Evaluation of students' performance during the academic period using the XG-Boost Classifier-Enhanced AEO hybrid model
The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to not only pinpoint potential challenges but also to craft targeted strategies and interventions that are tailored to the unique needs of s...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 238; S. 122136 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.03.2024
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to not only pinpoint potential challenges but also to craft targeted strategies and interventions that are tailored to the unique needs of students. This multifaceted approach enables educational institutions to proactively address issues within the education system, fostering a more equitable and effective learning environment for all, while simultaneously fostering a culture of continuous improvement and accountability in the pursuit of educational excellence. Hence, the current investigation aims to classify and predict the students' performance by examining and comparing the machine learning and artificial neural network assessments. Five methods of the Random Forest Classifier, the Decision Tree Classifier, the K Neighbors Classifier, the MLP Classifier, and the XG-Boost Classifier are used. These methods' performances are compared through the accuracy, precision, recall, and F1-score indicators. This comparison is applied to the base data and balanced data, which is carried out by the SVM-SMOTE technique. Finally, five metaheuristic algorithms are applied to the selected method to evaluate the performance indicators of the hybrid models. The results indicate that applying the SVM-SMOTE technique improves the methods' performance, in which the XG-Boost represented the best performance. As a result, the metaheuristic algorithms are applied to the XG-Boost, yielding to 9.33%, 8.44%, 9.33%, and 9.27% enhancement of the Accuracy, Precision, Recall and F1-Score values. Subsequently, the Enhanced Artificial Ecosystem-Based Optimization +XG-Boost hybrid method provides the accuracy and F1-score values of 0.9417 and 0.9413. These results underscore the potential of combining machine learning techniques with metaheuristic algorithms to enhance the accuracy and effectiveness of predicting and classifying students' performance, thus providing valuable insights for educational administrators to address issues and improve the education system. |
|---|---|
| AbstractList | The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to not only pinpoint potential challenges but also to craft targeted strategies and interventions that are tailored to the unique needs of students. This multifaceted approach enables educational institutions to proactively address issues within the education system, fostering a more equitable and effective learning environment for all, while simultaneously fostering a culture of continuous improvement and accountability in the pursuit of educational excellence. Hence, the current investigation aims to classify and predict the students' performance by examining and comparing the machine learning and artificial neural network assessments. Five methods of the Random Forest Classifier, the Decision Tree Classifier, the K Neighbors Classifier, the MLP Classifier, and the XG-Boost Classifier are used. These methods' performances are compared through the accuracy, precision, recall, and F1-score indicators. This comparison is applied to the base data and balanced data, which is carried out by the SVM-SMOTE technique. Finally, five metaheuristic algorithms are applied to the selected method to evaluate the performance indicators of the hybrid models. The results indicate that applying the SVM-SMOTE technique improves the methods' performance, in which the XG-Boost represented the best performance. As a result, the metaheuristic algorithms are applied to the XG-Boost, yielding to 9.33%, 8.44%, 9.33%, and 9.27% enhancement of the Accuracy, Precision, Recall and F1-Score values. Subsequently, the Enhanced Artificial Ecosystem-Based Optimization +XG-Boost hybrid method provides the accuracy and F1-score values of 0.9417 and 0.9413. These results underscore the potential of combining machine learning techniques with metaheuristic algorithms to enhance the accuracy and effectiveness of predicting and classifying students' performance, thus providing valuable insights for educational administrators to address issues and improve the education system. |
| ArticleNumber | 122136 |
| Author | Liu, Yuping Jia, Yunjian Cheng, Biqian |
| Author_xml | – sequence: 1 givenname: Biqian surname: Cheng fullname: Cheng, Biqian email: biqiancheng1@126.com organization: Postdoctoral Station, China University of Political Science and Law, Beijing100088, Beijing, China – sequence: 2 givenname: Yuping surname: Liu fullname: Liu, Yuping organization: School Of Criminal Justice, China University of Political Science and Law, Beijing100088, Beijing, China – sequence: 3 givenname: Yunjian orcidid: 0009-0007-6711-7819 surname: Jia fullname: Jia, Yunjian organization: College of Communication Engineering, Chongqing University, Chongqing, 400044, China |
| BookMark | eNp9kDtPwzAYRS1UJErhDzB5Y0rxI81DYilVKEiVuoDEZjn2Z-oqiSvbKeq_p6GwMHS6w9W50j3XaNS5DhC6o2RKCc0etlMIX3LKCONTyhjl2QUa0yLnSZaXfITGpJzlSUrz9Apdh7AlhOaE5GO0r_ay6WW0rsPO4BB7DV0M93gH3jjfyk4B1r233SeOG8BSSQ2tVUNvncZ9-Gs-lsmTcyHiRSNDsMaCT6puMwxoPK_WeHOovdW4dRqaG3RpZBPg9jcn6P25elu8JKv18nUxXyWKExITKKTOVZnqmsvaEF1mvJQzms6AlSbT1KRMZdSYOiM8UykwoEBNURQKSqqI5hNUnHaVdyF4MELZ-PM2emkbQYkY_ImtGPyJwZ84-Tui7B-687aV_nAeejxBcDy1PyoQQVkYFFgPKgrt7Dn8GzFSjd4 |
| CitedBy_id | crossref_primary_10_3390_mca30030059 crossref_primary_10_1016_j_patcog_2024_111265 crossref_primary_10_7717_peerj_cs_3090 crossref_primary_10_1007_s11042_025_20718_0 crossref_primary_10_1016_j_engappai_2025_112192 crossref_primary_10_1016_j_aei_2024_102459 crossref_primary_10_1016_j_ijhydene_2024_09_295 crossref_primary_10_1016_j_rechem_2025_102456 crossref_primary_10_1016_j_istruc_2024_107734 crossref_primary_10_3390_fi17040182 crossref_primary_10_1007_s10489_024_05483_1 crossref_primary_10_1063_5_0235356 crossref_primary_10_1371_journal_pone_0314823 crossref_primary_10_1038_s41598_025_12353_4 crossref_primary_10_3390_pr13030754 crossref_primary_10_1016_j_chroma_2025_466014 crossref_primary_10_7717_peerj_cs_3032 crossref_primary_10_1016_j_neucom_2025_130538 |
| Cites_doi | 10.29252/edcj.12.35.19 10.1007/s10489-012-0374-8 10.5120/ijca2019918466 10.1177/003754970107600201 10.1016/j.eswa.2023.120576 10.3390/app10113894 10.1109/ACCESS.2020.2981905 10.1016/j.fss.2018.11.006 10.1109/ACCESS.2020.2986809 10.1109/TSMCC.2010.2053532 10.1007/s00521-019-04452-x 10.20448/2003.31.17.23 10.1016/j.aci.2018.08.003 10.1016/j.amc.2006.11.033 10.1088/1757-899X/928/3/032019 10.1109/ACCESS.2020.3027654 10.1007/978-3-319-30298-0_70 10.3390/app112311534 10.3233/APC210137 10.1016/j.energy.2023.127069 10.13189/wjcat.2014.020203 10.1016/j.compbiomed.2021.104664 10.1016/j.epsr.2016.09.002 10.1109/TKDE.2019.2924374 10.3389/fnagi.2017.00329 10.1016/j.jsp.2011.03.006 10.1109/ACCESS.2021.3052884 10.1504/IJKESDP.2011.039875 10.3389/fpsyg.2020.00233 10.1016/j.asoc.2015.02.014 10.1016/j.aej.2021.02.009 10.1007/s10462-018-9620-8 10.1007/s10639-020-10316-y |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.122136 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_122136 S0957417423026386 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-e8ad7c94db3abf0d9639a5145e29f6d1f42c61ffb6036c4e2e1e1f888ce91c0d3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001096456400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:07:44 EST 2025 Tue Nov 18 20:55:30 EST 2025 Fri Feb 23 02:34:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metaheuristic optimization algorithms XG-Boost Classifier Student performance evaluation Machine learning methods |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-e8ad7c94db3abf0d9639a5145e29f6d1f42c61ffb6036c4e2e1e1f888ce91c0d3 |
| ORCID | 0009-0007-6711-7819 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_122136 crossref_primary_10_1016_j_eswa_2023_122136 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122136 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu, Huang, Yin, Chen, Xiong, Su, Hu (b0120) 2021; 33 Al-Shehri, Al-Qarni, Al-Saati, Batoaq, Badukhen, Alrashed, Olatunji (b0020) 2017 Mahdavi, Fesanghary, Damangir (b0130) 2007; 188 Tair, El-Halees (b0230) 2012; 2 Hlosta, Zdrahal, Zendulka (b0090) 2017 Eid, Kamel, Korashy, Khurshaid (b0055) 2020; 8 Özlem, Güngör (b0170) 2012; 106 Costa-Mendes, Oliveira, Castelli, Cruz-Jesus (b0045) 2021; 26 Chandra, Nandhini (b0030) 2010; 47 Mercer, Nellis, Martínez, Kirk (b0145) 2011; 49 Baker, Yacef (b0025) 2009; 1 Nguyen, Cooper, Kamei (b0150) 2011; 3 Ghorbani, Ghousi (b0070) 2020; 8 Osmanbegovic, Suljic (b0165) 2012; 10 639–644. Sarkar, Khan, Singh, Noorwali, Chakraborty, Pani (b0215) 2021; 9 De Albuquerque, Bezerra, de Souza, do Nascimento, L. B. P., de Mesquita Sá, J. J., & do Nascimento, J. C. (b0050) 2015; 2015 Yu, Li (b0250) 2015; 30 Ahmed, Elaraby (b0015) 2014; 2 Hamza, Kommers (b0075) 2018; 3 Prabha, Yadav, Rani, Singh (b0185) 2021; 136 Abdi, Zandipayam (b0005) 2019; 12 Geem, Kim, Loganathan (b0065) 2001; 76 Zafari, Sadeghi-Niaraki, Choi, Esmaeily (b0255) 2021; 11 Abidine, M. B., & Fergani, B. (2016). Comparing HMM, LDA, SVM and Smote-SVM algorithms in classifying human activities. Kumar, Garg (b0115) 2019 Hu, Song (b0095) 2019; 1324 Hussain, Zhu, Zhang, Abidi, Ali (b0100) 2019; 52 Shakibi, Faal, Assareh, Agarwal, Yari, Latifi, Lee (b0220) 2023; 278 Chen, He, Benesty, Khotilovich, Tang, Cho, Zhou (b0035) 2015; 1 Ofori, Maina, Gitonga (b0160) 2020; 4 Rastgoo, Khajavi (b0195) 2023; 229 Tharwat (b0235) 2021; 17 Priya, Ankit, Divyansh (b0190) 2021 Sarica, Cerasa, Quattrone (b0210) 2017; 9 Romero, Ventura (b0200) 2010; 40 Coleman, Baker, Stephenson (b0040) 2019 Sánchez, Gilar-Corbi, Castejón, Vidal, León (b0205) 2020; 11 Hasan, Palaniappan, Mahmood, Abbas, Sarker, Sattar (b0080) 2020; Vol. 10, Issue 11 Shirisha, Divyajyothi, Prashanthi, Sowmya (b0225) 2023 Hashim, Awadh, Hamoud (b0085) 2020; 928 Khajavi, Rastgoo (b0105) 2023; 272 Yan, Wang, Jiang, Chao, Chen (b0245) 2022; 2022 Pandya (b0175) 2016 Mengash (b0140) 2020; 8 Márquez-Vera, Cano, Romero, Ventura (b0135) 2013; 38 Obiedat (b0155) 2020; 9 Trabelsi, Elouedi, Lefevre (b0240) 2019; 366 Luo (b0125) 2021; 60 Khakata, Omwenga, Msanjila (b0110) 2019; 181 Zhao, Wang, Zhang (b0260) 2020; 32 Panigrahi, Borah, Day, Babo, Ashour (b0180) 2018 El-bages, Elsayed (b0060) 2017; 143 Hussain (10.1016/j.eswa.2023.122136_b0100) 2019; 52 Luo (10.1016/j.eswa.2023.122136_b0125) 2021; 60 Chandra (10.1016/j.eswa.2023.122136_b0030) 2010; 47 Sarkar (10.1016/j.eswa.2023.122136_b0215) 2021; 9 Zafari (10.1016/j.eswa.2023.122136_b0255) 2021; 11 Sarica (10.1016/j.eswa.2023.122136_b0210) 2017; 9 Nguyen (10.1016/j.eswa.2023.122136_b0150) 2011; 3 Yu (10.1016/j.eswa.2023.122136_b0250) 2015; 30 Abdi (10.1016/j.eswa.2023.122136_b0005) 2019; 12 10.1016/j.eswa.2023.122136_b0010 Obiedat (10.1016/j.eswa.2023.122136_b0155) 2020; 9 Tharwat (10.1016/j.eswa.2023.122136_b0235) 2021; 17 Khajavi (10.1016/j.eswa.2023.122136_b0105) 2023; 272 Priya (10.1016/j.eswa.2023.122136_b0190) 2021 Hu (10.1016/j.eswa.2023.122136_b0095) 2019; 1324 Mercer (10.1016/j.eswa.2023.122136_b0145) 2011; 49 Rastgoo (10.1016/j.eswa.2023.122136_b0195) 2023; 229 Zhao (10.1016/j.eswa.2023.122136_b0260) 2020; 32 Geem (10.1016/j.eswa.2023.122136_b0065) 2001; 76 Prabha (10.1016/j.eswa.2023.122136_b0185) 2021; 136 Panigrahi (10.1016/j.eswa.2023.122136_b0180) 2018 Al-Shehri (10.1016/j.eswa.2023.122136_b0020) 2017 Hamza (10.1016/j.eswa.2023.122136_b0075) 2018; 3 Ghorbani (10.1016/j.eswa.2023.122136_b0070) 2020; 8 Sánchez (10.1016/j.eswa.2023.122136_b0205) 2020; 11 Hasan (10.1016/j.eswa.2023.122136_b0080) 2020; 10 De Albuquerque (10.1016/j.eswa.2023.122136_b0050) 2015 Costa-Mendes (10.1016/j.eswa.2023.122136_b0045) 2021; 26 Hashim (10.1016/j.eswa.2023.122136_b0085) 2020; 928 Baker (10.1016/j.eswa.2023.122136_b0025) 2009; 1 El-bages (10.1016/j.eswa.2023.122136_b0060) 2017; 143 Mengash (10.1016/j.eswa.2023.122136_b0140) 2020; 8 Özlem (10.1016/j.eswa.2023.122136_b0170) 2012; 106 Shirisha (10.1016/j.eswa.2023.122136_b0225) 2023 Kumar (10.1016/j.eswa.2023.122136_b0115) 2019 Trabelsi (10.1016/j.eswa.2023.122136_b0240) 2019; 366 Pandya (10.1016/j.eswa.2023.122136_b0175) 2016 Ofori (10.1016/j.eswa.2023.122136_b0160) 2020; 4 Ahmed (10.1016/j.eswa.2023.122136_b0015) 2014; 2 Hlosta (10.1016/j.eswa.2023.122136_b0090) 2017 Khakata (10.1016/j.eswa.2023.122136_b0110) 2019; 181 Mahdavi (10.1016/j.eswa.2023.122136_b0130) 2007; 188 Coleman (10.1016/j.eswa.2023.122136_b0040) 2019 Eid (10.1016/j.eswa.2023.122136_b0055) 2020; 8 Romero (10.1016/j.eswa.2023.122136_b0200) 2010; 40 Tair (10.1016/j.eswa.2023.122136_b0230) 2012; 2 Yan (10.1016/j.eswa.2023.122136_b0245) 2022; 2022 Márquez-Vera (10.1016/j.eswa.2023.122136_b0135) 2013; 38 Chen (10.1016/j.eswa.2023.122136_b0035) 2015; 1 Liu (10.1016/j.eswa.2023.122136_b0120) 2021; 33 Osmanbegovic (10.1016/j.eswa.2023.122136_b0165) 2012; 10 |
| References_xml | – volume: 2015 start-page: 109 year: 2015 end-page: 113 ident: b0050 article-title: Using neural networks to predict the future performance of students publication-title: International Symposium on Computers in Education (SIIE) – volume: 143 start-page: 235 year: 2017 end-page: 243 ident: b0060 article-title: Social spider algorithm for solving the transmission expansion planning problem publication-title: Electric Power Systems Research – volume: 10 start-page: 3 year: 2012 end-page: 12 ident: b0165 article-title: Data mining approach for predicting student performance publication-title: Economic Review: Journal of Economics and Business – volume: Vol. 10, Issue 11 year: 2020 ident: b0080 article-title: Predicting Student Performance in Higher Educational Institutions Using Video Learning Analytics and Data Mining Techniques. In publication-title: Applied Sciences – volume: 33 start-page: 100 year: 2021 end-page: 115 ident: b0120 article-title: EKT: Exercise-Aware Knowledge Tracing for Student Performance Prediction publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 11 start-page: 11534 year: 2021 ident: b0255 article-title: A practical model for the evaluation of high school student performance based on machine learning publication-title: Applied Sciences – volume: 229 year: 2023 ident: b0195 article-title: A novel study on forecasting the airfoil self-noise, using a hybrid model based on the combination of CatBoost and Arithmetic Optimization Algorithm publication-title: Expert Systems with Applications – volume: 38 start-page: 315 year: 2013 end-page: 330 ident: b0135 article-title: Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data publication-title: Applied Intelligence – volume: 2 start-page: 43 year: 2014 end-page: 47 ident: b0015 article-title: Data mining: A prediction for student’s performance using classification method publication-title: World Journal of Computer Application and Technology – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: b0065 article-title: A New Heuristic Optimization Algorithm: Harmony Search publication-title: SIMULATION – volume: 272 year: 2023 ident: b0105 article-title: Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms publication-title: Energy – volume: 32 start-page: 9383 year: 2020 end-page: 9425 ident: b0260 article-title: Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm publication-title: Neural Computing and Applications – volume: 9 start-page: 16435 year: 2021 end-page: 16447 ident: b0215 article-title: Artificial Neural Synchronization Using Nature Inspired Whale Optimization publication-title: IEEE Access – volume: 8 start-page: 67899 year: 2020 end-page: 67911 ident: b0070 article-title: Comparing different resampling methods in predicting students’ performance using machine learning techniques publication-title: IEEE Access – start-page: 167 year: 2021 end-page: 174 ident: b0190 article-title: Student performance prediction using machine learning. In – volume: 9 year: 2020 ident: b0155 article-title: A comparative study of different data mining algorithms with different oversampling techniques in predicting online shopper behavior publication-title: International Journal – volume: 8 start-page: 55462 year: 2020 end-page: 55470 ident: b0140 article-title: Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems publication-title: IEEE Access – volume: 11 start-page: 233 year: 2020 ident: b0205 article-title: Students’ evaluation of teaching and their academic achievement in a higher education institution of Ecuador publication-title: Frontiers in Psychology – start-page: 1 year: 2017 end-page: 4 ident: b0020 article-title: Student performance prediction using Support Vector Machine and K-Nearest Neighbor publication-title: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE) – volume: 40 start-page: 601 year: 2010 end-page: 618 ident: b0200 article-title: Educational data mining: A review of the state of the art publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – volume: 49 start-page: 323 year: 2011 end-page: 338 ident: b0145 article-title: Supporting the students most in need: Academic self-efficacy and perceived teacher support in relation to within-year academic growth publication-title: Journal of School Psychology – reference: , 639–644. – volume: 2 year: 2012 ident: b0230 article-title: Mining educational data to improve students’ performance: A case study publication-title: International Journal of Information – volume: 928 start-page: 32019 year: 2020 ident: b0085 article-title: Student performance prediction model based on supervised machine learning algorithms publication-title: IOP Conference Series: Materials Science and Engineering – volume: 1 start-page: 3 year: 2009 end-page: 17 ident: b0025 article-title: The state of educational data mining in 2009: A review and future visions publication-title: Journal of Educational Data Mining – start-page: 1092 year: 2023 end-page: 1096 ident: b0225 article-title: Student Data Analysis using Hadoop publication-title: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS) – volume: 1324 start-page: 12091 year: 2019 ident: b0095 article-title: Research on XGboost academic forecasting and analysis modelling publication-title: Journal of Physics: Conference Series – start-page: 6 year: 2017 end-page: 15 ident: b0090 article-title: Ouroboros: Early identification of at-risk students without models based on legacy data publication-title: Proceedings of the Seventh International Learning Analytics & Knowledge Conference – volume: 26 start-page: 1527 year: 2021 end-page: 1547 ident: b0045 article-title: A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach publication-title: Education and Information Technologies – start-page: 1 year: 2018 ident: b0180 article-title: Classification and analysis of facebook metrics dataset using supervised classifiers – volume: 3 start-page: 17 year: 2018 end-page: 23 ident: b0075 article-title: A review of educational data mining tools & techniques publication-title: International Journal of Educational Technology and Learning – reference: Abidine, M. B., & Fergani, B. (2016). Comparing HMM, LDA, SVM and Smote-SVM algorithms in classifying human activities. – volume: 188 start-page: 1567 year: 2007 end-page: 1579 ident: b0130 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Applied Mathematics and Computation – volume: 136 year: 2021 ident: b0185 article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier publication-title: Computers in Biology and Medicine – volume: 12 start-page: 19 year: 2019 end-page: 26 ident: b0005 article-title: Prediction of academic performance based on dimensions of academic identity and flourishing among students of the University of Medical Sciences publication-title: Journal of Medical Education Development – volume: 8 start-page: 178493 year: 2020 end-page: 178513 ident: b0055 article-title: An enhanced artificial ecosystem-based optimization for optimal allocation of multiple distributed generations publication-title: IEEE Access – volume: 9 start-page: 329 year: 2017 ident: b0210 article-title: Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review publication-title: Frontiers in Aging Neuroscience – volume: 181 start-page: 1 year: 2019 end-page: 9 ident: b0110 article-title: Student performance prediction on internet mediated environments using decision trees publication-title: Int. J. Comput. Appl – volume: 278 year: 2023 ident: b0220 article-title: Design and multi-objective optimization of a multi-generation system based on PEM electrolyzer, RO unit, absorption cooling system, and ORC utilizing machine learning approaches; a case study of Australia publication-title: Energy – volume: 3 start-page: 4 year: 2011 end-page: 21 ident: b0150 article-title: Borderline over-sampling for imbalanced data classification publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms – volume: 52 start-page: 381 year: 2019 end-page: 407 ident: b0100 article-title: Using machine learning to predict student difficulties from learning session data publication-title: Artificial Intelligence Review – volume: 2022 start-page: 1 year: 2022 end-page: 5 ident: b0245 article-title: Maximum F1-Score Training for End-to-End Mispronunciation Detection and Diagnosis of L2 English Speech publication-title: IEEE International Conference on Multimedia and Expo (ICME) – volume: 47 start-page: 156 year: 2010 end-page: 163 ident: b0030 article-title: Knowledge mining from student data publication-title: European Journal of Scientific Research – volume: 30 start-page: 614 year: 2015 end-page: 627 ident: b0250 article-title: A social spider algorithm for global optimization publication-title: Applied Soft Computing – start-page: 271 year: 2016 end-page: 274 ident: b0175 article-title: Comparing handwritten character recognition by AdaBoostClassifier and KNeighborsClassifier publication-title: 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN) – volume: 106 start-page: 139 year: 2012 end-page: 146 ident: b0170 article-title: Rastgele orman algoritması kullanılarak çok bantlı görüntülerin sınıflandırılması publication-title: Jeodezi ve Jeoinformasyon Dergisi – year: 2019 ident: b0115 article-title: Comparison of machine learning models in student result prediction publication-title: International Conference on Advanced Computing Networking and Informatics – volume: 17 start-page: 168 year: 2021 end-page: 192 ident: b0235 article-title: Classification assessment methods publication-title: Applied Computing and Informatics – volume: 60 start-page: 3401 year: 2021 end-page: 3409 ident: b0125 article-title: Efficient english text classification using selected machine learning techniques publication-title: Alexandria Engineering Journal – volume: 366 start-page: 46 year: 2019 end-page: 62 ident: b0240 article-title: Decision tree classifiers for evidential attribute values and class labels publication-title: Fuzzy Sets and Systems – volume: 4 start-page: 33 year: 2020 end-page: 55 ident: b0160 article-title: Using machine learning algorithms to predict students’ performance and improve learning outcome: A literature based review publication-title: Journal of Information and Technology – volume: 1 start-page: 1 year: 2015 end-page: 4 ident: b0035 article-title: Xgboost: Extreme gradient boosting publication-title: R Package Version 0.4-2 – year: 2019 ident: b0040 article-title: A Better Cold-Start for Early Prediction of Student At-Risk Status in New School Districts – start-page: 1092 year: 2023 ident: 10.1016/j.eswa.2023.122136_b0225 article-title: Student data analysis using Hadoop – start-page: 1 year: 2017 ident: 10.1016/j.eswa.2023.122136_b0020 article-title: Student performance prediction using Support Vector Machine and K-Nearest Neighbor – volume: 12 start-page: 19 issue: 35 year: 2019 ident: 10.1016/j.eswa.2023.122136_b0005 article-title: Prediction of academic performance based on dimensions of academic identity and flourishing among students of the University of Medical Sciences publication-title: Journal of Medical Education Development doi: 10.29252/edcj.12.35.19 – start-page: 109 year: 2015 ident: 10.1016/j.eswa.2023.122136_b0050 article-title: Using neural networks to predict the future performance of students – volume: 38 start-page: 315 year: 2013 ident: 10.1016/j.eswa.2023.122136_b0135 article-title: Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data publication-title: Applied Intelligence doi: 10.1007/s10489-012-0374-8 – volume: 181 start-page: 1 issue: 42 year: 2019 ident: 10.1016/j.eswa.2023.122136_b0110 article-title: Student performance prediction on internet mediated environments using decision trees publication-title: International Journal of Computers and Applications doi: 10.5120/ijca2019918466 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.eswa.2023.122136_b0065 article-title: A new heuristic optimization algorithm: Harmony search publication-title: SIMULATION doi: 10.1177/003754970107600201 – volume: 229 year: 2023 ident: 10.1016/j.eswa.2023.122136_b0195 article-title: A novel study on forecasting the airfoil self-noise, using a hybrid model based on the combination of CatBoost and Arithmetic Optimization Algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120576 – volume: 10 start-page: 3 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.122136_b0165 article-title: Data mining approach for predicting student performance publication-title: Economic Review: Journal of Economics and Business – start-page: 6 year: 2017 ident: 10.1016/j.eswa.2023.122136_b0090 article-title: Ouroboros: Early identification of at-risk students without models based on legacy data – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.122136_b0245 article-title: Maximum F1-score training for end-to-end mispronunciation detection and diagnosis of L2 English speech publication-title: IEEE International Conference on Multimedia and Expo (ICME) – volume: 10 issue: 11 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0080 article-title: Predicting student performance in higher educational institutions using video learning analytics and data mining techniques publication-title: Applied Sciences doi: 10.3390/app10113894 – volume: 8 start-page: 55462 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0140 article-title: Using data mining techniques to predict student performance to support decision making in university admission systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981905 – year: 2019 ident: 10.1016/j.eswa.2023.122136_b0115 article-title: Comparison of machine learning models in student result prediction – volume: 366 start-page: 46 year: 2019 ident: 10.1016/j.eswa.2023.122136_b0240 article-title: Decision tree classifiers for evidential attribute values and class labels publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2018.11.006 – volume: 8 start-page: 67899 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0070 article-title: Comparing different resampling methods in predicting students’ performance using machine learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986809 – volume: 40 start-page: 601 issue: 6 year: 2010 ident: 10.1016/j.eswa.2023.122136_b0200 article-title: Educational data mining: A review of the state of the art publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2010.2053532 – volume: 32 start-page: 9383 issue: 13 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0260 article-title: Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04452-x – volume: 3 start-page: 17 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.122136_b0075 article-title: A review of educational data mining tools & techniques publication-title: International Journal of Educational Technology and Learning doi: 10.20448/2003.31.17.23 – volume: 17 start-page: 168 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0235 article-title: Classification assessment methods publication-title: Applied Computing and Informatics doi: 10.1016/j.aci.2018.08.003 – volume: 1 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.eswa.2023.122136_b0035 article-title: Xgboost: Extreme gradient boosting publication-title: R Package Version 0.4-2 – volume: 106 start-page: 139 year: 2012 ident: 10.1016/j.eswa.2023.122136_b0170 article-title: Rastgele orman algoritması kullanılarak çok bantlı görüntülerin sınıflandırılması publication-title: Jeodezi ve Jeoinformasyon Dergisi – volume: 188 start-page: 1567 issue: 2 year: 2007 ident: 10.1016/j.eswa.2023.122136_b0130 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.11.033 – volume: 928 start-page: 32019 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0085 article-title: Student performance prediction model based on supervised machine learning algorithms publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/928/3/032019 – volume: 1 start-page: 3 issue: 1 year: 2009 ident: 10.1016/j.eswa.2023.122136_b0025 article-title: The state of educational data mining in 2009: A review and future visions publication-title: Journal of Educational Data Mining – volume: 9 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0155 article-title: A comparative study of different data mining algorithms with different oversampling techniques in predicting online shopper behavior publication-title: International Journal – volume: 8 start-page: 178493 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0055 article-title: An enhanced artificial ecosystem-based optimization for optimal allocation of multiple distributed generations publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3027654 – year: 2019 ident: 10.1016/j.eswa.2023.122136_b0040 – ident: 10.1016/j.eswa.2023.122136_b0010 doi: 10.1007/978-3-319-30298-0_70 – volume: 11 start-page: 11534 issue: 23 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0255 article-title: A practical model for the evaluation of high school student performance based on machine learning publication-title: Applied Sciences doi: 10.3390/app112311534 – start-page: 167 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0190 article-title: Student performance prediction using machine learning doi: 10.3233/APC210137 – volume: 272 year: 2023 ident: 10.1016/j.eswa.2023.122136_b0105 article-title: Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms publication-title: Energy doi: 10.1016/j.energy.2023.127069 – volume: 2 start-page: 43 issue: 2 year: 2014 ident: 10.1016/j.eswa.2023.122136_b0015 article-title: Data mining: A prediction for student’s performance using classification method publication-title: World Journal of Computer Application and Technology doi: 10.13189/wjcat.2014.020203 – volume: 136 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0185 article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104664 – start-page: 271 year: 2016 ident: 10.1016/j.eswa.2023.122136_b0175 article-title: Comparing handwritten character recognition by AdaBoostClassifier and KNeighborsClassifier – volume: 143 start-page: 235 year: 2017 ident: 10.1016/j.eswa.2023.122136_b0060 article-title: Social spider algorithm for solving the transmission expansion planning problem publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2016.09.002 – volume: 33 start-page: 100 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0120 article-title: EKT: Exercise-AWARE KNOWLEDGE TRACING FOR STUDENT PERFORMANCE PREDIction publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2019.2924374 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.122136_b0180 – volume: 9 start-page: 329 year: 2017 ident: 10.1016/j.eswa.2023.122136_b0210 article-title: Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review publication-title: Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2017.00329 – volume: 1324 start-page: 12091 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.122136_b0095 article-title: Research on XGboost academic forecasting and analysis modelling publication-title: Journal of Physics: Conference Series – volume: 49 start-page: 323 issue: 3 year: 2011 ident: 10.1016/j.eswa.2023.122136_b0145 article-title: Supporting the students most in need: Academic self-efficacy and perceived teacher support in relation to within-year academic growth publication-title: Journal of School Psychology doi: 10.1016/j.jsp.2011.03.006 – volume: 9 start-page: 16435 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0215 article-title: Artificial neural synchronization using nature inspired whale optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052884 – volume: 47 start-page: 156 issue: 1 year: 2010 ident: 10.1016/j.eswa.2023.122136_b0030 article-title: Knowledge mining from student data publication-title: European Journal of Scientific Research – volume: 3 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.eswa.2023.122136_b0150 article-title: Borderline over-sampling for imbalanced data classification publication-title: International Journal of Knowledge Engineering and Soft Data Paradigms doi: 10.1504/IJKESDP.2011.039875 – volume: 11 start-page: 233 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0205 article-title: Students’ evaluation of teaching and their academic achievement in a higher education institution of Ecuador publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2020.00233 – volume: 4 start-page: 33 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.122136_b0160 article-title: Using machine learning algorithms to predict students’ performance and improve learning outcome: A literature based review publication-title: Journal of Information and Technology – volume: 30 start-page: 614 year: 2015 ident: 10.1016/j.eswa.2023.122136_b0250 article-title: A social spider algorithm for global optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.02.014 – volume: 60 start-page: 3401 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0125 article-title: Efficient English text classification using selected machine learning techniques publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.02.009 – volume: 52 start-page: 381 year: 2019 ident: 10.1016/j.eswa.2023.122136_b0100 article-title: Using machine learning to predict student difficulties from learning session data publication-title: Artificial Intelligence Review doi: 10.1007/s10462-018-9620-8 – volume: 2 issue: 2 year: 2012 ident: 10.1016/j.eswa.2023.122136_b0230 article-title: Mining educational data to improve students’ performance: A case study publication-title: International Journal of Information – volume: 26 start-page: 1527 issue: 2 year: 2021 ident: 10.1016/j.eswa.2023.122136_b0045 article-title: A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach publication-title: Education and Information Technologies doi: 10.1007/s10639-020-10316-y |
| SSID | ssj0017007 |
| Score | 2.5559916 |
| Snippet | The proactive prediction and systematic classification of students' academic performance empower educational administrators with the invaluable capability to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122136 |
| SubjectTerms | Machine learning methods Metaheuristic optimization algorithms Student performance evaluation XG-Boost Classifier |
| Title | Evaluation of students' performance during the academic period using the XG-Boost Classifier-Enhanced AEO hybrid model |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.122136 |
| Volume | 238 |
| WOSCitedRecordID | wos001096456400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELbapIde-q6avuRDpR5WXoExNhw3FX2pSis1lbYnBMYou4pgGyCPf98xY-9u0yhqK_WCEGCDPJ_Gg_3NN4S8io0RWgnJlNQRswpYrLTMHJ4KWfBKBMYEY7EJdXCQzOfpF7eD343lBFTTJOfn6eq_mhqugbFt6uxfmHvdKVyAczA6HMHscPwjw2dr_W4bCHaoXTlyJVZbSQIuPdGGnYWnyFvR47aaDJ2_M3_H9tu267F05qKGKZRlzRGSBmbZ58nRhU34wnI6v6zxWwHl3slE-wS6ra3yDanAoK_ZX_zYwumnxTBODcPKT6yW44O03u9Ds_SPutUKLixdC_M1cQnNp9FsOEu4FqmYCLFcz9SgJ05UxKTC8om_-XlcclhOTXdmxaN4NA05D6NLotrjNP3V9m47h58tDt5G3iS7XMUpuMDd2Yds_nG96aQCzK73X-NyrJAOePlNV8cxW7HJ4T1yx_1U0BmC4T65YZoH5K4v2EGd_35ITjfYoG1NPTZe0y1kUEQGBftTjwyKyKAjMsY7Hhn0CmRQQAZFZNARGY_It7fZ4Zv3zBXeYDoKgp6ZpKiUTkVVRkVZBxU46bSAyDo2PK1lFdaCaxnWdSkh_tHCcBOasE6SRJs01EEVPSY7TduYJ4QWdoKQQpU60OAJRGnlzoKyrOJUqkrrPRL6Ycy1U6W3xVGOc08_XOZ26HM79DkO_R6ZrNusUJPl2qdjb53cRZUYLeYApmvaPf3Hds_I7Q3wn5Od_mQwL8gtfdovupOXDnM_AdoYnps |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+students%27+performance+during+the+academic+period+using+the+XG-Boost+Classifier-Enhanced+AEO+hybrid+model&rft.jtitle=Expert+systems+with+applications&rft.au=Cheng%2C+Biqian&rft.au=Liu%2C+Yuping&rft.au=Jia%2C+Yunjian&rft.date=2024-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016%2Fj.eswa.2023.122136&rft.externalDocID=S0957417423026386 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |