Moments of normally distributed random matrices given by generating series for connection coefficients— Explicit algebraic computation
The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion coefficients of these two algebraic structures are important numbers with significant applications. From a combinatorial point of view, they give the nu...
Uložené v:
| Vydané v: | Discrete mathematics Ročník 338; číslo 9; s. 1603 - 1613 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
06.09.2015
|
| Predmet: | |
| ISSN: | 0012-365X, 1872-681X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion coefficients of these two algebraic structures are important numbers with significant applications. From a combinatorial point of view, they give the number of factorizations of a given permutation into the ordered product of permutations with specific cyclic properties and count in some cases the number of hypermaps and constellations on (locally) orientable surfaces. They are also of notable interest in the study of Schur and zonal polynomials as well as in the theory of the irreducible characters of the symmetric group and the zonal spherical functions. Furthermore as shown by Hanlon, Stanley, Stembridge (1992), the respective generating series of these coefficients in the basis of power sum symmetric functions are equal to the mathematical expectation of the trace of (XUYU∗)n where X and Y are given symmetric (respectively hermitian) matrices, U is a random real (respectively complex) valued square matrix of standard normal distribution and n a non negative integer.
This paper is devoted to the explicit evaluation of these series in terms of monomial symmetric functions. Morales and Vassilieva (2009, 2011) and Vassilieva (2013) found explicit formulas for these generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps and some decorated forests and trees. Thanks to purely algebraic means, we recover the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type [a,b,1n−a−b]. |
|---|---|
| AbstractList | The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion coefficients of these two algebraic structures are important numbers with significant applications. From a combinatorial point of view, they give the number of factorizations of a given permutation into the ordered product of permutations with specific cyclic properties and count in some cases the number of hypermaps and constellations on (locally) orientable surfaces. They are also of notable interest in the study of Schur and zonal polynomials as well as in the theory of the irreducible characters of the symmetric group and the zonal spherical functions. Furthermore as shown by Hanlon, Stanley, Stembridge (1992), the respective generating series of these coefficients in the basis of power sum symmetric functions are equal to the mathematical expectation of the trace of (XUYU∗)n where X and Y are given symmetric (respectively hermitian) matrices, U is a random real (respectively complex) valued square matrix of standard normal distribution and n a non negative integer.
This paper is devoted to the explicit evaluation of these series in terms of monomial symmetric functions. Morales and Vassilieva (2009, 2011) and Vassilieva (2013) found explicit formulas for these generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps and some decorated forests and trees. Thanks to purely algebraic means, we recover the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type [a,b,1n−a−b]. |
| Author | Vassilieva, Ekaterina |
| Author_xml | – sequence: 1 givenname: Ekaterina surname: Vassilieva fullname: Vassilieva, Ekaterina email: ekaterina.vassilieva@lix.polytechnique.fr organization: Laboratoire d’Informatique de l’Ecole Polytechnique, 91128 Palaiseau Cedex, France |
| BookMark | eNp9kMtOAyEUhonRxFp9AVe8wIww90ncmKZekho3mnRHGDg0NDPQAG3szqUP4BP6JDLWlYuu4MD5_pzzXaBTYw0gdE1JSgmtbtap1F6kGaFlSoqUkPIETWhTZ0nV0OUpmhBCsySvyuU5uvB-TWJd5c0EfT7bAUzw2CpsrBt43-9xzApOd9sAEjtupB3wwOOLAI9XegcGd3u8AgOOB21W2IPT8UtZh4U1BkTQ1sQrKKWFHuO_P77w_H3TxzJg3q-gc1yL2DJstoGP7ZfoTPHew9XfOUVv9_PX2WOyeHl4mt0tEpETEhKoeS2gUqA4b6VoVdnyhipZ8lIpkkHX1qKqOuiKrmhUKZqiLHJZtVLxpo5cPkXZIVc4670DxTZOD9ztGSVsdMnWbHTJRpeMFCy6jFDzD4p7_I4d4h79cfT2gEJcaqfBMT8qESC1i6KYtPoY_gP6MZlR |
| CitedBy_id | crossref_primary_10_1007_s00026_017_0356_y |
| Cites_doi | 10.1016/j.crma.2003.09.020 10.1006/eujc.1998.0215 10.4153/CMB-1992-022-9 10.1016/S0195-6698(05)80015-0 10.1016/S0012-365X(01)00361-2 10.1016/j.jcta.2005.11.005 10.1016/0001-8708(89)90015-7 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.disc.2015.04.005 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-681X |
| EndPage | 1613 |
| ExternalDocumentID | 10_1016_j_disc_2015_04_005 S0012365X15001387 |
| GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT WH7 XPP ZMT ~G- 29G 41~ 5VS 6TJ 9DU AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FGOYB G-2 HZ~ MVM R2- RNS SEW VH1 WUQ XOL ZCG ZY4 ~HD |
| ID | FETCH-LOGICAL-c300t-e7a7ce6fefaa9dc9f59a81fd5a5ff02eb97c66beb4b48f5c84543d69dfa87e6f3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356126700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0012-365X |
| IngestDate | Sat Nov 29 06:17:49 EST 2025 Tue Nov 18 21:22:27 EST 2025 Fri Feb 23 02:17:04 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Class algebra Double coset algebra Connection coefficients Random matrices Zonal polynomials |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-e7a7ce6fefaa9dc9f59a81fd5a5ff02eb97c66beb4b48f5c84543d69dfa87e6f3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.disc.2015.04.005 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_disc_2015_04_005 crossref_citationtrail_10_1016_j_disc_2015_04_005 elsevier_sciencedirect_doi_10_1016_j_disc_2015_04_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-06 |
| PublicationDateYYYYMMDD | 2015-09-06 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete mathematics |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Morales, Vassilieva (br000060) 2009 Biane (br000010) 2004; 51 Goulden, Jackson (br000020) 1992; 13 E.A. Vassilieva, Moments of normally distributed random matrices—bijective explicit evaluation. Poulalhon, Schaeffer (br000075) 2000; 254 Stanley (br000080) 1989; 77 Graham, Knuth, Patashnik (br000035) 1990 Goulden, Jackson (br000025) 1996; 348 Féray, Vassilieva (br000015) 2010 Lasalle, Schlosser (br000050) 2003; 337 Olson, Uppuluri (br000070) 1972 Okounkov, Olshanski (br000065) 1997; 4 Hanlon, Stanley, Stembridge (br000040) 1992; 138 2013. Irving (br000045) 2006; 113 Goupil, Schaeffer (br000030) 1998; 19 Bedard, Goupil (br000005) 1992; 35 Macdonald (br000055) 1999 Féray (10.1016/j.disc.2015.04.005_br000015) 2010 Goulden (10.1016/j.disc.2015.04.005_br000025) 1996; 348 Goulden (10.1016/j.disc.2015.04.005_br000020) 1992; 13 Okounkov (10.1016/j.disc.2015.04.005_br000065) 1997; 4 Goupil (10.1016/j.disc.2015.04.005_br000030) 1998; 19 Irving (10.1016/j.disc.2015.04.005_br000045) 2006; 113 Lasalle (10.1016/j.disc.2015.04.005_br000050) 2003; 337 Macdonald (10.1016/j.disc.2015.04.005_br000055) 1999 Olson (10.1016/j.disc.2015.04.005_br000070) 1972 Bedard (10.1016/j.disc.2015.04.005_br000005) 1992; 35 Morales (10.1016/j.disc.2015.04.005_br000060) 2009 Graham (10.1016/j.disc.2015.04.005_br000035) 1990 Stanley (10.1016/j.disc.2015.04.005_br000080) 1989; 77 Hanlon (10.1016/j.disc.2015.04.005_br000040) 1992; 138 10.1016/j.disc.2015.04.005_br000085 Biane (10.1016/j.disc.2015.04.005_br000010) 2004; 51 Poulalhon (10.1016/j.disc.2015.04.005_br000075) 2000; 254 |
| References_xml | – volume: 348 year: 1996 ident: br000025 article-title: Connection coefficients, matchings, and combinatorial conjectures for Jack symmetric functions publication-title: Trans. Amer. Math. Soc. – volume: 113 start-page: 1549 year: 2006 end-page: 1554 ident: br000045 article-title: On the number of factorizations of a full cycle publication-title: J. Combin. Theory Ser. A – volume: 77 start-page: 76 year: 1989 end-page: 115 ident: br000080 article-title: Some combinatorial properties of Jack symmetric functions publication-title: Adv. Math. – start-page: 615 year: 1972 end-page: 644 ident: br000070 article-title: Asymptotic distribution of eigenvalues of random matrices publication-title: Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 111 – volume: 254 start-page: 433 year: 2000 end-page: 458 ident: br000075 article-title: Factorizations of large cycles in the symmetric group publication-title: Discrete Math. – year: 1990 ident: br000035 article-title: Concrete Mathematics – start-page: 713 year: 2010 end-page: 724 ident: br000015 article-title: Linear coefficients of Kerov’s polynomials: bijective proof and refinement of Zagier’s result publication-title: DMTCS Proc. (FPSAC), AN – volume: 19 start-page: 819 year: 1998 end-page: 834 ident: br000030 article-title: Factoring publication-title: European J. Combin. – volume: 35 start-page: 152 year: 1992 end-page: 160 ident: br000005 article-title: The poset of conjugacy classes and decomposition of products in the symmetric group publication-title: Can. Math. Bull. – volume: 138 start-page: 151 year: 1992 end-page: 174 ident: br000040 article-title: Some combinatorial aspects of the spectra of normally distributed random matrices publication-title: Math. Res. Lett. – volume: 337 start-page: 569 year: 2003 end-page: 574 ident: br000050 article-title: An analytic formula for Macdonald polynomials publication-title: C.R. Acad. Sci. Paris, Ser. I – reference: , 2013. – volume: 13 start-page: 357 year: 1992 end-page: 365 ident: br000020 article-title: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group publication-title: European J. Combin. – reference: E.A. Vassilieva, Moments of normally distributed random matrices—bijective explicit evaluation. – year: 1999 ident: br000055 article-title: Symmetric Functions and Hall Polynomials – start-page: 661 year: 2009 end-page: 672 ident: br000060 article-title: Bijective enumeration of bicolored maps of given vertex degree distribution publication-title: DMTCS Proc. (FPSAC), AK – volume: 51 year: 2004 ident: br000010 article-title: Nombre de factorisations d’un grand cycle publication-title: Sémin. Lotharingien de Combinatoire – volume: 4 start-page: 69 year: 1997 end-page: 78 ident: br000065 article-title: Shifted Jack polynomials, binomial formula, and applications publication-title: Math. Res. Lett. – volume: 337 start-page: 569 year: 2003 ident: 10.1016/j.disc.2015.04.005_br000050 article-title: An analytic formula for Macdonald polynomials publication-title: C.R. Acad. Sci. Paris, Ser. I doi: 10.1016/j.crma.2003.09.020 – volume: 138 start-page: 151 year: 1992 ident: 10.1016/j.disc.2015.04.005_br000040 article-title: Some combinatorial aspects of the spectra of normally distributed random matrices publication-title: Math. Res. Lett. – volume: 4 start-page: 69 year: 1997 ident: 10.1016/j.disc.2015.04.005_br000065 article-title: Shifted Jack polynomials, binomial formula, and applications publication-title: Math. Res. Lett. – volume: 51 issue: 4 year: 2004 ident: 10.1016/j.disc.2015.04.005_br000010 article-title: Nombre de factorisations d’un grand cycle publication-title: Sémin. Lotharingien de Combinatoire – volume: 19 start-page: 819 issue: 16 year: 1998 ident: 10.1016/j.disc.2015.04.005_br000030 article-title: Factoring n-cycles and counting maps of given genus publication-title: European J. Combin. doi: 10.1006/eujc.1998.0215 – start-page: 661 year: 2009 ident: 10.1016/j.disc.2015.04.005_br000060 article-title: Bijective enumeration of bicolored maps of given vertex degree distribution publication-title: DMTCS Proc. (FPSAC), AK – year: 1990 ident: 10.1016/j.disc.2015.04.005_br000035 – volume: 35 start-page: 152 issue: 2 year: 1992 ident: 10.1016/j.disc.2015.04.005_br000005 article-title: The poset of conjugacy classes and decomposition of products in the symmetric group publication-title: Can. Math. Bull. doi: 10.4153/CMB-1992-022-9 – year: 1999 ident: 10.1016/j.disc.2015.04.005_br000055 – volume: 13 start-page: 357 year: 1992 ident: 10.1016/j.disc.2015.04.005_br000020 article-title: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group publication-title: European J. Combin. doi: 10.1016/S0195-6698(05)80015-0 – volume: 254 start-page: 433 year: 2000 ident: 10.1016/j.disc.2015.04.005_br000075 article-title: Factorizations of large cycles in the symmetric group publication-title: Discrete Math. doi: 10.1016/S0012-365X(01)00361-2 – start-page: 713 year: 2010 ident: 10.1016/j.disc.2015.04.005_br000015 article-title: Linear coefficients of Kerov’s polynomials: bijective proof and refinement of Zagier’s result publication-title: DMTCS Proc. (FPSAC), AN – volume: 348 issue: 873–892 year: 1996 ident: 10.1016/j.disc.2015.04.005_br000025 article-title: Connection coefficients, matchings, and combinatorial conjectures for Jack symmetric functions publication-title: Trans. Amer. Math. Soc. – volume: 113 start-page: 1549 issue: 7 year: 2006 ident: 10.1016/j.disc.2015.04.005_br000045 article-title: On the number of factorizations of a full cycle publication-title: J. Combin. Theory Ser. A doi: 10.1016/j.jcta.2005.11.005 – volume: 77 start-page: 76 year: 1989 ident: 10.1016/j.disc.2015.04.005_br000080 article-title: Some combinatorial properties of Jack symmetric functions publication-title: Adv. Math. doi: 10.1016/0001-8708(89)90015-7 – ident: 10.1016/j.disc.2015.04.005_br000085 – start-page: 615 year: 1972 ident: 10.1016/j.disc.2015.04.005_br000070 article-title: Asymptotic distribution of eigenvalues of random matrices |
| SSID | ssj0001638 |
| Score | 2.07902 |
| Snippet | The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1603 |
| SubjectTerms | Class algebra Connection coefficients Double coset algebra Random matrices Zonal polynomials |
| Title | Moments of normally distributed random matrices given by generating series for connection coefficients— Explicit algebraic computation |
| URI | https://dx.doi.org/10.1016/j.disc.2015.04.005 |
| Volume | 338 |
| WOSCitedRecordID | wos000356126700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-681X dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0001638 issn: 0012-365X databaseCode: AIEXJ dateStart: 19950120 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt1XQ5uHYOVawCJBaIVFQblHs2KstaVK121V767ESV34hv4QZ23kIqgqQuEQra73J7nw789me-YaQl6ZkkZSmDGCNrIMkNCKQKkqCUBjFQ2nCSBrbbILv7Yk8zz5OJt-6WphNzZtGnJ1lR__V1DAGxsbS2b8wd_-hMACvwehwBbPD9Y8Mv9u6qjXM0EBCWtfneAzjOlsBvYTgVLWHs0Orza9PZkv0d8hCl1aB2qZB44Nqq9SAaemNdv3EVaut4ITNvfBJEgmKJdcwiFvHSzyFXimbp346OuP35PfNCnwUkHS8t9eK7Rn9FyDxK-DDG0tmF19L1JB2nb27TYmQ2ayrdNgp-61axnlfFEhMWe5ij3O4gkdBKsJ87JHjWIygl438KzbFHsVqoKvxlXHAbUkcvMLSZszfY1bPds6GqNfnIn5yMnYsB2qMx7b8BtmKOMvElGztvF_kH_rAjtTVBXb3NXwNlksX_PVOV_OcEXfZv0vu-EUH3XFguUcmurlPbu8OVnhALj1saGtoBxs6gg11sKEdbKiFDZXndIANdbChABs6wIaOYfPj4jvtAEN7wNARYB6Sz28X-6_fBb5LR6Di-XwdaF5ypVOjTVlmlcoMy0oRmoqVzJh5pGXGVZpKLROZCMOUSFgSV2lWmVJwmBc_ItOmbfRjQiHciCiRMWpUJlxFsNaVmpk0xlV-pfg2CbvftFBewh47qdRFl6t4UKAdCrRDMU8KsMM2mfVzjpyAy7XvZp2pCk9BHbUsAFnXzHvyj_OeklvD3-cZma6PT_VzclNt1quT4xcegD8B7yy0oA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moments+of+normally+distributed+random+matrices+given+by+generating+series+for+connection+coefficients%E2%80%94+Explicit+algebraic+computation&rft.jtitle=Discrete+mathematics&rft.au=Vassilieva%2C+Ekaterina&rft.date=2015-09-06&rft.pub=Elsevier+B.V&rft.issn=0012-365X&rft.eissn=1872-681X&rft.volume=338&rft.issue=9&rft.spage=1603&rft.epage=1613&rft_id=info:doi/10.1016%2Fj.disc.2015.04.005&rft.externalDocID=S0012365X15001387 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |