Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis

Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under all working conditions cannot be obtained, which would cause the data-based model lack of particular training data, resulting in unsatisfied te...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 95; p. 106577
Main Authors: Lv, Haixin, Chen, Jinglong, Pan, Tongyang, Zhou, Zitong
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2020
Subjects:
ISSN:1568-4946
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under all working conditions cannot be obtained, which would cause the data-based model lack of particular training data, resulting in unsatisfied testing performance. Therefore, zero-shot classification of mechanical intelligent fault diagnosis is a very practical work. Inspired by the zero-shot learning method, hybrid attribute conditional adversarial denoising autoencoder (CADAE), which uses hybrid attribute as condition, is proposed to solve the zero-shot classification problem. CADAE consists of three network modules: an encoder, a generator and a discriminator. The discriminator is applied to control the data distribution of hidden layer encoded by the encoder, and we add hybrid attribute condition into hidden layer to control the reconstruction process of generator. Finally, the generator module of the trained CADAE would be used to generate samples to train a classifier for missing classes. The proposed method is verified with three datasets under different data missing conditions. The results show that the proposed method could effectively solve the zero-shot classification problem with high classification accuracy exceeds 95%. •A generation network is proposed for zero-shot classification of mechanical fault.•We propose hybrid attribute, which includes semantic and non-semantic attributes.•Experiments show that our method performs better than matrix and CGAN based methods.
AbstractList Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under all working conditions cannot be obtained, which would cause the data-based model lack of particular training data, resulting in unsatisfied testing performance. Therefore, zero-shot classification of mechanical intelligent fault diagnosis is a very practical work. Inspired by the zero-shot learning method, hybrid attribute conditional adversarial denoising autoencoder (CADAE), which uses hybrid attribute as condition, is proposed to solve the zero-shot classification problem. CADAE consists of three network modules: an encoder, a generator and a discriminator. The discriminator is applied to control the data distribution of hidden layer encoded by the encoder, and we add hybrid attribute condition into hidden layer to control the reconstruction process of generator. Finally, the generator module of the trained CADAE would be used to generate samples to train a classifier for missing classes. The proposed method is verified with three datasets under different data missing conditions. The results show that the proposed method could effectively solve the zero-shot classification problem with high classification accuracy exceeds 95%. •A generation network is proposed for zero-shot classification of mechanical fault.•We propose hybrid attribute, which includes semantic and non-semantic attributes.•Experiments show that our method performs better than matrix and CGAN based methods.
ArticleNumber 106577
Author Chen, Jinglong
Lv, Haixin
Zhou, Zitong
Pan, Tongyang
Author_xml – sequence: 1
  givenname: Haixin
  surname: Lv
  fullname: Lv, Haixin
– sequence: 2
  givenname: Jinglong
  surname: Chen
  fullname: Chen, Jinglong
  email: jlstrive2008@163.com, jlstrive2008@mail.xjtu.edu.cn
– sequence: 3
  givenname: Tongyang
  surname: Pan
  fullname: Pan, Tongyang
– sequence: 4
  givenname: Zitong
  surname: Zhou
  fullname: Zhou, Zitong
BookMark eNp9kMtKBDEQRbMYwecPuMoP9Jj0u8GNiC8Q3Og6VJLKWENPIklmYNz733Y7rly4quJS50KdU7bwwSNjl1IspZDt1XoJKZhlKco5aJuuW7AT2bR9UQ91e8xOU1qL6XAo-xP29bjXkSyHnCPpbUZugreUKXgYOdgdxgSRpt2iD5TIrzhsc0BvgsXIXYj8E2Mo0nvI3IyQEjkyMBfw4PgGzTv4KRg5-YzjSCv0mTvYjplbgpUPidI5O3IwJrz4nWfs7f7u9faxeH55eLq9eS5MJUQusJNWmnrQvXRYOdnJEurOGWyMEG032KGGyvW60lBj2Qhtahis0bbRna7FUJ2x8tBrYkgpolMfkTYQ90oKNctTazXLU7M8dZA3Qf0fyFD-eTBHoPF_9PqA4vTUjjCqZGhSh5YimqxsoP_wb3tzlCY
CitedBy_id crossref_primary_10_1016_j_engappai_2023_107739
crossref_primary_10_1016_j_conengprac_2024_105873
crossref_primary_10_1016_j_knosys_2021_107646
crossref_primary_10_3390_electronics14030452
crossref_primary_10_1088_1361_6501_acc1fc
crossref_primary_10_1109_TII_2022_3178431
crossref_primary_10_1007_s10462_024_10820_4
crossref_primary_10_1016_j_apacoust_2025_110563
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_1109_TII_2024_3363078
crossref_primary_10_1016_j_ymssp_2021_107755
crossref_primary_10_1109_JIOT_2024_3385012
crossref_primary_10_1007_s10489_022_04342_1
crossref_primary_10_1109_TIM_2025_3550233
crossref_primary_10_1016_j_engappai_2024_109020
crossref_primary_10_1109_TIM_2021_3134999
crossref_primary_10_1007_s40313_022_00946_7
crossref_primary_10_1016_j_asoc_2021_107150
crossref_primary_10_1016_j_isatra_2021_11_040
crossref_primary_10_1016_j_ymssp_2023_110747
crossref_primary_10_1109_TNNLS_2021_3111732
crossref_primary_10_1109_ACCESS_2024_3416338
crossref_primary_10_1109_TII_2024_3383459
crossref_primary_10_1016_j_asoc_2022_109772
crossref_primary_10_1016_j_ress_2024_110449
crossref_primary_10_1016_j_asoc_2022_109554
crossref_primary_10_1016_j_isatra_2021_02_042
crossref_primary_10_1016_j_knosys_2022_110008
crossref_primary_10_3390_app14114433
crossref_primary_10_1109_TIM_2024_3378256
crossref_primary_10_1016_j_eswa_2021_116094
crossref_primary_10_1016_j_oceaneng_2023_115277
crossref_primary_10_1007_s10044_022_01109_9
crossref_primary_10_1109_TIM_2023_3264022
crossref_primary_10_1016_j_aei_2023_102204
crossref_primary_10_3390_s24175596
crossref_primary_10_1016_j_engappai_2025_111484
crossref_primary_10_1016_j_neucom_2025_129588
crossref_primary_10_1016_j_apenergy_2022_119499
crossref_primary_10_1109_JAS_2023_123426
crossref_primary_10_1109_TFUZZ_2024_3470960
crossref_primary_10_1016_j_ress_2023_109591
crossref_primary_10_3390_s22145413
crossref_primary_10_1016_j_asoc_2022_109785
crossref_primary_10_1109_TIM_2025_3545713
crossref_primary_10_1016_j_ymssp_2025_112573
Cites_doi 10.1016/j.eswa.2018.05.032
10.1109/CVPR.2016.575
10.1016/j.ymssp.2018.12.051
10.1016/j.asoc.2016.05.015
10.1016/j.asoc.2018.09.037
10.1016/j.ymssp.2019.05.049
10.1109/ACCESS.2017.2720965
10.1109/TIE.2017.2767540
10.1109/MSP.2017.2763441
10.1007/s10845-019-01485-w
10.1109/ACCESS.2017.2773460
10.1016/j.asoc.2017.03.016
10.1109/ACCESS.2019.2934233
10.1016/j.neucom.2013.09.056
10.1109/CVPR.2018.00581
10.1016/j.ymssp.2019.106608
10.1016/j.asoc.2019.105564
10.1109/CVPRW.2009.5206772
10.1145/1390156.1390294
10.1016/j.asoc.2017.04.034
10.1016/j.neucom.2018.05.024
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106577
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2020_106577
S1568494620305159
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-e71d1c49b81fe3f1712a47fce5c00679d94a3f8b3ba4e250bc4a9dcbd5b7b4093
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576776700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:06:37 EST 2025
Tue Nov 18 22:34:37 EST 2025
Sun Apr 06 06:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Shipborne antenna
Zero-shot classification
Autoencoder
Generative adversarial network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-e71d1c49b81fe3f1712a47fce5c00679d94a3f8b3ba4e250bc4a9dcbd5b7b4093
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106577
crossref_citationtrail_10_1016_j_asoc_2020_106577
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106577
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Li, Cui, Yang, Dong, Hu (b27) 2019; 7
S. Changpinyo, W. Chao, . G. B, F. Sha, Synthesized classifiers for zero-shot learning, in: Conference on Computer Vision, 2016.
Abadi, Barham, Chen, Chen, Davis, Dean (b26) 2016
Gao, Gao, Li, Zheng (b12) 2019; 31
Fu, Xiang, Jiang, Xue, Sigal, Gong (b13) 2018; 35
M. Bucher, F. Jurie, Generating Visual Representations for Zero-Shot Classification, in: IEEE International Conference on Computer Vision, 2017.
Xu, t. P. Tse, Tse (b5) 2018; 73
Dou, Zhou (b7) 2016; 46
Bengio (b19) 2009; vol. 136
Zhang, Tang, Qin, Deng (b6) 2019; 131
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008.
Seera, Wong, Nandi (b9) 2017; 57
Case western reserve university bearing data center website. Available
Ren (b8) 2020; 138
Li, Yang, Yang, Bennett, Mba (b1) 2019; 82
Zhang, Song, Qi (b31) 2017
Bengio, Yao, Alain, Vincent (b21) 2013
Yang, Lei, Jia, Xing (b3) 2019; 122
Goodfellow (b20) 2014
Hinton, Srivastava, Krizhevsky, Sutskever, R (b25) 2012
Zhang, Tao, Wu, Guan (b11) 2017; 5
Xi, Yan, Rein, John, Ilya, Pieter (b34) 2016
Cheng, Xue, Wang (b28) 2017; 6
B. Romera-Paredes, P. Torr, An embarrassingly simple approach to zero-shot learning, in: Conference on Machine Learning, 2015.
Pan, Zi, Chen, Zhou, Wang (b10) 2018; 65
Y. Xian, T. Lorenz, B. Schiele, Z. Akata, Feature Generating Networks for Zero-Shot Learning, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018.
Changpinyo, Chao, Sha (b16) 2017
.
Wang, Wang, Wang (b23) 2018; 310
A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects by their attributes, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009.
Liu, Zhang, Chen (b15) 2014; 139
Zhang, Li, Gao, Li (b2) 2018; 110
Yu, Dong, Ding, Wu, Fan (b33) 2018; 6
Zhang, Luo, García, Herrera (b4) 2017; 56
Makhzani, Shlens, Jaitly, Goodfellow, Frey (b22) 2016
Changpinyo (10.1016/j.asoc.2020.106577_b16) 2017
10.1016/j.asoc.2020.106577_b18
Fu (10.1016/j.asoc.2020.106577_b13) 2018; 35
10.1016/j.asoc.2020.106577_b17
Abadi (10.1016/j.asoc.2020.106577_b26) 2016
Xu (10.1016/j.asoc.2020.106577_b5) 2018; 73
Zhang (10.1016/j.asoc.2020.106577_b6) 2019; 131
Yu (10.1016/j.asoc.2020.106577_b33) 2018; 6
Dou (10.1016/j.asoc.2020.106577_b7) 2016; 46
Wang (10.1016/j.asoc.2020.106577_b23) 2018; 310
Goodfellow (10.1016/j.asoc.2020.106577_b20) 2014
Makhzani (10.1016/j.asoc.2020.106577_b22) 2016
Zhang (10.1016/j.asoc.2020.106577_b31) 2017
Pan (10.1016/j.asoc.2020.106577_b10) 2018; 65
10.1016/j.asoc.2020.106577_b32
10.1016/j.asoc.2020.106577_b30
10.1016/j.asoc.2020.106577_b14
Zhang (10.1016/j.asoc.2020.106577_b27) 2019; 7
Ren (10.1016/j.asoc.2020.106577_b8) 2020; 138
10.1016/j.asoc.2020.106577_b29
Yang (10.1016/j.asoc.2020.106577_b3) 2019; 122
Zhang (10.1016/j.asoc.2020.106577_b2) 2018; 110
Seera (10.1016/j.asoc.2020.106577_b9) 2017; 57
Gao (10.1016/j.asoc.2020.106577_b12) 2019; 31
Li (10.1016/j.asoc.2020.106577_b1) 2019; 82
Bengio (10.1016/j.asoc.2020.106577_b21) 2013
Zhang (10.1016/j.asoc.2020.106577_b4) 2017; 56
Cheng (10.1016/j.asoc.2020.106577_b28) 2017; 6
Bengio (10.1016/j.asoc.2020.106577_b19) 2009; vol. 136
Hinton (10.1016/j.asoc.2020.106577_b25) 2012
Liu (10.1016/j.asoc.2020.106577_b15) 2014; 139
Zhang (10.1016/j.asoc.2020.106577_b11) 2017; 5
Xi (10.1016/j.asoc.2020.106577_b34) 2016
10.1016/j.asoc.2020.106577_b24
References_xml – volume: 310
  start-page: 213
  year: 2018
  end-page: 222
  ident: b23
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
– reference: A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects by their attributes, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009.
– year: 2014
  ident: b20
  article-title: Generative adversarial nets
– volume: 73
  start-page: 898
  year: 2018
  end-page: 913
  ident: b5
  article-title: Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label
  publication-title: Appl. Soft Comput.
– volume: 31
  start-page: 899
  year: 2019
  end-page: 909
  ident: b12
  article-title: A zero-shot learning method for fault diagnosis under unknown working loads
  publication-title: J. Intell. Manuf.
– year: 2012
  ident: b25
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– volume: 110
  start-page: 125
  year: 2018
  end-page: 142
  ident: b2
  article-title: A new subset based deep feature learning method for intelligent fault diagnosis of bearing
  publication-title: Expert Syst. Appl.
– volume: 122
  start-page: 692
  year: 2019
  end-page: 706
  ident: b3
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Signal Process.
– volume: 5
  start-page: 14347
  year: 2017
  end-page: 14357
  ident: b11
  article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions
  publication-title: IEEE Access
– year: 2017
  ident: b31
  article-title: Age progression/regression by conditional adversarial autoencoder
– volume: 131
  start-page: 243
  year: 2019
  end-page: 260
  ident: b6
  article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks
  publication-title: Mech. Syst. Signal Process.
– volume: 46
  start-page: 459
  year: 2016
  end-page: 468
  ident: b7
  article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery
  publication-title: Appl. Soft Comput.
– volume: 139
  start-page: 34
  year: 2014
  end-page: 46
  ident: b15
  article-title: Attribute relation learning for zero-shot classification
  publication-title: Neurocomputing
– reference: Case western reserve university bearing data center website. Available:
– volume: vol. 136
  year: 2009
  ident: b19
  publication-title: Learning Deep Architectures for AI
– volume: 82
  year: 2019
  ident: b1
  article-title: A novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machines
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 110895
  year: 2019
  end-page: 110904
  ident: b27
  article-title: Limited data rolling bearing fault diagnosis with few-shot learning
  publication-title: IEEE Access
– year: 2016
  ident: b22
  article-title: Adversarial autoencoders
– volume: 35
  start-page: 112
  year: 2018
  end-page: 125
  ident: b13
  article-title: Recent advances in zero-shot recognition: Toward data-efficient understanding of visual content
  publication-title: IEEE Signal Process. Mag.
– year: 2013
  ident: b21
  article-title: Generalized denoising auto-encoders as generative
– reference: B. Romera-Paredes, P. Torr, An embarrassingly simple approach to zero-shot learning, in: Conference on Machine Learning, 2015.
– volume: 6
  start-page: 1462
  year: 2017
  end-page: 1468
  ident: b28
  article-title: Hybrid attribute-based zero-shot image classification
  publication-title: Acta Electron. Sin.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008.
– volume: 6
  start-page: 3715
  year: 2018
  end-page: 3730
  ident: b33
  article-title: Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection
  publication-title: IEEE Access
– reference: .
– volume: 138
  year: 2020
  ident: b8
  article-title: A novel model with the ability of few-shot learning and quick updating for intelligent fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 57
  start-page: 427
  year: 2017
  end-page: 435
  ident: b9
  article-title: Classification of ball bearing faults using a hybrid intelligent model
  publication-title: Appl. Soft Comput.
– reference: M. Bucher, F. Jurie, Generating Visual Representations for Zero-Shot Classification, in: IEEE International Conference on Computer Vision, 2017.
– year: 2016
  ident: b34
  article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Mach. Learn.
– volume: 56
  start-page: 357
  year: 2017
  end-page: 367
  ident: b4
  article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers
  publication-title: Appl. Soft Comput.
– start-page: 3496
  year: 2017
  end-page: 3505
  ident: b16
  article-title: Predicting visual exemplars of unseen classes for zero-shot learning
– volume: 65
  start-page: 4973
  year: 2018
  end-page: 4982
  ident: b10
  article-title: Liftingnet: A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification
  publication-title: IEEE Trans. Ind. Electron.
– year: 2016
  ident: b26
  article-title: Tensorflow: A system for large-scale machine learning
– reference: Y. Xian, T. Lorenz, B. Schiele, Z. Akata, Feature Generating Networks for Zero-Shot Learning, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018.
– reference: S. Changpinyo, W. Chao, . G. B, F. Sha, Synthesized classifiers for zero-shot learning, in: Conference on Computer Vision, 2016.
– volume: 110
  start-page: 125
  year: 2018
  ident: 10.1016/j.asoc.2020.106577_b2
  article-title: A new subset based deep feature learning method for intelligent fault diagnosis of bearing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.05.032
– volume: vol. 136
  year: 2009
  ident: 10.1016/j.asoc.2020.106577_b19
– ident: 10.1016/j.asoc.2020.106577_b30
  doi: 10.1109/CVPR.2016.575
– volume: 122
  start-page: 692
  year: 2019
  ident: 10.1016/j.asoc.2020.106577_b3
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.12.051
– volume: 46
  start-page: 459
  year: 2016
  ident: 10.1016/j.asoc.2020.106577_b7
  article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.015
– volume: 73
  start-page: 898
  year: 2018
  ident: 10.1016/j.asoc.2020.106577_b5
  article-title: Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.037
– ident: 10.1016/j.asoc.2020.106577_b17
– volume: 131
  start-page: 243
  year: 2019
  ident: 10.1016/j.asoc.2020.106577_b6
  article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.049
– year: 2016
  ident: 10.1016/j.asoc.2020.106577_b22
– volume: 5
  start-page: 14347
  year: 2017
  ident: 10.1016/j.asoc.2020.106577_b11
  article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2720965
– volume: 65
  start-page: 4973
  year: 2018
  ident: 10.1016/j.asoc.2020.106577_b10
  article-title: Liftingnet: A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2767540
– volume: 35
  start-page: 112
  year: 2018
  ident: 10.1016/j.asoc.2020.106577_b13
  article-title: Recent advances in zero-shot recognition: Toward data-efficient understanding of visual content
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2763441
– volume: 31
  start-page: 899
  year: 2019
  ident: 10.1016/j.asoc.2020.106577_b12
  article-title: A zero-shot learning method for fault diagnosis under unknown working loads
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01485-w
– volume: 6
  start-page: 3715
  year: 2018
  ident: 10.1016/j.asoc.2020.106577_b33
  article-title: Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2773460
– volume: 56
  start-page: 357
  year: 2017
  ident: 10.1016/j.asoc.2020.106577_b4
  article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.016
– year: 2016
  ident: 10.1016/j.asoc.2020.106577_b26
– volume: 6
  start-page: 1462
  year: 2017
  ident: 10.1016/j.asoc.2020.106577_b28
  article-title: Hybrid attribute-based zero-shot image classification
  publication-title: Acta Electron. Sin.
– year: 2016
  ident: 10.1016/j.asoc.2020.106577_b34
  article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Mach. Learn.
– volume: 7
  start-page: 110895
  year: 2019
  ident: 10.1016/j.asoc.2020.106577_b27
  article-title: Limited data rolling bearing fault diagnosis with few-shot learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934233
– year: 2017
  ident: 10.1016/j.asoc.2020.106577_b31
– volume: 139
  start-page: 34
  year: 2014
  ident: 10.1016/j.asoc.2020.106577_b15
  article-title: Attribute relation learning for zero-shot classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.056
– year: 2012
  ident: 10.1016/j.asoc.2020.106577_b25
– ident: 10.1016/j.asoc.2020.106577_b18
  doi: 10.1109/CVPR.2018.00581
– ident: 10.1016/j.asoc.2020.106577_b32
– volume: 138
  year: 2020
  ident: 10.1016/j.asoc.2020.106577_b8
  article-title: A novel model with the ability of few-shot learning and quick updating for intelligent fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106608
– volume: 82
  year: 2019
  ident: 10.1016/j.asoc.2020.106577_b1
  article-title: A novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machines
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105564
– ident: 10.1016/j.asoc.2020.106577_b14
  doi: 10.1109/CVPRW.2009.5206772
– year: 2013
  ident: 10.1016/j.asoc.2020.106577_b21
– year: 2014
  ident: 10.1016/j.asoc.2020.106577_b20
– start-page: 3496
  year: 2017
  ident: 10.1016/j.asoc.2020.106577_b16
– ident: 10.1016/j.asoc.2020.106577_b24
  doi: 10.1145/1390156.1390294
– ident: 10.1016/j.asoc.2020.106577_b29
– volume: 57
  start-page: 427
  year: 2017
  ident: 10.1016/j.asoc.2020.106577_b9
  article-title: Classification of ball bearing faults using a hybrid intelligent model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.034
– volume: 310
  start-page: 213
  year: 2018
  ident: 10.1016/j.asoc.2020.106577_b23
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
SSID ssj0016928
Score 2.5011067
Snippet Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106577
SubjectTerms Autoencoder
Fault diagnosis
Generative adversarial network
Shipborne antenna
Zero-shot classification
Title Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis
URI https://dx.doi.org/10.1016/j.asoc.2020.106577
Volume 95
WOSCitedRecordID wos000576776700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde-i5NX-jQ2-KwtuS1dQwhJS0lBJqWpRejh00cNnZYe5dNLznlf3fGkrVOU0Jb6MWYQZKXnc-jT-N5EPI-EkWaFgkPUmWmATfaBNIkKgi5gs3aSMm69m3fPidHR-lsJo5Ho6s-F2Y1T6oqXa_FxX9VNchA2Zg6-xfq9ouCAO5B6XAFtcP1jxR_eIlJWGPZ2l5WXTS6KZ3LT2L_5UZ2rTrA4tRl5yqQy7bGgpZYVwLDDn_kizpoTut2rJFcYzSRZ5bnOeYKd6otfTnPdlzI5bxFTy4G7pXNkPP2RLcBi9-FsC_bfr_ESKBVt_vJcl16nO73KSMwbl5vxh67XsogupQb8ffTetl9ZAHr5KTOjwGH1j4izjnXbiXYWHs8TQMunJfSGWzblfOW7bduiLNdCbDexSeAaBq7JjE3a2p_wXVx2QjtHTC6e2Q7SmIBln177-PB7JP_EDUVXXte_ztc3pUNEfz1Sb_nNgO-cvKYPHQHDbpnAfKEjPLqKXnUN_GgzqY_I9cWL9TjhQ7wQgd4oR4vdIAXCnihHi_0Jl5oXdANXugAL7TDC_V4eU6-fjg42T8MXG-OQLPJpA3yJDSh5kKlYZGzIkzCSPKk0HmskQAJI7hkRaqYkjwHmq00l8JoZWKVKD4R7AXZquoqf0koYwxOCTJKQqa4jIxKY_QCFJEC3qQn6Q4J-381065wPfZPmWd9hOJZhprIUBOZ1cQOGfs5F7Zsy52j415ZmSOellBmgK075r36x3mvyYPNG_CGbLWLZf6W3NertmwW7xwEfwIgVrEm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+attribute+conditional+adversarial+denoising+autoencoder+for+zero-shot+classification+of+mechanical+intelligent+fault+diagnosis&rft.jtitle=Applied+soft+computing&rft.au=Lv%2C+Haixin&rft.au=Chen%2C+Jinglong&rft.au=Pan%2C+Tongyang&rft.au=Zhou%2C+Zitong&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=95&rft_id=info:doi/10.1016%2Fj.asoc.2020.106577&rft.externalDocID=S1568494620305159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon