Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis
Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under all working conditions cannot be obtained, which would cause the data-based model lack of particular training data, resulting in unsatisfied te...
Saved in:
| Published in: | Applied soft computing Vol. 95; p. 106577 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2020
|
| Subjects: | |
| ISSN: | 1568-4946 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under all working conditions cannot be obtained, which would cause the data-based model lack of particular training data, resulting in unsatisfied testing performance. Therefore, zero-shot classification of mechanical intelligent fault diagnosis is a very practical work. Inspired by the zero-shot learning method, hybrid attribute conditional adversarial denoising autoencoder (CADAE), which uses hybrid attribute as condition, is proposed to solve the zero-shot classification problem. CADAE consists of three network modules: an encoder, a generator and a discriminator. The discriminator is applied to control the data distribution of hidden layer encoded by the encoder, and we add hybrid attribute condition into hidden layer to control the reconstruction process of generator. Finally, the generator module of the trained CADAE would be used to generate samples to train a classifier for missing classes. The proposed method is verified with three datasets under different data missing conditions. The results show that the proposed method could effectively solve the zero-shot classification problem with high classification accuracy exceeds 95%.
•A generation network is proposed for zero-shot classification of mechanical fault.•We propose hybrid attribute, which includes semantic and non-semantic attributes.•Experiments show that our method performs better than matrix and CGAN based methods. |
|---|---|
| AbstractList | Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under all working conditions cannot be obtained, which would cause the data-based model lack of particular training data, resulting in unsatisfied testing performance. Therefore, zero-shot classification of mechanical intelligent fault diagnosis is a very practical work. Inspired by the zero-shot learning method, hybrid attribute conditional adversarial denoising autoencoder (CADAE), which uses hybrid attribute as condition, is proposed to solve the zero-shot classification problem. CADAE consists of three network modules: an encoder, a generator and a discriminator. The discriminator is applied to control the data distribution of hidden layer encoded by the encoder, and we add hybrid attribute condition into hidden layer to control the reconstruction process of generator. Finally, the generator module of the trained CADAE would be used to generate samples to train a classifier for missing classes. The proposed method is verified with three datasets under different data missing conditions. The results show that the proposed method could effectively solve the zero-shot classification problem with high classification accuracy exceeds 95%.
•A generation network is proposed for zero-shot classification of mechanical fault.•We propose hybrid attribute, which includes semantic and non-semantic attributes.•Experiments show that our method performs better than matrix and CGAN based methods. |
| ArticleNumber | 106577 |
| Author | Chen, Jinglong Lv, Haixin Zhou, Zitong Pan, Tongyang |
| Author_xml | – sequence: 1 givenname: Haixin surname: Lv fullname: Lv, Haixin – sequence: 2 givenname: Jinglong surname: Chen fullname: Chen, Jinglong email: jlstrive2008@163.com, jlstrive2008@mail.xjtu.edu.cn – sequence: 3 givenname: Tongyang surname: Pan fullname: Pan, Tongyang – sequence: 4 givenname: Zitong surname: Zhou fullname: Zhou, Zitong |
| BookMark | eNp9kMtKBDEQRbMYwecPuMoP9Jj0u8GNiC8Q3Og6VJLKWENPIklmYNz733Y7rly4quJS50KdU7bwwSNjl1IspZDt1XoJKZhlKco5aJuuW7AT2bR9UQ91e8xOU1qL6XAo-xP29bjXkSyHnCPpbUZugreUKXgYOdgdxgSRpt2iD5TIrzhsc0BvgsXIXYj8E2Mo0nvI3IyQEjkyMBfw4PgGzTv4KRg5-YzjSCv0mTvYjplbgpUPidI5O3IwJrz4nWfs7f7u9faxeH55eLq9eS5MJUQusJNWmnrQvXRYOdnJEurOGWyMEG032KGGyvW60lBj2Qhtahis0bbRna7FUJ2x8tBrYkgpolMfkTYQ90oKNctTazXLU7M8dZA3Qf0fyFD-eTBHoPF_9PqA4vTUjjCqZGhSh5YimqxsoP_wb3tzlCY |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_107739 crossref_primary_10_1016_j_conengprac_2024_105873 crossref_primary_10_1016_j_knosys_2021_107646 crossref_primary_10_3390_electronics14030452 crossref_primary_10_1088_1361_6501_acc1fc crossref_primary_10_1109_TII_2022_3178431 crossref_primary_10_1007_s10462_024_10820_4 crossref_primary_10_1016_j_apacoust_2025_110563 crossref_primary_10_1016_j_measurement_2022_112346 crossref_primary_10_1109_TII_2024_3363078 crossref_primary_10_1016_j_ymssp_2021_107755 crossref_primary_10_1109_JIOT_2024_3385012 crossref_primary_10_1007_s10489_022_04342_1 crossref_primary_10_1109_TIM_2025_3550233 crossref_primary_10_1016_j_engappai_2024_109020 crossref_primary_10_1109_TIM_2021_3134999 crossref_primary_10_1007_s40313_022_00946_7 crossref_primary_10_1016_j_asoc_2021_107150 crossref_primary_10_1016_j_isatra_2021_11_040 crossref_primary_10_1016_j_ymssp_2023_110747 crossref_primary_10_1109_TNNLS_2021_3111732 crossref_primary_10_1109_ACCESS_2024_3416338 crossref_primary_10_1109_TII_2024_3383459 crossref_primary_10_1016_j_asoc_2022_109772 crossref_primary_10_1016_j_ress_2024_110449 crossref_primary_10_1016_j_asoc_2022_109554 crossref_primary_10_1016_j_isatra_2021_02_042 crossref_primary_10_1016_j_knosys_2022_110008 crossref_primary_10_3390_app14114433 crossref_primary_10_1109_TIM_2024_3378256 crossref_primary_10_1016_j_eswa_2021_116094 crossref_primary_10_1016_j_oceaneng_2023_115277 crossref_primary_10_1007_s10044_022_01109_9 crossref_primary_10_1109_TIM_2023_3264022 crossref_primary_10_1016_j_aei_2023_102204 crossref_primary_10_3390_s24175596 crossref_primary_10_1016_j_engappai_2025_111484 crossref_primary_10_1016_j_neucom_2025_129588 crossref_primary_10_1016_j_apenergy_2022_119499 crossref_primary_10_1109_JAS_2023_123426 crossref_primary_10_1109_TFUZZ_2024_3470960 crossref_primary_10_1016_j_ress_2023_109591 crossref_primary_10_3390_s22145413 crossref_primary_10_1016_j_asoc_2022_109785 crossref_primary_10_1109_TIM_2025_3545713 crossref_primary_10_1016_j_ymssp_2025_112573 |
| Cites_doi | 10.1016/j.eswa.2018.05.032 10.1109/CVPR.2016.575 10.1016/j.ymssp.2018.12.051 10.1016/j.asoc.2016.05.015 10.1016/j.asoc.2018.09.037 10.1016/j.ymssp.2019.05.049 10.1109/ACCESS.2017.2720965 10.1109/TIE.2017.2767540 10.1109/MSP.2017.2763441 10.1007/s10845-019-01485-w 10.1109/ACCESS.2017.2773460 10.1016/j.asoc.2017.03.016 10.1109/ACCESS.2019.2934233 10.1016/j.neucom.2013.09.056 10.1109/CVPR.2018.00581 10.1016/j.ymssp.2019.106608 10.1016/j.asoc.2019.105564 10.1109/CVPRW.2009.5206772 10.1145/1390156.1390294 10.1016/j.asoc.2017.04.034 10.1016/j.neucom.2018.05.024 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106577 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2020_106577 S1568494620305159 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-e71d1c49b81fe3f1712a47fce5c00679d94a3f8b3ba4e250bc4a9dcbd5b7b4093 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576776700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:06:37 EST 2025 Tue Nov 18 22:34:37 EST 2025 Sun Apr 06 06:53:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Shipborne antenna Zero-shot classification Autoencoder Generative adversarial network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-e71d1c49b81fe3f1712a47fce5c00679d94a3f8b3ba4e250bc4a9dcbd5b7b4093 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106577 crossref_citationtrail_10_1016_j_asoc_2020_106577 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106577 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Li, Cui, Yang, Dong, Hu (b27) 2019; 7 S. Changpinyo, W. Chao, . G. B, F. Sha, Synthesized classifiers for zero-shot learning, in: Conference on Computer Vision, 2016. Abadi, Barham, Chen, Chen, Davis, Dean (b26) 2016 Gao, Gao, Li, Zheng (b12) 2019; 31 Fu, Xiang, Jiang, Xue, Sigal, Gong (b13) 2018; 35 M. Bucher, F. Jurie, Generating Visual Representations for Zero-Shot Classification, in: IEEE International Conference on Computer Vision, 2017. Xu, t. P. Tse, Tse (b5) 2018; 73 Dou, Zhou (b7) 2016; 46 Bengio (b19) 2009; vol. 136 Zhang, Tang, Qin, Deng (b6) 2019; 131 P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008. Seera, Wong, Nandi (b9) 2017; 57 Case western reserve university bearing data center website. Available Ren (b8) 2020; 138 Li, Yang, Yang, Bennett, Mba (b1) 2019; 82 Zhang, Song, Qi (b31) 2017 Bengio, Yao, Alain, Vincent (b21) 2013 Yang, Lei, Jia, Xing (b3) 2019; 122 Goodfellow (b20) 2014 Hinton, Srivastava, Krizhevsky, Sutskever, R (b25) 2012 Zhang, Tao, Wu, Guan (b11) 2017; 5 Xi, Yan, Rein, John, Ilya, Pieter (b34) 2016 Cheng, Xue, Wang (b28) 2017; 6 B. Romera-Paredes, P. Torr, An embarrassingly simple approach to zero-shot learning, in: Conference on Machine Learning, 2015. Pan, Zi, Chen, Zhou, Wang (b10) 2018; 65 Y. Xian, T. Lorenz, B. Schiele, Z. Akata, Feature Generating Networks for Zero-Shot Learning, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018. Changpinyo, Chao, Sha (b16) 2017 . Wang, Wang, Wang (b23) 2018; 310 A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects by their attributes, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009. Liu, Zhang, Chen (b15) 2014; 139 Zhang, Li, Gao, Li (b2) 2018; 110 Yu, Dong, Ding, Wu, Fan (b33) 2018; 6 Zhang, Luo, García, Herrera (b4) 2017; 56 Makhzani, Shlens, Jaitly, Goodfellow, Frey (b22) 2016 Changpinyo (10.1016/j.asoc.2020.106577_b16) 2017 10.1016/j.asoc.2020.106577_b18 Fu (10.1016/j.asoc.2020.106577_b13) 2018; 35 10.1016/j.asoc.2020.106577_b17 Abadi (10.1016/j.asoc.2020.106577_b26) 2016 Xu (10.1016/j.asoc.2020.106577_b5) 2018; 73 Zhang (10.1016/j.asoc.2020.106577_b6) 2019; 131 Yu (10.1016/j.asoc.2020.106577_b33) 2018; 6 Dou (10.1016/j.asoc.2020.106577_b7) 2016; 46 Wang (10.1016/j.asoc.2020.106577_b23) 2018; 310 Goodfellow (10.1016/j.asoc.2020.106577_b20) 2014 Makhzani (10.1016/j.asoc.2020.106577_b22) 2016 Zhang (10.1016/j.asoc.2020.106577_b31) 2017 Pan (10.1016/j.asoc.2020.106577_b10) 2018; 65 10.1016/j.asoc.2020.106577_b32 10.1016/j.asoc.2020.106577_b30 10.1016/j.asoc.2020.106577_b14 Zhang (10.1016/j.asoc.2020.106577_b27) 2019; 7 Ren (10.1016/j.asoc.2020.106577_b8) 2020; 138 10.1016/j.asoc.2020.106577_b29 Yang (10.1016/j.asoc.2020.106577_b3) 2019; 122 Zhang (10.1016/j.asoc.2020.106577_b2) 2018; 110 Seera (10.1016/j.asoc.2020.106577_b9) 2017; 57 Gao (10.1016/j.asoc.2020.106577_b12) 2019; 31 Li (10.1016/j.asoc.2020.106577_b1) 2019; 82 Bengio (10.1016/j.asoc.2020.106577_b21) 2013 Zhang (10.1016/j.asoc.2020.106577_b4) 2017; 56 Cheng (10.1016/j.asoc.2020.106577_b28) 2017; 6 Bengio (10.1016/j.asoc.2020.106577_b19) 2009; vol. 136 Hinton (10.1016/j.asoc.2020.106577_b25) 2012 Liu (10.1016/j.asoc.2020.106577_b15) 2014; 139 Zhang (10.1016/j.asoc.2020.106577_b11) 2017; 5 Xi (10.1016/j.asoc.2020.106577_b34) 2016 10.1016/j.asoc.2020.106577_b24 |
| References_xml | – volume: 310 start-page: 213 year: 2018 end-page: 222 ident: b23 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing – reference: A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects by their attributes, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009. – year: 2014 ident: b20 article-title: Generative adversarial nets – volume: 73 start-page: 898 year: 2018 end-page: 913 ident: b5 article-title: Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label publication-title: Appl. Soft Comput. – volume: 31 start-page: 899 year: 2019 end-page: 909 ident: b12 article-title: A zero-shot learning method for fault diagnosis under unknown working loads publication-title: J. Intell. Manuf. – year: 2012 ident: b25 article-title: Improving neural networks by preventing co-adaptation of feature detectors – volume: 110 start-page: 125 year: 2018 end-page: 142 ident: b2 article-title: A new subset based deep feature learning method for intelligent fault diagnosis of bearing publication-title: Expert Syst. Appl. – volume: 122 start-page: 692 year: 2019 end-page: 706 ident: b3 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mech. Syst. Signal Process. – volume: 5 start-page: 14347 year: 2017 end-page: 14357 ident: b11 article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions publication-title: IEEE Access – year: 2017 ident: b31 article-title: Age progression/regression by conditional adversarial autoencoder – volume: 131 start-page: 243 year: 2019 end-page: 260 ident: b6 article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks publication-title: Mech. Syst. Signal Process. – volume: 46 start-page: 459 year: 2016 end-page: 468 ident: b7 article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery publication-title: Appl. Soft Comput. – volume: 139 start-page: 34 year: 2014 end-page: 46 ident: b15 article-title: Attribute relation learning for zero-shot classification publication-title: Neurocomputing – reference: Case western reserve university bearing data center website. Available: – volume: vol. 136 year: 2009 ident: b19 publication-title: Learning Deep Architectures for AI – volume: 82 year: 2019 ident: b1 article-title: A novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machines publication-title: Appl. Soft Comput. – volume: 7 start-page: 110895 year: 2019 end-page: 110904 ident: b27 article-title: Limited data rolling bearing fault diagnosis with few-shot learning publication-title: IEEE Access – year: 2016 ident: b22 article-title: Adversarial autoencoders – volume: 35 start-page: 112 year: 2018 end-page: 125 ident: b13 article-title: Recent advances in zero-shot recognition: Toward data-efficient understanding of visual content publication-title: IEEE Signal Process. Mag. – year: 2013 ident: b21 article-title: Generalized denoising auto-encoders as generative – reference: B. Romera-Paredes, P. Torr, An embarrassingly simple approach to zero-shot learning, in: Conference on Machine Learning, 2015. – volume: 6 start-page: 1462 year: 2017 end-page: 1468 ident: b28 article-title: Hybrid attribute-based zero-shot image classification publication-title: Acta Electron. Sin. – reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008. – volume: 6 start-page: 3715 year: 2018 end-page: 3730 ident: b33 article-title: Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection publication-title: IEEE Access – reference: . – volume: 138 year: 2020 ident: b8 article-title: A novel model with the ability of few-shot learning and quick updating for intelligent fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 57 start-page: 427 year: 2017 end-page: 435 ident: b9 article-title: Classification of ball bearing faults using a hybrid intelligent model publication-title: Appl. Soft Comput. – reference: M. Bucher, F. Jurie, Generating Visual Representations for Zero-Shot Classification, in: IEEE International Conference on Computer Vision, 2017. – year: 2016 ident: b34 article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets publication-title: Mach. Learn. – volume: 56 start-page: 357 year: 2017 end-page: 367 ident: b4 article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers publication-title: Appl. Soft Comput. – start-page: 3496 year: 2017 end-page: 3505 ident: b16 article-title: Predicting visual exemplars of unseen classes for zero-shot learning – volume: 65 start-page: 4973 year: 2018 end-page: 4982 ident: b10 article-title: Liftingnet: A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification publication-title: IEEE Trans. Ind. Electron. – year: 2016 ident: b26 article-title: Tensorflow: A system for large-scale machine learning – reference: Y. Xian, T. Lorenz, B. Schiele, Z. Akata, Feature Generating Networks for Zero-Shot Learning, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018. – reference: S. Changpinyo, W. Chao, . G. B, F. Sha, Synthesized classifiers for zero-shot learning, in: Conference on Computer Vision, 2016. – volume: 110 start-page: 125 year: 2018 ident: 10.1016/j.asoc.2020.106577_b2 article-title: A new subset based deep feature learning method for intelligent fault diagnosis of bearing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.05.032 – volume: vol. 136 year: 2009 ident: 10.1016/j.asoc.2020.106577_b19 – ident: 10.1016/j.asoc.2020.106577_b30 doi: 10.1109/CVPR.2016.575 – volume: 122 start-page: 692 year: 2019 ident: 10.1016/j.asoc.2020.106577_b3 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.12.051 – volume: 46 start-page: 459 year: 2016 ident: 10.1016/j.asoc.2020.106577_b7 article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.05.015 – volume: 73 start-page: 898 year: 2018 ident: 10.1016/j.asoc.2020.106577_b5 article-title: Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.037 – ident: 10.1016/j.asoc.2020.106577_b17 – volume: 131 start-page: 243 year: 2019 ident: 10.1016/j.asoc.2020.106577_b6 article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.05.049 – year: 2016 ident: 10.1016/j.asoc.2020.106577_b22 – volume: 5 start-page: 14347 year: 2017 ident: 10.1016/j.asoc.2020.106577_b11 article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2720965 – volume: 65 start-page: 4973 year: 2018 ident: 10.1016/j.asoc.2020.106577_b10 article-title: Liftingnet: A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2767540 – volume: 35 start-page: 112 year: 2018 ident: 10.1016/j.asoc.2020.106577_b13 article-title: Recent advances in zero-shot recognition: Toward data-efficient understanding of visual content publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2763441 – volume: 31 start-page: 899 year: 2019 ident: 10.1016/j.asoc.2020.106577_b12 article-title: A zero-shot learning method for fault diagnosis under unknown working loads publication-title: J. Intell. Manuf. doi: 10.1007/s10845-019-01485-w – volume: 6 start-page: 3715 year: 2018 ident: 10.1016/j.asoc.2020.106577_b33 article-title: Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2773460 – volume: 56 start-page: 357 year: 2017 ident: 10.1016/j.asoc.2020.106577_b4 article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.016 – year: 2016 ident: 10.1016/j.asoc.2020.106577_b26 – volume: 6 start-page: 1462 year: 2017 ident: 10.1016/j.asoc.2020.106577_b28 article-title: Hybrid attribute-based zero-shot image classification publication-title: Acta Electron. Sin. – year: 2016 ident: 10.1016/j.asoc.2020.106577_b34 article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets publication-title: Mach. Learn. – volume: 7 start-page: 110895 year: 2019 ident: 10.1016/j.asoc.2020.106577_b27 article-title: Limited data rolling bearing fault diagnosis with few-shot learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934233 – year: 2017 ident: 10.1016/j.asoc.2020.106577_b31 – volume: 139 start-page: 34 year: 2014 ident: 10.1016/j.asoc.2020.106577_b15 article-title: Attribute relation learning for zero-shot classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.056 – year: 2012 ident: 10.1016/j.asoc.2020.106577_b25 – ident: 10.1016/j.asoc.2020.106577_b18 doi: 10.1109/CVPR.2018.00581 – ident: 10.1016/j.asoc.2020.106577_b32 – volume: 138 year: 2020 ident: 10.1016/j.asoc.2020.106577_b8 article-title: A novel model with the ability of few-shot learning and quick updating for intelligent fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106608 – volume: 82 year: 2019 ident: 10.1016/j.asoc.2020.106577_b1 article-title: A novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machines publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105564 – ident: 10.1016/j.asoc.2020.106577_b14 doi: 10.1109/CVPRW.2009.5206772 – year: 2013 ident: 10.1016/j.asoc.2020.106577_b21 – year: 2014 ident: 10.1016/j.asoc.2020.106577_b20 – start-page: 3496 year: 2017 ident: 10.1016/j.asoc.2020.106577_b16 – ident: 10.1016/j.asoc.2020.106577_b24 doi: 10.1145/1390156.1390294 – ident: 10.1016/j.asoc.2020.106577_b29 – volume: 57 start-page: 427 year: 2017 ident: 10.1016/j.asoc.2020.106577_b9 article-title: Classification of ball bearing faults using a hybrid intelligent model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.034 – volume: 310 start-page: 213 year: 2018 ident: 10.1016/j.asoc.2020.106577_b23 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 |
| SSID | ssj0016928 |
| Score | 2.5011067 |
| Snippet | Data-based intelligent fault diagnosis method is a research hotspot in modern mechanical systems. However, due to practical limitations, fault samples under... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106577 |
| SubjectTerms | Autoencoder Fault diagnosis Generative adversarial network Shipborne antenna Zero-shot classification |
| Title | Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106577 |
| Volume | 95 |
| WOSCitedRecordID | wos000576776700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016928 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde-i5NX-jQ2-KwtuS1dQwhJS0lBJqWpRejh00cNnZYe5dNLznlf3fGkrVOU0Jb6MWYQZKXnc-jT-N5EPI-EkWaFgkPUmWmATfaBNIkKgi5gs3aSMm69m3fPidHR-lsJo5Ho6s-F2Y1T6oqXa_FxX9VNchA2Zg6-xfq9ouCAO5B6XAFtcP1jxR_eIlJWGPZ2l5WXTS6KZ3LT2L_5UZ2rTrA4tRl5yqQy7bGgpZYVwLDDn_kizpoTut2rJFcYzSRZ5bnOeYKd6otfTnPdlzI5bxFTy4G7pXNkPP2RLcBi9-FsC_bfr_ESKBVt_vJcl16nO73KSMwbl5vxh67XsogupQb8ffTetl9ZAHr5KTOjwGH1j4izjnXbiXYWHs8TQMunJfSGWzblfOW7bduiLNdCbDexSeAaBq7JjE3a2p_wXVx2QjtHTC6e2Q7SmIBln177-PB7JP_EDUVXXte_ztc3pUNEfz1Sb_nNgO-cvKYPHQHDbpnAfKEjPLqKXnUN_GgzqY_I9cWL9TjhQ7wQgd4oR4vdIAXCnihHi_0Jl5oXdANXugAL7TDC_V4eU6-fjg42T8MXG-OQLPJpA3yJDSh5kKlYZGzIkzCSPKk0HmskQAJI7hkRaqYkjwHmq00l8JoZWKVKD4R7AXZquoqf0koYwxOCTJKQqa4jIxKY_QCFJEC3qQn6Q4J-381065wPfZPmWd9hOJZhprIUBOZ1cQOGfs5F7Zsy52j415ZmSOellBmgK075r36x3mvyYPNG_CGbLWLZf6W3NertmwW7xwEfwIgVrEm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+attribute+conditional+adversarial+denoising+autoencoder+for+zero-shot+classification+of+mechanical+intelligent+fault+diagnosis&rft.jtitle=Applied+soft+computing&rft.au=Lv%2C+Haixin&rft.au=Chen%2C+Jinglong&rft.au=Pan%2C+Tongyang&rft.au=Zhou%2C+Zitong&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=95&rft_id=info:doi/10.1016%2Fj.asoc.2020.106577&rft.externalDocID=S1568494620305159 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |