Moments of normally distributed random matrices given by generating series for connection coefficients— Explicit algebraic computation

The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion coefficients of these two algebraic structures are important numbers with significant applications. From a combinatorial point of view, they give the nu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics Ročník 338; číslo 9; s. 1603 - 1613
Hlavní autor: Vassilieva, Ekaterina
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 06.09.2015
Témata:
ISSN:0012-365X, 1872-681X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion coefficients of these two algebraic structures are important numbers with significant applications. From a combinatorial point of view, they give the number of factorizations of a given permutation into the ordered product of permutations with specific cyclic properties and count in some cases the number of hypermaps and constellations on (locally) orientable surfaces. They are also of notable interest in the study of Schur and zonal polynomials as well as in the theory of the irreducible characters of the symmetric group and the zonal spherical functions. Furthermore as shown by Hanlon, Stanley, Stembridge (1992), the respective generating series of these coefficients in the basis of power sum symmetric functions are equal to the mathematical expectation of the trace of (XUYU∗)n where X and Y are given symmetric (respectively hermitian) matrices, U is a random real (respectively complex) valued square matrix of standard normal distribution and n a non negative integer. This paper is devoted to the explicit evaluation of these series in terms of monomial symmetric functions. Morales and Vassilieva (2009, 2011) and Vassilieva (2013) found explicit formulas for these generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps and some decorated forests and trees. Thanks to purely algebraic means, we recover the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type [a,b,1n−a−b].
AbstractList The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion coefficients of these two algebraic structures are important numbers with significant applications. From a combinatorial point of view, they give the number of factorizations of a given permutation into the ordered product of permutations with specific cyclic properties and count in some cases the number of hypermaps and constellations on (locally) orientable surfaces. They are also of notable interest in the study of Schur and zonal polynomials as well as in the theory of the irreducible characters of the symmetric group and the zonal spherical functions. Furthermore as shown by Hanlon, Stanley, Stembridge (1992), the respective generating series of these coefficients in the basis of power sum symmetric functions are equal to the mathematical expectation of the trace of (XUYU∗)n where X and Y are given symmetric (respectively hermitian) matrices, U is a random real (respectively complex) valued square matrix of standard normal distribution and n a non negative integer. This paper is devoted to the explicit evaluation of these series in terms of monomial symmetric functions. Morales and Vassilieva (2009, 2011) and Vassilieva (2013) found explicit formulas for these generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps and some decorated forests and trees. Thanks to purely algebraic means, we recover the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type [a,b,1n−a−b].
Author Vassilieva, Ekaterina
Author_xml – sequence: 1
  givenname: Ekaterina
  surname: Vassilieva
  fullname: Vassilieva, Ekaterina
  email: ekaterina.vassilieva@lix.polytechnique.fr
  organization: Laboratoire d’Informatique de l’Ecole Polytechnique, 91128 Palaiseau Cedex, France
BookMark eNp9kMtOAyEUhonRxFp9AVe8wIww90ncmKZekho3mnRHGDg0NDPQAG3szqUP4BP6JDLWlYuu4MD5_pzzXaBTYw0gdE1JSgmtbtap1F6kGaFlSoqUkPIETWhTZ0nV0OUpmhBCsySvyuU5uvB-TWJd5c0EfT7bAUzw2CpsrBt43-9xzApOd9sAEjtupB3wwOOLAI9XegcGd3u8AgOOB21W2IPT8UtZh4U1BkTQ1sQrKKWFHuO_P77w_H3TxzJg3q-gc1yL2DJstoGP7ZfoTPHew9XfOUVv9_PX2WOyeHl4mt0tEpETEhKoeS2gUqA4b6VoVdnyhipZ8lIpkkHX1qKqOuiKrmhUKZqiLHJZtVLxpo5cPkXZIVc4670DxTZOD9ztGSVsdMnWbHTJRpeMFCy6jFDzD4p7_I4d4h79cfT2gEJcaqfBMT8qESC1i6KYtPoY_gP6MZlR
CitedBy_id crossref_primary_10_1007_s00026_017_0356_y
Cites_doi 10.1016/j.crma.2003.09.020
10.1006/eujc.1998.0215
10.4153/CMB-1992-022-9
10.1016/S0195-6698(05)80015-0
10.1016/S0012-365X(01)00361-2
10.1016/j.jcta.2005.11.005
10.1016/0001-8708(89)90015-7
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.disc.2015.04.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 1613
ExternalDocumentID 10_1016_j_disc_2015_04_005
S0012365X15001387
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WH7
XPP
ZMT
~G-
29G
41~
5VS
6TJ
9DU
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FGOYB
G-2
HZ~
MVM
R2-
RNS
SEW
VH1
WUQ
XOL
ZCG
ZY4
~HD
ID FETCH-LOGICAL-c300t-e7a7ce6fefaa9dc9f59a81fd5a5ff02eb97c66beb4b48f5c84543d69dfa87e6f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356126700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Sat Nov 29 06:17:49 EST 2025
Tue Nov 18 21:22:27 EST 2025
Fri Feb 23 02:17:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Class algebra
Double coset algebra
Connection coefficients
Random matrices
Zonal polynomials
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-e7a7ce6fefaa9dc9f59a81fd5a5ff02eb97c66beb4b48f5c84543d69dfa87e6f3
OpenAccessLink https://dx.doi.org/10.1016/j.disc.2015.04.005
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_disc_2015_04_005
crossref_citationtrail_10_1016_j_disc_2015_04_005
elsevier_sciencedirect_doi_10_1016_j_disc_2015_04_005
PublicationCentury 2000
PublicationDate 2015-09-06
PublicationDateYYYYMMDD 2015-09-06
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-06
  day: 06
PublicationDecade 2010
PublicationTitle Discrete mathematics
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Morales, Vassilieva (br000060) 2009
Biane (br000010) 2004; 51
Goulden, Jackson (br000020) 1992; 13
E.A. Vassilieva, Moments of normally distributed random matrices—bijective explicit evaluation.
Poulalhon, Schaeffer (br000075) 2000; 254
Stanley (br000080) 1989; 77
Graham, Knuth, Patashnik (br000035) 1990
Goulden, Jackson (br000025) 1996; 348
Féray, Vassilieva (br000015) 2010
Lasalle, Schlosser (br000050) 2003; 337
Olson, Uppuluri (br000070) 1972
Okounkov, Olshanski (br000065) 1997; 4
Hanlon, Stanley, Stembridge (br000040) 1992; 138
2013.
Irving (br000045) 2006; 113
Goupil, Schaeffer (br000030) 1998; 19
Bedard, Goupil (br000005) 1992; 35
Macdonald (br000055) 1999
Féray (10.1016/j.disc.2015.04.005_br000015) 2010
Goulden (10.1016/j.disc.2015.04.005_br000025) 1996; 348
Goulden (10.1016/j.disc.2015.04.005_br000020) 1992; 13
Okounkov (10.1016/j.disc.2015.04.005_br000065) 1997; 4
Goupil (10.1016/j.disc.2015.04.005_br000030) 1998; 19
Irving (10.1016/j.disc.2015.04.005_br000045) 2006; 113
Lasalle (10.1016/j.disc.2015.04.005_br000050) 2003; 337
Macdonald (10.1016/j.disc.2015.04.005_br000055) 1999
Olson (10.1016/j.disc.2015.04.005_br000070) 1972
Bedard (10.1016/j.disc.2015.04.005_br000005) 1992; 35
Morales (10.1016/j.disc.2015.04.005_br000060) 2009
Graham (10.1016/j.disc.2015.04.005_br000035) 1990
Stanley (10.1016/j.disc.2015.04.005_br000080) 1989; 77
Hanlon (10.1016/j.disc.2015.04.005_br000040) 1992; 138
10.1016/j.disc.2015.04.005_br000085
Biane (10.1016/j.disc.2015.04.005_br000010) 2004; 51
Poulalhon (10.1016/j.disc.2015.04.005_br000075) 2000; 254
References_xml – volume: 348
  year: 1996
  ident: br000025
  article-title: Connection coefficients, matchings, and combinatorial conjectures for Jack symmetric functions
  publication-title: Trans. Amer. Math. Soc.
– volume: 113
  start-page: 1549
  year: 2006
  end-page: 1554
  ident: br000045
  article-title: On the number of factorizations of a full cycle
  publication-title: J. Combin. Theory Ser. A
– volume: 77
  start-page: 76
  year: 1989
  end-page: 115
  ident: br000080
  article-title: Some combinatorial properties of Jack symmetric functions
  publication-title: Adv. Math.
– start-page: 615
  year: 1972
  end-page: 644
  ident: br000070
  article-title: Asymptotic distribution of eigenvalues of random matrices
  publication-title: Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 111
– volume: 254
  start-page: 433
  year: 2000
  end-page: 458
  ident: br000075
  article-title: Factorizations of large cycles in the symmetric group
  publication-title: Discrete Math.
– year: 1990
  ident: br000035
  article-title: Concrete Mathematics
– start-page: 713
  year: 2010
  end-page: 724
  ident: br000015
  article-title: Linear coefficients of Kerov’s polynomials: bijective proof and refinement of Zagier’s result
  publication-title: DMTCS Proc. (FPSAC), AN
– volume: 19
  start-page: 819
  year: 1998
  end-page: 834
  ident: br000030
  article-title: Factoring
  publication-title: European J. Combin.
– volume: 35
  start-page: 152
  year: 1992
  end-page: 160
  ident: br000005
  article-title: The poset of conjugacy classes and decomposition of products in the symmetric group
  publication-title: Can. Math. Bull.
– volume: 138
  start-page: 151
  year: 1992
  end-page: 174
  ident: br000040
  article-title: Some combinatorial aspects of the spectra of normally distributed random matrices
  publication-title: Math. Res. Lett.
– volume: 337
  start-page: 569
  year: 2003
  end-page: 574
  ident: br000050
  article-title: An analytic formula for Macdonald polynomials
  publication-title: C.R. Acad. Sci. Paris, Ser. I
– reference: , 2013.
– volume: 13
  start-page: 357
  year: 1992
  end-page: 365
  ident: br000020
  article-title: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group
  publication-title: European J. Combin.
– reference: E.A. Vassilieva, Moments of normally distributed random matrices—bijective explicit evaluation.
– year: 1999
  ident: br000055
  article-title: Symmetric Functions and Hall Polynomials
– start-page: 661
  year: 2009
  end-page: 672
  ident: br000060
  article-title: Bijective enumeration of bicolored maps of given vertex degree distribution
  publication-title: DMTCS Proc. (FPSAC), AK
– volume: 51
  year: 2004
  ident: br000010
  article-title: Nombre de factorisations d’un grand cycle
  publication-title: Sémin. Lotharingien de Combinatoire
– volume: 4
  start-page: 69
  year: 1997
  end-page: 78
  ident: br000065
  article-title: Shifted Jack polynomials, binomial formula, and applications
  publication-title: Math. Res. Lett.
– volume: 337
  start-page: 569
  year: 2003
  ident: 10.1016/j.disc.2015.04.005_br000050
  article-title: An analytic formula for Macdonald polynomials
  publication-title: C.R. Acad. Sci. Paris, Ser. I
  doi: 10.1016/j.crma.2003.09.020
– volume: 138
  start-page: 151
  year: 1992
  ident: 10.1016/j.disc.2015.04.005_br000040
  article-title: Some combinatorial aspects of the spectra of normally distributed random matrices
  publication-title: Math. Res. Lett.
– volume: 4
  start-page: 69
  year: 1997
  ident: 10.1016/j.disc.2015.04.005_br000065
  article-title: Shifted Jack polynomials, binomial formula, and applications
  publication-title: Math. Res. Lett.
– volume: 51
  issue: 4
  year: 2004
  ident: 10.1016/j.disc.2015.04.005_br000010
  article-title: Nombre de factorisations d’un grand cycle
  publication-title: Sémin. Lotharingien de Combinatoire
– volume: 19
  start-page: 819
  issue: 16
  year: 1998
  ident: 10.1016/j.disc.2015.04.005_br000030
  article-title: Factoring n-cycles and counting maps of given genus
  publication-title: European J. Combin.
  doi: 10.1006/eujc.1998.0215
– start-page: 661
  year: 2009
  ident: 10.1016/j.disc.2015.04.005_br000060
  article-title: Bijective enumeration of bicolored maps of given vertex degree distribution
  publication-title: DMTCS Proc. (FPSAC), AK
– year: 1990
  ident: 10.1016/j.disc.2015.04.005_br000035
– volume: 35
  start-page: 152
  issue: 2
  year: 1992
  ident: 10.1016/j.disc.2015.04.005_br000005
  article-title: The poset of conjugacy classes and decomposition of products in the symmetric group
  publication-title: Can. Math. Bull.
  doi: 10.4153/CMB-1992-022-9
– year: 1999
  ident: 10.1016/j.disc.2015.04.005_br000055
– volume: 13
  start-page: 357
  year: 1992
  ident: 10.1016/j.disc.2015.04.005_br000020
  article-title: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group
  publication-title: European J. Combin.
  doi: 10.1016/S0195-6698(05)80015-0
– volume: 254
  start-page: 433
  year: 2000
  ident: 10.1016/j.disc.2015.04.005_br000075
  article-title: Factorizations of large cycles in the symmetric group
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(01)00361-2
– start-page: 713
  year: 2010
  ident: 10.1016/j.disc.2015.04.005_br000015
  article-title: Linear coefficients of Kerov’s polynomials: bijective proof and refinement of Zagier’s result
  publication-title: DMTCS Proc. (FPSAC), AN
– volume: 348
  issue: 873–892
  year: 1996
  ident: 10.1016/j.disc.2015.04.005_br000025
  article-title: Connection coefficients, matchings, and combinatorial conjectures for Jack symmetric functions
  publication-title: Trans. Amer. Math. Soc.
– volume: 113
  start-page: 1549
  issue: 7
  year: 2006
  ident: 10.1016/j.disc.2015.04.005_br000045
  article-title: On the number of factorizations of a full cycle
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2005.11.005
– volume: 77
  start-page: 76
  year: 1989
  ident: 10.1016/j.disc.2015.04.005_br000080
  article-title: Some combinatorial properties of Jack symmetric functions
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(89)90015-7
– ident: 10.1016/j.disc.2015.04.005_br000085
– start-page: 615
  year: 1972
  ident: 10.1016/j.disc.2015.04.005_br000070
  article-title: Asymptotic distribution of eigenvalues of random matrices
SSID ssj0001638
Score 2.07902
Snippet The class algebra and the double coset algebra are two classical commutative subalgebras of the group algebra of the symmetric group. The connexion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1603
SubjectTerms Class algebra
Connection coefficients
Double coset algebra
Random matrices
Zonal polynomials
Title Moments of normally distributed random matrices given by generating series for connection coefficients— Explicit algebraic computation
URI https://dx.doi.org/10.1016/j.disc.2015.04.005
Volume 338
WOSCitedRecordID wos000356126700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVWWw5wQHyK8iUfuK2Cko2dxMeqLAJEKw4F7S1yHHu1JU2qdrtqb6gnfgC_kF_CjO1krapU9MAliqy1k828zLzY4zeEvNGmniqWp5GptYwYOMmoSnUaKVZkENBRIc5K5n_O9_eL-Vx8GY0u-70w6yZv2-L8XBz_V1NDGxgbt87ewtzDoNAA52B0OILZ4fhPht_r3K41zNBAQto0F7gM4ypbAb2E4FR3R5Mjq82vTycL9HfIQhdWgdqmQeONaqvUgGnprXb1xFWnreCEzb3wSRIMxZIbaMSp4wWuQi-VzVM_C9b4Pfl9twQfBSQdr-21YgdG_w1I_BL48NqS2dl3iRrSrrJ3PymRcJt1lYWOFrUQMz4PHW2aFgGiROA2sdZ1EIKBhabXunc303D4FncsY1oetzK1Md8Es34B_0qMGzIP-6S2wxLHKHGMMmallcHdmuZcFGOytfNxNv80xHNkrC6eu7_kt165LMGrd3I9vQkoy8EDct9_a9Adh5GHZKTbR-Te3ubhPyY_PVpoZ2iPFhqghTq00B4t1KKFVhd0gxbq0EIBLXSDFhqi5fePX7THCR1wQgOcPCFf388Odj9EvjhHpNI4XkU6l7nSmdFGSlErYbiQRWJqLrkx8VRXIldZVumKVawwXBWMs7TORG1kkUO_9CkZt12rnxGaxSZOqqlMNLiNWiiRMF7pRNbANSFgq22S9M-0VF65HguoNOXfrblNJkOfY6fbcuOveW-q0jNPxyhLQN4N_Z7f6iovyN3Nu_KSjFcnZ_oVuaPWq-XpyWsPuz-px65x
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moments+of+normally+distributed+random+matrices+given+by+generating+series+for+connection+coefficients%E2%80%94+Explicit+algebraic+computation&rft.jtitle=Discrete+mathematics&rft.au=Vassilieva%2C+Ekaterina&rft.date=2015-09-06&rft.issn=0012-365X&rft.volume=338&rft.issue=9&rft.spage=1603&rft.epage=1613&rft_id=info:doi/10.1016%2Fj.disc.2015.04.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2015_04_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon