Assareh, Agarwal, Yari, Latifi, Lee (b0220) 2023; 278
Chen, He, Benesty, Khotilovich, Tang, Cho, Zhou (b0035) 2015; 1
Ofori, Maina, Gitonga (b0160) 2020; 4
Rastgoo, Khajavi (b0195) 2023; 229
Tharwat (b0235) 2021; 17
Priya, Ankit, Divyansh (b0190) 2021
Sarica, Cerasa, Quattrone (b0210) 2017; 9
Romero, Ventura (b0200) 2010; 40
Coleman, Baker, Stephenson (b0040) 2019
Sánchez, Gilar-Corbi, Castejón, Vidal, León (b0205) 2020; 11
Hasan, Palaniappan, Mahmood, Abbas, Sarker, Sattar (b0080) 2020; Vol. 10, Issue 11
Shirisha, Divyajyothi, Prashanthi, Sowmya (b0225) 2023
Hashim, Awadh, Hamoud (b0085) 2020; 928
Khajavi, Rastgoo (b0105) 2023; 272
Yan, Wang, Jiang, Chao, Chen (b0245) 2022; 2022
Pandya (b0175) 2016
Mengash (b0140) 2020; 8
Márquez-Vera, Cano, Romero, Ventura (b0135) 2013; 38
Obiedat (b0155) 2020; 9
Trabelsi, Elouedi, Lefevre (b0240) 2019; 366
Luo (b0125) 2021; 60
Khakata, Omwenga, Msanjila (b0110) 2019; 181
Zhao, Wang, Zhang (b0260) 2020; 32
Panigrahi, Borah, Day, Babo, Ashour (b0180) 2018
El-bages, Elsayed (b0060) 2017; 143
Hussain (10.1016/j.eswa.2023.122136_b0100) 2019; 52
Luo (10.1016/j.eswa.2023.122136_b0125) 2021; 60
Chandra (10.1016/j.eswa.2023.122136_b0030) 2010; 47
Sarkar (10.1016/j.eswa.2023.122136_b0215) 2021; 9
Zafari (10.1016/j.eswa.2023.122136_b0255) 2021; 11
Sarica (10.1016/j.eswa.2023.122136_b0210) 2017; 9
Nguyen (10.1016/j.eswa.2023.122136_b0150) 2011; 3
Yu (10.1016/j.eswa.2023.122136_b0250) 2015; 30
Abdi (10.1016/j.eswa.2023.122136_b0005) 2019; 12
10.1016/j.eswa.2023.122136_b0010
Obiedat (10.1016/j.eswa.2023.122136_b0155) 2020; 9
Tharwat (10.1016/j.eswa.2023.122136_b0235) 2021; 17
Khajavi (10.1016/j.eswa.2023.122136_b0105) 2023; 272
Priya (10.1016/j.eswa.2023.122136_b0190) 2021
Hu (10.1016/j.eswa.2023.122136_b0095) 2019; 1324
Mercer (10.1016/j.eswa.2023.122136_b0145) 2011; 49
Rastgoo (10.1016/j.eswa.2023.122136_b0195) 2023; 229
Zhao (10.1016/j.eswa.2023.122136_b0260) 2020; 32
Geem (10.1016/j.eswa.2023.122136_b0065) 2001; 76
Prabha (10.1016/j.eswa.2023.122136_b0185) 2021; 136
Panigrahi (10.1016/j.eswa.2023.122136_b0180) 2018
Al-Shehri (10.1016/j.eswa.2023.122136_b0020) 2017
Hamza (10.1016/j.eswa.2023.122136_b0075) 2018; 3
Ghorbani (10.1016/j.eswa.2023.122136_b0070) 2020; 8
Sánchez (10.1016/j.eswa.2023.122136_b0205) 2020; 11
Hasan (10.1016/j.eswa.2023.122136_b0080) 2020; 10
De Albuquerque (10.1016/j.eswa.2023.122136_b0050) 2015
Costa-Mendes (10.1016/j.eswa.2023.122136_b0045) 2021; 26
Hashim (10.1016/j.eswa.2023.122136_b0085) 2020; 928
Baker (10.1016/j.eswa.2023.122136_b0025) 2009; 1
El-bages (10.1016/j.eswa.2023.122136_b0060) 2017; 143
Mengash (10.1016/j.eswa.2023.122136_b0140) 2020; 8
Özlem (10.1016/j.eswa.2023.122136_b0170) 2012; 106
Shirisha (10.1016/j.eswa.2023.122136_b0225) 2023
Kumar (10.1016/j.eswa.2023.122136_b0115) 2019
Trabelsi (10.1016/j.eswa.2023.122136_b0240) 2019; 366
Pandya (10.1016/j.eswa.2023.122136_b0175) 2016
Ofori (10.1016/j.eswa.2023.122136_b0160) 2020; 4
Ahmed (10.1016/j.eswa.2023.122136_b0015) 2014; 2
Hlosta (10.1016/j.eswa.2023.122136_b0090) 2017
Khakata (10.1016/j.eswa.2023.122136_b0110) 2019; 181
Mahdavi (10.1016/j.eswa.2023.122136_b0130) 2007; 188
Coleman (10.1016/j.eswa.2023.122136_b0040) 2019
Eid (10.1016/j.eswa.2023.122136_b0055) 2020; 8
Romero (10.1016/j.eswa.2023.122136_b0200) 2010; 40
Tair (10.1016/j.eswa.2023.122136_b0230) 2012; 2
Yan (10.1016/j.eswa.2023.122136_b0245) 2022; 2022
Márquez-Vera (10.1016/j.eswa.2023.122136_b0135) 2013; 38
Chen (10.1016/j.eswa.2023.122136_b0035) 2015; 1
Liu (10.1016/j.eswa.2023.122136_b0120) 2021; 33
Osmanbegovic (10.1016/j.eswa.2023.122136_b0165) 2012; 10
References_xml – volume: 2015
  start-page: 109
  year: 2015
  end-page: 113
  ident: b0050
  article-title: Using neural networks to predict the future performance of students
  publication-title: International Symposium on Computers in Education (SIIE)
– volume: 143
  start-page: 235
  year: 2017
  end-page: 243
  ident: b0060
  article-title: Social spider algorithm for solving the transmission expansion planning problem
  publication-title: Electric Power Systems Research
– volume: 10
  start-page: 3
  year: 2012
  end-page: 12
  ident: b0165
  article-title: Data mining approach for predicting student performance
  publication-title: Economic Review: Journal of Economics and Business
– volume: Vol. 10, Issue 11
  year: 2020
  ident: b0080
  article-title: Predicting Student Performance in Higher Educational Institutions Using Video Learning Analytics and Data Mining Techniques. In
  publication-title: Applied Sciences
– volume: 33
  start-page: 100
  year: 2021
  end-page: 115
  ident: b0120
  article-title: EKT: Exercise-Aware Knowledge Tracing for Student Performance Prediction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 11
  start-page: 11534
  year: 2021
  ident: b0255
  article-title: A practical model for the evaluation of high school student performance based on machine learning
  publication-title: Applied Sciences
– volume: 229
  year: 2023
  ident: b0195
  article-title: A novel study on forecasting the airfoil self-noise, using a hybrid model based on the combination of CatBoost and Arithmetic Optimization Algorithm
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 315
  year: 2013
  end-page: 330
  ident: b0135
  article-title: Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data
  publication-title: Applied Intelligence
– volume: 2
  start-page: 43
  year: 2014
  end-page: 47
  ident: b0015
  article-title: Data mining: A prediction for student’s performance using classification method
  publication-title: World Journal of Computer Application and Technology
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b0065
  article-title: A New Heuristic Optimization Algorithm: Harmony Search
  publication-title: SIMULATION
– volume: 272
  year: 2023
  ident: b0105
  article-title: Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms
  publication-title: Energy
– volume: 32
  start-page: 9383
  year: 2020
  end-page: 9425
  ident: b0260
  article-title: Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Computing and Applications
– volume: 9
  start-page: 16435
  year: 2021
  end-page: 16447
  ident: b0215
  article-title: Artificial Neural Synchronization Using Nature Inspired Whale Optimization
  publication-title: IEEE Access
– volume: 8
  start-page: 67899
  year: 2020
  end-page: 67911
  ident: b0070
  article-title: Comparing different resampling methods in predicting students’ performance using machine learning techniques
  publication-title: IEEE Access
– start-page: 167
  year: 2021
  end-page: 174
  ident: b0190
  article-title: Student performance prediction using machine learning. In
– volume: 9
  year: 2020
  ident: b0155
  article-title: A comparative study of different data mining algorithms with different oversampling techniques in predicting online shopper behavior
  publication-title: International Journal
– volume: 8
  start-page: 55462
  year: 2020
  end-page: 55470
  ident: b0140
  article-title: Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems
  publication-title: IEEE Access
– volume: 11
  start-page: 233
  year: 2020
  ident: b0205
  article-title: Students’ evaluation of teaching and their academic achievement in a higher education institution of Ecuador
  publication-title: Frontiers in Psychology
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0020
  article-title: Student performance prediction using Support Vector Machine and K-Nearest Neighbor
  publication-title: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)
– volume: 40
  start-page: 601
  year: 2010
  end-page: 618
  ident: b0200
  article-title: Educational data mining: A review of the state of the art
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 49
  start-page: 323
  year: 2011
  end-page: 338
  ident: b0145
  article-title: Supporting the students most in need: Academic self-efficacy and perceived teacher support in relation to within-year academic growth
  publication-title: Journal of School Psychology
– reference: , 639–644.
– volume: 2
  year: 2012
  ident: b0230
  article-title: Mining educational data to improve students’ performance: A case study
  publication-title: International Journal of Information
– volume: 928
  start-page: 32019
  year: 2020
  ident: b0085
  article-title: Student performance prediction model based on supervised machine learning algorithms
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 1
  start-page: 3
  year: 2009
  end-page: 17
  ident: b0025
  article-title: The state of educational data mining in 2009: A review and future visions
  publication-title: Journal of Educational Data Mining
– start-page: 1092
  year: 2023
  end-page: 1096
  ident: b0225
  article-title: Student Data Analysis using Hadoop
  publication-title: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS)
– volume: 1324
  start-page: 12091
  year: 2019
  ident: b0095
  article-title: Research on XGboost academic forecasting and analysis modelling
  publication-title: Journal of Physics: Conference Series
– start-page: 6
  year: 2017
  end-page: 15
  ident: b0090
  article-title: Ouroboros: Early identification of at-risk students without models based on legacy data
  publication-title: Proceedings of the Seventh International Learning Analytics & Knowledge Conference
– volume: 26
  start-page: 1527
  year: 2021
  end-page: 1547
  ident: b0045
  article-title: A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach
  publication-title: Education and Information Technologies
– start-page: 1
  year: 2018
  ident: b0180
  article-title: Classification and analysis of facebook metrics dataset using supervised classifiers
– volume: 3
  start-page: 17
  year: 2018
  end-page: 23
  ident: b0075
  article-title: A review of educational data mining tools & techniques
  publication-title: International Journal of Educational Technology and Learning
– reference: Abidine, M. B., & Fergani, B. (2016). Comparing HMM, LDA, SVM and Smote-SVM algorithms in classifying human activities.
– volume: 188
  start-page: 1567
  year: 2007
  end-page: 1579
  ident: b0130
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Applied Mathematics and Computation
– volume: 136
  year: 2021
  ident: b0185
  article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier
  publication-title: Computers in Biology and Medicine
– volume: 12
  start-page: 19
  year: 2019
  end-page: 26
  ident: b0005
  article-title: Prediction of academic performance based on dimensions of academic identity and flourishing among students of the University of Medical Sciences
  publication-title: Journal of Medical Education Development
– volume: 8
  start-page: 178493
  year: 2020
  end-page: 178513
  ident: b0055
  article-title: An enhanced artificial ecosystem-based optimization for optimal allocation of multiple distributed generations
  publication-title: IEEE Access
– volume: 9
  start-page: 329
  year: 2017
  ident: b0210
  article-title: Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review
  publication-title: Frontiers in Aging Neuroscience
– volume: 181
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0110
  article-title: Student performance prediction on internet mediated environments using decision trees
  publication-title: Int. J. Comput. Appl
– volume: 278
  year: 2023
  ident: b0220
  article-title: Design and multi-objective optimization of a multi-generation system based on PEM electrolyzer, RO unit, absorption cooling system, and ORC utilizing machine learning approaches; a case study of Australia
  publication-title: Energy
– volume: 3
  start-page: 4
  year: 2011
  end-page: 21
  ident: b0150
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms
– volume: 52
  start-page: 381
  year: 2019
  end-page: 407
  ident: b0100
  article-title: Using machine learning to predict student difficulties from learning session data
  publication-title: Artificial Intelligence Review
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 5
  ident: b0245
  article-title: Maximum F1-Score Training for End-to-End Mispronunciation Detection and Diagnosis of L2 English Speech
  publication-title: IEEE International Conference on Multimedia and Expo (ICME)
– volume: 47
  start-page: 156
  year: 2010
  end-page: 163
  ident: b0030
  article-title: Knowledge mining from student data
  publication-title: European Journal of Scientific Research
– volume: 30
  start-page: 614
  year: 2015
  end-page: 627
  ident: b0250
  article-title: A social spider algorithm for global optimization
  publication-title: Applied Soft Computing
– start-page: 271
  year: 2016
  end-page: 274
  ident: b0175
  article-title: Comparing handwritten character recognition by AdaBoostClassifier and KNeighborsClassifier
  publication-title: 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN)
– volume: 106
  start-page: 139
  year: 2012
  end-page: 146
  ident: b0170
  article-title: Rastgele orman algoritması kullanılarak çok bantlı görüntülerin sınıflandırılması
  publication-title: Jeodezi ve Jeoinformasyon Dergisi
– year: 2019
  ident: b0115
  article-title: Comparison of machine learning models in student result prediction
  publication-title: International Conference on Advanced Computing Networking and Informatics
– volume: 17
  start-page: 168
  year: 2021
  end-page: 192
  ident: b0235
  article-title: Classification assessment methods
  publication-title: Applied Computing and Informatics
– volume: 60
  start-page: 3401
  year: 2021
  end-page: 3409
  ident: b0125
  article-title: Efficient english text classification using selected machine learning techniques
  publication-title: Alexandria Engineering Journal
– volume: 366
  start-page: 46
  year: 2019
  end-page: 62
  ident: b0240
  article-title: Decision tree classifiers for evidential attribute values and class labels
  publication-title: Fuzzy Sets and Systems
– volume: 4
  start-page: 33
  year: 2020
  end-page: 55
  ident: b0160
  article-title: Using machine learning algorithms to predict students’ performance and improve learning outcome: A literature based review
  publication-title: Journal of Information and Technology
– volume: 1
  start-page: 1
  year: 2015
  end-page: 4
  ident: b0035
  article-title: Xgboost: Extreme gradient boosting
  publication-title: R Package Version 0.4-2
– year: 2019
  ident: b0040
  article-title: A Better Cold-Start for Early Prediction of Student At-Risk Status in New School Districts
– start-page: 1092
  year: 2023
  ident: 10.1016/j.eswa.2023.122136_b0225
  article-title: Student data analysis using Hadoop
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2023.122136_b0020
  article-title: Student performance prediction using Support Vector Machine and K-Nearest Neighbor
– volume: 12
  start-page: 19
  issue: 35
  year: 2019
  ident: 10.1016/j.eswa.2023.122136_b0005
  article-title: Prediction of academic performance based on dimensions of academic identity and flourishing among students of the University of Medical Sciences
  publication-title: Journal of Medical Education Development
  doi: 10.29252/edcj.12.35.19
– start-page: 109
  year: 2015
  ident: 10.1016/j.eswa.2023.122136_b0050
  article-title: Using neural networks to predict the future performance of students
– volume: 38
  start-page: 315
  year: 2013
  ident: 10.1016/j.eswa.2023.122136_b0135
  article-title: Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-012-0374-8
– volume: 181
  start-page: 1
  issue: 42
  year: 2019
  ident: 10.1016/j.eswa.2023.122136_b0110
  article-title: Student performance prediction on internet mediated environments using decision trees
  publication-title: International Journal of Computers and Applications
  doi: 10.5120/ijca2019918466
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.eswa.2023.122136_b0065
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– volume: 229
  year: 2023
  ident: 10.1016/j.eswa.2023.122136_b0195
  article-title: A novel study on forecasting the airfoil self-noise, using a hybrid model based on the combination of CatBoost and Arithmetic Optimization Algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120576
– volume: 10
  start-page: 3
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.122136_b0165
  article-title: Data mining approach for predicting student performance
  publication-title: Economic Review: Journal of Economics and Business
– start-page: 6
  year: 2017
  ident: 10.1016/j.eswa.2023.122136_b0090
  article-title: Ouroboros: Early identification of at-risk students without models based on legacy data
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122136_b0245
  article-title: Maximum F1-score training for end-to-end mispronunciation detection and diagnosis of L2 English speech
  publication-title: IEEE International Conference on Multimedia and Expo (ICME)
– volume: 10
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0080
  article-title: Predicting student performance in higher educational institutions using video learning analytics and data mining techniques
  publication-title: Applied Sciences
  doi: 10.3390/app10113894
– volume: 8
  start-page: 55462
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0140
  article-title: Using data mining techniques to predict student performance to support decision making in university admission systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981905
– year: 2019
  ident: 10.1016/j.eswa.2023.122136_b0115
  article-title: Comparison of machine learning models in student result prediction
– volume: 366
  start-page: 46
  year: 2019
  ident: 10.1016/j.eswa.2023.122136_b0240
  article-title: Decision tree classifiers for evidential attribute values and class labels
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2018.11.006
– volume: 8
  start-page: 67899
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0070
  article-title: Comparing different resampling methods in predicting students’ performance using machine learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986809
– volume: 40
  start-page: 601
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2023.122136_b0200
  article-title: Educational data mining: A review of the state of the art
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2010.2053532
– volume: 32
  start-page: 9383
  issue: 13
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0260
  article-title: Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04452-x
– volume: 3
  start-page: 17
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.122136_b0075
  article-title: A review of educational data mining tools & techniques
  publication-title: International Journal of Educational Technology and Learning
  doi: 10.20448/2003.31.17.23
– volume: 17
  start-page: 168
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0235
  article-title: Classification assessment methods
  publication-title: Applied Computing and Informatics
  doi: 10.1016/j.aci.2018.08.003
– volume: 1
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2023.122136_b0035
  article-title: Xgboost: Extreme gradient boosting
  publication-title: R Package Version 0.4-2
– volume: 106
  start-page: 139
  year: 2012
  ident: 10.1016/j.eswa.2023.122136_b0170
  article-title: Rastgele orman algoritması kullanılarak çok bantlı görüntülerin sınıflandırılması
  publication-title: Jeodezi ve Jeoinformasyon Dergisi
– volume: 188
  start-page: 1567
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2023.122136_b0130
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.11.033
– volume: 928
  start-page: 32019
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0085
  article-title: Student performance prediction model based on supervised machine learning algorithms
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/928/3/032019
– volume: 1
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2023.122136_b0025
  article-title: The state of educational data mining in 2009: A review and future visions
  publication-title: Journal of Educational Data Mining
– volume: 9
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0155
  article-title: A comparative study of different data mining algorithms with different oversampling techniques in predicting online shopper behavior
  publication-title: International Journal
– volume: 8
  start-page: 178493
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0055
  article-title: An enhanced artificial ecosystem-based optimization for optimal allocation of multiple distributed generations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027654
– year: 2019
  ident: 10.1016/j.eswa.2023.122136_b0040
– ident: 10.1016/j.eswa.2023.122136_b0010
  doi: 10.1007/978-3-319-30298-0_70
– volume: 11
  start-page: 11534
  issue: 23
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0255
  article-title: A practical model for the evaluation of high school student performance based on machine learning
  publication-title: Applied Sciences
  doi: 10.3390/app112311534
– start-page: 167
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0190
  article-title: Student performance prediction using machine learning
  doi: 10.3233/APC210137
– volume: 272
  year: 2023
  ident: 10.1016/j.eswa.2023.122136_b0105
  article-title: Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127069
– volume: 2
  start-page: 43
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2023.122136_b0015
  article-title: Data mining: A prediction for student’s performance using classification method
  publication-title: World Journal of Computer Application and Technology
  doi: 10.13189/wjcat.2014.020203
– volume: 136
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0185
  article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104664
– start-page: 271
  year: 2016
  ident: 10.1016/j.eswa.2023.122136_b0175
  article-title: Comparing handwritten character recognition by AdaBoostClassifier and KNeighborsClassifier
– volume: 143
  start-page: 235
  year: 2017
  ident: 10.1016/j.eswa.2023.122136_b0060
  article-title: Social spider algorithm for solving the transmission expansion planning problem
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2016.09.002
– volume: 33
  start-page: 100
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0120
  article-title: EKT: Exercise-AWARE KNOWLEDGE TRACING FOR STUDENT PERFORMANCE PREDIction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2019.2924374
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.122136_b0180
– volume: 9
  start-page: 329
  year: 2017
  ident: 10.1016/j.eswa.2023.122136_b0210
  article-title: Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review
  publication-title: Frontiers in Aging Neuroscience
  doi: 10.3389/fnagi.2017.00329
– volume: 1324
  start-page: 12091
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.122136_b0095
  article-title: Research on XGboost academic forecasting and analysis modelling
  publication-title: Journal of Physics: Conference Series
– volume: 49
  start-page: 323
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2023.122136_b0145
  article-title: Supporting the students most in need: Academic self-efficacy and perceived teacher support in relation to within-year academic growth
  publication-title: Journal of School Psychology
  doi: 10.1016/j.jsp.2011.03.006
– volume: 9
  start-page: 16435
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0215
  article-title: Artificial neural synchronization using nature inspired whale optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052884
– volume: 47
  start-page: 156
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2023.122136_b0030
  article-title: Knowledge mining from student data
  publication-title: European Journal of Scientific Research
– volume: 3
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2023.122136_b0150
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms
  doi: 10.1504/IJKESDP.2011.039875
– volume: 11
  start-page: 233
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0205
  article-title: Students’ evaluation of teaching and their academic achievement in a higher education institution of Ecuador
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2020.00233
– volume: 4
  start-page: 33
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.122136_b0160
  article-title: Using machine learning algorithms to predict students’ performance and improve learning outcome: A literature based review
  publication-title: Journal of Information and Technology
– volume: 30
  start-page: 614
  year: 2015
  ident: 10.1016/j.eswa.2023.122136_b0250
  article-title: A social spider algorithm for global optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.02.014
– volume: 60
  start-page: 3401
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0125
  article-title: Efficient English text classification using selected machine learning techniques
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.02.009
– volume: 52
  start-page: 381
  year: 2019
  ident: 10.1016/j.eswa.2023.122136_b0100
  article-title: Using machine learning to predict student difficulties from learning session data
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-018-9620-8
– volume: 2
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2023.122136_b0230
  article-title: Mining educational data to improve students’ performance: A case study
  publication-title: International Journal of Information
– volume: 26
  start-page: 1527
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2023.122136_b0045
  article-title: A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-020-10316-y
SSID ssj0017007
Score 2.5559916
Snippet The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122136
SubjectTerms Machine learning methods
Metaheuristic optimization algorithms
Student performance evaluation
XG-Boost Classifier
Title Evaluation of students' performance during the academic period using the XG-Boost Classifier-Enhanced AEO hybrid model
URI https://dx.doi.org/10.1016/j.eswa.2023.122136
Volume 238
WOSCitedRecordID wos001096456400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELbapIde-q6avuRDpR5WXoExNhw3FX2pSis1lbYnBMYou4pgGyCPf98xY-9u0yhqK_WCEGCDPJ_Gg_3NN4S8io0RWgnJlNQRswpYrLTMHJ4KWfBKBMYEY7EJdXCQzOfpF7eD343lBFTTJOfn6eq_mhqugbFt6uxfmHvdKVyAczA6HMHscPwjw2dr_W4bCHaoXTlyJVZbSQIuPdGGnYWnyFvR47aaDJ2_M3_H9tu267F05qKGKZRlzRGSBmbZ58nRhU34wnI6v6zxWwHl3slE-wS6ra3yDanAoK_ZX_zYwumnxTBODcPKT6yW44O03u9Ds_SPutUKLixdC_M1cQnNp9FsOEu4FqmYCLFcz9SgJ05UxKTC8om_-XlcclhOTXdmxaN4NA05D6NLotrjNP3V9m47h58tDt5G3iS7XMUpuMDd2Yds_nG96aQCzK73X-NyrJAOePlNV8cxW7HJ4T1yx_1U0BmC4T65YZoH5K4v2EGd_35ITjfYoG1NPTZe0y1kUEQGBftTjwyKyKAjMsY7Hhn0CmRQQAZFZNARGY_It7fZ4Zv3zBXeYDoKgp6ZpKiUTkVVRkVZBxU46bSAyDo2PK1lFdaCaxnWdSkh_tHCcBOasE6SRJs01EEVPSY7TduYJ4QWdoKQQpU60OAJRGnlzoKyrOJUqkrrPRL6Ycy1U6W3xVGOc08_XOZ26HM79DkO_R6ZrNusUJPl2qdjb53cRZUYLeYApmvaPf3Hds_I7Q3wn5Od_mQwL8gtfdovupOXDnM_AdoYnps
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+students%27+performance+during+the+academic+period+using+the+XG-Boost+Classifier-Enhanced+AEO+hybrid+model&rft.jtitle=Expert+systems+with+applications&rft.au=Cheng%2C+Biqian&rft.au=Liu%2C+Yuping&rft.au=Jia%2C+Yunjian&rft.date=2024-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016%2Fj.eswa.2023.122136&rft.externalDocID=S0957417423026386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon