Moreopt: A goal programming based movie recommender system

•Combining content information of movie features with collaborative filtering approach.•Using a goal programming model in the content-based method to predict missing ratings.•Overcome data sparsity problem with this goal programming model. Recommender systems suggest relevant items to users by acqui...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational science Ročník 28; s. 43 - 50
Hlavní autoři: Inan, Emrah, Tekbacak, Fatih, Ozturk, Cemalettin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2018
Témata:
ISSN:1877-7503, 1877-7511
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Combining content information of movie features with collaborative filtering approach.•Using a goal programming model in the content-based method to predict missing ratings.•Overcome data sparsity problem with this goal programming model. Recommender systems suggest relevant items to users by acquiring user preferences and exploiting them to build a type of user model. The main purpose of such a system is to match the most suitable item for the constructed user model. And hence, finding similar items for user preferences is the most crucial point of any recommender system. The state-of-art recommender systems suffer from handling the data sparsity problem. For this reason, the proposed recommender system combines content information of movie features (cast, director, genre, etc.) with a collaborative filtering approach. The similarity scores of movie features are supplemented by a goal programming model in the content-based approach. Pearson correlation is selected as a collaborative filtering algorithm that predicts movies to satisfy user tastes considering the content-based similarity scores. MovieLens dataset is used for experimental setup and Mean Absolute Error is measured for the comparison of approaches. The best average MAE score is 0.736 when the evaluation includes 300 training users. Also, the fastest sub-task is the movie recommendation for users having 2.34 s running time. The proposed system outperforms the rest of the studies in the literature and the experiments show that the overall system performance is increased when the content information is augmented by the collaborative filtering approach.
AbstractList •Combining content information of movie features with collaborative filtering approach.•Using a goal programming model in the content-based method to predict missing ratings.•Overcome data sparsity problem with this goal programming model. Recommender systems suggest relevant items to users by acquiring user preferences and exploiting them to build a type of user model. The main purpose of such a system is to match the most suitable item for the constructed user model. And hence, finding similar items for user preferences is the most crucial point of any recommender system. The state-of-art recommender systems suffer from handling the data sparsity problem. For this reason, the proposed recommender system combines content information of movie features (cast, director, genre, etc.) with a collaborative filtering approach. The similarity scores of movie features are supplemented by a goal programming model in the content-based approach. Pearson correlation is selected as a collaborative filtering algorithm that predicts movies to satisfy user tastes considering the content-based similarity scores. MovieLens dataset is used for experimental setup and Mean Absolute Error is measured for the comparison of approaches. The best average MAE score is 0.736 when the evaluation includes 300 training users. Also, the fastest sub-task is the movie recommendation for users having 2.34 s running time. The proposed system outperforms the rest of the studies in the literature and the experiments show that the overall system performance is increased when the content information is augmented by the collaborative filtering approach.
Author Tekbacak, Fatih
Ozturk, Cemalettin
Inan, Emrah
Author_xml – sequence: 1
  givenname: Emrah
  surname: Inan
  fullname: Inan, Emrah
  email: emrah.inan@ege.edu.tr
  organization: Department of Computer Engineering Ege University, Izmir, Turkey
– sequence: 2
  givenname: Fatih
  surname: Tekbacak
  fullname: Tekbacak, Fatih
  email: ftekbacak@adu.edu.tr
  organization: Adnan Menderes University, Aydin, Turkey
– sequence: 3
  givenname: Cemalettin
  surname: Ozturk
  fullname: Ozturk, Cemalettin
  email: OzturkC@utrc.utc.com
  organization: United Technologies Research Center, Cork, Ireland
BookMark eNp9kM9qwzAMh83oYF3XF9jJL5BMjpPGKbuUsn_Qsct2No6tFIc6LnYY9O3n0LHDDhU_kC6fkL5bMhv8gITcM8gZsNVDn_dex7wAJnJIgfKKzJmo66yuGJv9zcBvyDLGHlJxIRrG52T97gP647imG7r36kCPwe-Dcs4Oe9qqiIY6_22RBtTeORwMBhpPcUR3R647dYi4_O0L8vX89Ll9zXYfL2_bzS7THGDMEOpO6RJ5ZTjXwJAVDRdaNWWFQtdN3TFVK1PptilaZToU6dyybfkKTFdiwxekOO_VwccYsJPHYJ0KJ8lATgJkLycBchIgIQXKBIl_kLajGq0fxqDs4TL6eEYxPZVeDzJqi4NGY5OEURpvL-E_QPN5aA
CitedBy_id crossref_primary_10_1007_s10115_022_01695_4
crossref_primary_10_1108_DTA_04_2020_0094
crossref_primary_10_1007_s10489_022_04150_7
crossref_primary_10_1016_j_eswa_2019_113045
crossref_primary_10_3390_app11083719
crossref_primary_10_1088_1757_899X_1022_1_012101
crossref_primary_10_3390_info9120326
crossref_primary_10_3390_math11061355
crossref_primary_10_1080_08839514_2021_1883855
crossref_primary_10_1088_1757_899X_1022_1_012100
crossref_primary_10_1109_ACCESS_2021_3124939
crossref_primary_10_1016_j_eswa_2020_114184
crossref_primary_10_1080_19476337_2023_2215844
crossref_primary_10_1007_s10791_025_09518_0
crossref_primary_10_1007_s11036_019_01387_4
crossref_primary_10_1108_MD_03_2020_0320
Cites_doi 10.1016/j.cosrev.2016.05.002
10.1109/TPAMI.2016.2608901
10.1016/0196-6774(80)90002-4
10.1016/j.knosys.2018.04.008
10.1093/comjnl/bxr001
10.1007/s10994-008-5068-4
10.1007/s11042-014-1950-1
10.1023/A:1021240730564
10.1109/TNNLS.2018.2817538
10.1007/BF02579150
10.1023/A:1011419012209
10.1145/1278366.1278372
10.1109/TNNLS.2016.2582746
10.1145/245108.245124
10.1109/TCYB.2016.2539546
10.1109/MIC.2003.1167344
10.1109/TKDE.2017.2728531
10.1109/TIP.2017.2708506
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2018.08.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
EndPage 50
ExternalDocumentID 10_1016_j_jocs_2018_08_004
S1877750317314540
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-e07fac4e35d33c01e12938ca945e8c797f1a7ad5cb92badfe81874bb360df4e93
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449242900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-7503
IngestDate Sat Nov 29 07:00:58 EST 2025
Tue Nov 18 22:21:35 EST 2025
Fri Feb 23 02:22:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Content-based recommender systems
Collaborative filtering
Recommender systems
Goal programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-e07fac4e35d33c01e12938ca945e8c797f1a7ad5cb92badfe81874bb360df4e93
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_jocs_2018_08_004
crossref_citationtrail_10_1016_j_jocs_2018_08_004
elsevier_sciencedirect_doi_10_1016_j_jocs_2018_08_004
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Journal of computational science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luo, Niu, Shen, Ullrich (bib0090) 2008; 72
Ziegler, McNee, Konstan, Lausen (bib0030) 2005
Özbal, Karaman, Alpaslan (bib0035) 2011; 54
Spiegel, Kunegis, Li (bib0105) 2009
Elhoseny, Shehab, Osman (bib0130) 2018
Sarker, Newton (bib0165) 2007
Xue, Lin, Yang, Xi, Zeng, Yu, Chen (bib0095) 2005
Li, Nie, Chang, Yang (bib0160) 2017; 29
Linden, Smith, York (bib0025) 2003; 7
Chang, Yang (bib0150) 2017; 28
Ma, King, Lyu (bib0040) 2007
Chang, Ma, Lin, Yang, Hauptmann (bib0140) 2017; 26
Ortega, Zhu, Bobadilla, Hernando (bib0195) 2018; 152
Su, Khoshgoftaar (bib0005) 2009; 2009
Ahn, Shi (bib0065) 2009
Schafer, Konstan, Riedl (bib0015) 2001
Debnath, Ganguly, Mitra (bib0060) 2008
Soares, Viana (bib0070) 2015; 74
Fayyad, Piatetsky-Shapiro, Smyth (bib0010) 1996; 17
Shardanand, Maes (bib0075) 1995
Yuan, Li, Mohapatra, Elhoseny (bib0125) 2017
Li, Nie, Chang, Nie, Zhang, Yang (bib0200) 2018
Chang, Yu, Yang, Xing (bib0155) 2017; 39
Shehab, Elhoseny, El Aziz, Hassanien (bib0135) 2018
Balabanović, Shoham (bib0110) 1997; 40
Burke (bib0055) 2002; 12
Melville, Mooney, Nagarajan (bib0100) 2002
Taha (bib0175) 2007; vol. 557
Winston, Goldberg (bib0170) 2004; vol. 3
Wang, de Vries, Reinders (bib0190) 2006
Mahmood, Ricci (bib0045) 2009
Mobasher, Burke, Bhaumik, Williams (bib0050) 2007; 7
Gunawardana, Meek (bib0115) 2009
Abdeldaim, Sahlol, Elhoseny, Hassanien (bib0120) 2018
Chang, Ma, Yang, Zeng, Hauptmann (bib0145) 2017; 47
Elahi, Ricci, Rubens (bib0080) 2016; 20
Aspvall, Stone (bib0185) 1980; 1
Goldberg, Roeder, Gupta, Perkins, Eigentaste (bib0085) 2001; 4
Fleder, Hosanagar (bib0020) 2007
Karmarkar (bib0180) 1984; 4
Li (10.1016/j.jocs.2018.08.004_bib0200) 2018
Özbal (10.1016/j.jocs.2018.08.004_bib0035) 2011; 54
Chang (10.1016/j.jocs.2018.08.004_bib0145) 2017; 47
Mahmood (10.1016/j.jocs.2018.08.004_bib0045) 2009
Schafer (10.1016/j.jocs.2018.08.004_bib0015) 2001
Abdeldaim (10.1016/j.jocs.2018.08.004_bib0120) 2018
Winston (10.1016/j.jocs.2018.08.004_bib0170) 2004; vol. 3
Spiegel (10.1016/j.jocs.2018.08.004_bib0105) 2009
Gunawardana (10.1016/j.jocs.2018.08.004_bib0115) 2009
Chang (10.1016/j.jocs.2018.08.004_bib0155) 2017; 39
Burke (10.1016/j.jocs.2018.08.004_bib0055) 2002; 12
Li (10.1016/j.jocs.2018.08.004_bib0160) 2017; 29
Elahi (10.1016/j.jocs.2018.08.004_bib0080) 2016; 20
Taha (10.1016/j.jocs.2018.08.004_bib0175) 2007; vol. 557
Karmarkar (10.1016/j.jocs.2018.08.004_bib0180) 1984; 4
Sarker (10.1016/j.jocs.2018.08.004_bib0165) 2007
Aspvall (10.1016/j.jocs.2018.08.004_bib0185) 1980; 1
Balabanović (10.1016/j.jocs.2018.08.004_bib0110) 1997; 40
Soares (10.1016/j.jocs.2018.08.004_bib0070) 2015; 74
Shardanand (10.1016/j.jocs.2018.08.004_bib0075) 1995
Ahn (10.1016/j.jocs.2018.08.004_bib0065) 2009
Chang (10.1016/j.jocs.2018.08.004_bib0150) 2017; 28
Wang (10.1016/j.jocs.2018.08.004_bib0190) 2006
Fleder (10.1016/j.jocs.2018.08.004_bib0020) 2007
Elhoseny (10.1016/j.jocs.2018.08.004_bib0130) 2018
Ortega (10.1016/j.jocs.2018.08.004_bib0195) 2018; 152
Linden (10.1016/j.jocs.2018.08.004_bib0025) 2003; 7
Melville (10.1016/j.jocs.2018.08.004_bib0100) 2002
Su (10.1016/j.jocs.2018.08.004_bib0005) 2009; 2009
Luo (10.1016/j.jocs.2018.08.004_bib0090) 2008; 72
Ziegler (10.1016/j.jocs.2018.08.004_bib0030) 2005
Debnath (10.1016/j.jocs.2018.08.004_bib0060) 2008
Fayyad (10.1016/j.jocs.2018.08.004_bib0010) 1996; 17
Ma (10.1016/j.jocs.2018.08.004_bib0040) 2007
Xue (10.1016/j.jocs.2018.08.004_bib0095) 2005
Shehab (10.1016/j.jocs.2018.08.004_bib0135) 2018
Yuan (10.1016/j.jocs.2018.08.004_bib0125) 2017
Chang (10.1016/j.jocs.2018.08.004_bib0140) 2017; 26
Mobasher (10.1016/j.jocs.2018.08.004_bib0050) 2007; 7
Goldberg (10.1016/j.jocs.2018.08.004_bib0085) 2001; 4
References_xml – start-page: 252
  year: 2018
  end-page: 263
  ident: bib0130
  article-title: An empirical analysis of user behavior for p2p iptv workloads
  publication-title: International Conference on Advanced Machine Learning Technologies and Applications
– volume: 47
  start-page: 1180
  year: 2017
  end-page: 1197
  ident: bib0145
  article-title: Bi-level semantic representation analysis for multimedia event detection
  publication-title: IEEE Trans. Cybern.
– year: 2018
  ident: bib0200
  article-title: Rank-constrained spectral clustering with flexible embedding
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 114
  year: 2005
  end-page: 121
  ident: bib0095
  article-title: Scalable collaborative filtering using cluster-based smoothing
  publication-title: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 131
  year: 2018
  end-page: 147
  ident: bib0120
  article-title: Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis
  publication-title: Advances in Soft Computing and Machine Learning in Image Processing
– volume: 39
  start-page: 1617
  year: 2017
  end-page: 1632
  ident: bib0155
  article-title: Semantic pooling for complex event analysis in untrimmed videos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 152
  start-page: 94
  year: 2018
  end-page: 99
  ident: bib0195
  article-title: Cf4j: collaborative filtering for java
  publication-title: Knowl.-Based Syst.
– volume: 2009
  start-page: 4
  year: 2009
  ident: bib0005
  article-title: A survey of collaborative filtering techniques
  publication-title: Adv. Artif. Intell.
– start-page: 210
  year: 1995
  end-page: 217
  ident: bib0075
  article-title: Social information filtering: algorithms for automating “word of mouth”
  publication-title: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
– volume: 17
  start-page: 37
  year: 1996
  ident: bib0010
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– start-page: 477
  year: 2018
  end-page: 495
  ident: bib0135
  article-title: Efficient schemes for playout latency reduction in p2p-vod systems
  publication-title: Advances in Soft Computing and Machine Learning in Image Processing
– year: 2007
  ident: bib0165
  article-title: Optimization Modelling: A Practical Approach
– volume: 20
  start-page: 29
  year: 2016
  end-page: 50
  ident: bib0080
  article-title: A survey of active learning in collaborative filtering recommender systems
  publication-title: Comput. Sci. Rev.
– volume: vol. 3
  year: 2004
  ident: bib0170
  publication-title: Operations Research: Applications and Algorithms
– volume: 29
  start-page: 2100
  year: 2017
  end-page: 2110
  ident: bib0160
  article-title: Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: vol. 557
  year: 2007
  ident: bib0175
  publication-title: Operations Research: An Introduction
– year: 2017
  ident: bib0125
  article-title: Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding
  publication-title: Comput. Electr. Eng.
– volume: 26
  start-page: 3911
  year: 2017
  end-page: 3920
  ident: bib0140
  article-title: Feature interaction augmented sparse learning for fast kinect motion detection
  publication-title: IEEE Trans. Image Process.
– volume: 4
  start-page: 133
  year: 2001
  end-page: 151
  ident: bib0085
  article-title: A constant time collaborative filtering algorithm
  publication-title: Inf. Retriev.
– volume: 1
  start-page: 1
  year: 1980
  end-page: 13
  ident: bib0185
  article-title: Khachiyan's linear programming algorithm
  publication-title: J. Algorithms
– start-page: 501
  year: 2006
  end-page: 508
  ident: bib0190
  article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion
  publication-title: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ‘06
– volume: 12
  start-page: 331
  year: 2002
  end-page: 370
  ident: bib0055
  article-title: Hybrid recommender systems: survey and experiments
  publication-title: User Model. User-Adapt. Interact.
– volume: 54
  start-page: 1535
  year: 2011
  end-page: 1546
  ident: bib0035
  article-title: A content-boosted collaborative filtering approach for movie recommendation based on local and global similarity and missing data prediction
  publication-title: Comput. J.
– start-page: 39
  year: 2007
  end-page: 46
  ident: bib0040
  article-title: Effective missing data prediction for collaborative filtering
  publication-title: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: 40
  start-page: 66
  year: 1997
  end-page: 72
  ident: bib0110
  article-title: Fab: content-based, collaborative recommendation
  publication-title: Commun. ACM
– start-page: 192
  year: 2007
  end-page: 199
  ident: bib0020
  article-title: Recommender systems and their impact on sales diversity
  publication-title: Proceedings of the 8th ACM Conference on Electronic Commerce
– start-page: 22
  year: 2005
  end-page: 32
  ident: bib0030
  article-title: Improving recommendation lists through topic diversification
  publication-title: Proceedings of the 14th International Conference on World Wide Web
– volume: 7
  start-page: 76
  year: 2003
  end-page: 80
  ident: bib0025
  article-title: Amazon. com recommendations: item-to-item collaborative filtering
  publication-title: IEEE Internet Comput.
– start-page: 115
  year: 2001
  end-page: 153
  ident: bib0015
  article-title: E-commerce recommendation applications
  publication-title: Applications of Data Mining to Electronic Commerce
– volume: 28
  start-page: 2294
  year: 2017
  end-page: 2305
  ident: bib0150
  article-title: Semisupervised feature analysis by mining correlations among multiple tasks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 4
  start-page: 373
  year: 1984
  end-page: 395
  ident: bib0180
  article-title: A new polynomial-time algorithm for linear programming
  publication-title: Combinatorica
– start-page: 119
  year: 2009
  end-page: 134
  ident: bib0065
  article-title: Exploring movie recommendation system using cultural metadata
  publication-title: Transactions on Edutainment II
– start-page: 73
  year: 2009
  end-page: 82
  ident: bib0045
  article-title: Improving recommender systems with adaptive conversational strategies
  publication-title: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia
– volume: 74
  start-page: 7015
  year: 2015
  end-page: 7036
  ident: bib0070
  article-title: Tuning metadata for better movie content-based recommendation systems
  publication-title: Multimed. Tools Appl.
– start-page: 187
  year: 2002
  end-page: 192
  ident: bib0100
  article-title: Content-boosted collaborative filtering for improved recommendations
  publication-title: Aaai/iaai
– start-page: 117
  year: 2009
  end-page: 124
  ident: bib0115
  article-title: A unified approach to building hybrid recommender systems
  publication-title: Proceedings of the Third ACM Conference on Recommender Systems
– volume: 72
  start-page: 231
  year: 2008
  end-page: 245
  ident: bib0090
  article-title: A collaborative filtering framework based on both local user similarity and global user similarity
  publication-title: Mach. Learn.
– volume: 7
  start-page: 23
  year: 2007
  ident: bib0050
  article-title: Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness
  publication-title: ACM Trans. Internet Technol. (TOIT)
– start-page: 1041
  year: 2008
  end-page: 1042
  ident: bib0060
  article-title: Feature weighting in content based recommendation system using social network analysis
  publication-title: Proceedings of the 17th International Conference on World Wide Web
– start-page: 75
  year: 2009
  end-page: 80
  ident: bib0105
  article-title: Hydra: a hybrid recommender system [cross-linked rating and content information]
  publication-title: Proceedings of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management
– volume: 20
  start-page: 29
  issue: C
  year: 2016
  ident: 10.1016/j.jocs.2018.08.004_bib0080
  article-title: A survey of active learning in collaborative filtering recommender systems
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2016.05.002
– volume: 39
  start-page: 1617
  issue: 8
  year: 2017
  ident: 10.1016/j.jocs.2018.08.004_bib0155
  article-title: Semantic pooling for complex event analysis in untrimmed videos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2608901
– start-page: 22
  year: 2005
  ident: 10.1016/j.jocs.2018.08.004_bib0030
  article-title: Improving recommendation lists through topic diversification
– start-page: 131
  year: 2018
  ident: 10.1016/j.jocs.2018.08.004_bib0120
  article-title: Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis
– volume: 1
  start-page: 1
  issue: 1
  year: 1980
  ident: 10.1016/j.jocs.2018.08.004_bib0185
  article-title: Khachiyan's linear programming algorithm
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(80)90002-4
– volume: 152
  start-page: 94
  year: 2018
  ident: 10.1016/j.jocs.2018.08.004_bib0195
  article-title: Cf4j: collaborative filtering for java
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.04.008
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  ident: 10.1016/j.jocs.2018.08.004_bib0010
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– start-page: 501
  year: 2006
  ident: 10.1016/j.jocs.2018.08.004_bib0190
  article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion
– volume: 54
  start-page: 1535
  issue: 9
  year: 2011
  ident: 10.1016/j.jocs.2018.08.004_bib0035
  article-title: A content-boosted collaborative filtering approach for movie recommendation based on local and global similarity and missing data prediction
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxr001
– volume: 72
  start-page: 231
  issue: 3
  year: 2008
  ident: 10.1016/j.jocs.2018.08.004_bib0090
  article-title: A collaborative filtering framework based on both local user similarity and global user similarity
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-008-5068-4
– start-page: 114
  year: 2005
  ident: 10.1016/j.jocs.2018.08.004_bib0095
  article-title: Scalable collaborative filtering using cluster-based smoothing
– start-page: 119
  year: 2009
  ident: 10.1016/j.jocs.2018.08.004_bib0065
  article-title: Exploring movie recommendation system using cultural metadata
– volume: vol. 557
  year: 2007
  ident: 10.1016/j.jocs.2018.08.004_bib0175
– volume: 74
  start-page: 7015
  issue: 17
  year: 2015
  ident: 10.1016/j.jocs.2018.08.004_bib0070
  article-title: Tuning metadata for better movie content-based recommendation systems
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-014-1950-1
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  ident: 10.1016/j.jocs.2018.08.004_bib0055
  article-title: Hybrid recommender systems: survey and experiments
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1021240730564
– start-page: 1041
  year: 2008
  ident: 10.1016/j.jocs.2018.08.004_bib0060
  article-title: Feature weighting in content based recommendation system using social network analysis
– start-page: 117
  year: 2009
  ident: 10.1016/j.jocs.2018.08.004_bib0115
  article-title: A unified approach to building hybrid recommender systems
– start-page: 73
  year: 2009
  ident: 10.1016/j.jocs.2018.08.004_bib0045
  article-title: Improving recommender systems with adaptive conversational strategies
– start-page: 477
  year: 2018
  ident: 10.1016/j.jocs.2018.08.004_bib0135
  article-title: Efficient schemes for playout latency reduction in p2p-vod systems
– start-page: 39
  year: 2007
  ident: 10.1016/j.jocs.2018.08.004_bib0040
  article-title: Effective missing data prediction for collaborative filtering
– year: 2007
  ident: 10.1016/j.jocs.2018.08.004_bib0165
– volume: vol. 3
  year: 2004
  ident: 10.1016/j.jocs.2018.08.004_bib0170
– year: 2018
  ident: 10.1016/j.jocs.2018.08.004_bib0200
  article-title: Rank-constrained spectral clustering with flexible embedding
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2817538
– volume: 2009
  start-page: 4
  year: 2009
  ident: 10.1016/j.jocs.2018.08.004_bib0005
  article-title: A survey of collaborative filtering techniques
  publication-title: Adv. Artif. Intell.
– start-page: 115
  year: 2001
  ident: 10.1016/j.jocs.2018.08.004_bib0015
  article-title: E-commerce recommendation applications
– start-page: 192
  year: 2007
  ident: 10.1016/j.jocs.2018.08.004_bib0020
  article-title: Recommender systems and their impact on sales diversity
– volume: 4
  start-page: 373
  issue: 4
  year: 1984
  ident: 10.1016/j.jocs.2018.08.004_bib0180
  article-title: A new polynomial-time algorithm for linear programming
  publication-title: Combinatorica
  doi: 10.1007/BF02579150
– start-page: 210
  year: 1995
  ident: 10.1016/j.jocs.2018.08.004_bib0075
  article-title: Social information filtering: algorithms for automating “word of mouth”
– volume: 4
  start-page: 133
  issue: 2
  year: 2001
  ident: 10.1016/j.jocs.2018.08.004_bib0085
  article-title: A constant time collaborative filtering algorithm
  publication-title: Inf. Retriev.
  doi: 10.1023/A:1011419012209
– start-page: 75
  year: 2009
  ident: 10.1016/j.jocs.2018.08.004_bib0105
  article-title: Hydra: a hybrid recommender system [cross-linked rating and content information]
– volume: 7
  start-page: 23
  issue: 4
  year: 2007
  ident: 10.1016/j.jocs.2018.08.004_bib0050
  article-title: Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness
  publication-title: ACM Trans. Internet Technol. (TOIT)
  doi: 10.1145/1278366.1278372
– start-page: 252
  year: 2018
  ident: 10.1016/j.jocs.2018.08.004_bib0130
  article-title: An empirical analysis of user behavior for p2p iptv workloads
– volume: 28
  start-page: 2294
  issue: 10
  year: 2017
  ident: 10.1016/j.jocs.2018.08.004_bib0150
  article-title: Semisupervised feature analysis by mining correlations among multiple tasks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582746
– volume: 40
  start-page: 66
  issue: 3
  year: 1997
  ident: 10.1016/j.jocs.2018.08.004_bib0110
  article-title: Fab: content-based, collaborative recommendation
  publication-title: Commun. ACM
  doi: 10.1145/245108.245124
– year: 2017
  ident: 10.1016/j.jocs.2018.08.004_bib0125
  article-title: Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding
  publication-title: Comput. Electr. Eng.
– volume: 47
  start-page: 1180
  issue: 5
  year: 2017
  ident: 10.1016/j.jocs.2018.08.004_bib0145
  article-title: Bi-level semantic representation analysis for multimedia event detection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2539546
– volume: 7
  start-page: 76
  issue: 1
  year: 2003
  ident: 10.1016/j.jocs.2018.08.004_bib0025
  article-title: Amazon. com recommendations: item-to-item collaborative filtering
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2003.1167344
– volume: 29
  start-page: 2100
  issue: 10
  year: 2017
  ident: 10.1016/j.jocs.2018.08.004_bib0160
  article-title: Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2728531
– start-page: 187
  year: 2002
  ident: 10.1016/j.jocs.2018.08.004_bib0100
  article-title: Content-boosted collaborative filtering for improved recommendations
– volume: 26
  start-page: 3911
  issue: 8
  year: 2017
  ident: 10.1016/j.jocs.2018.08.004_bib0140
  article-title: Feature interaction augmented sparse learning for fast kinect motion detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2708506
SSID ssj0000388913
Score 2.2245395
Snippet •Combining content information of movie features with collaborative filtering approach.•Using a goal programming model in the content-based method to predict...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Collaborative filtering
Content-based recommender systems
Goal programming
Recommender systems
Title Moreopt: A goal programming based movie recommender system
URI https://dx.doi.org/10.1016/j.jocs.2018.08.004
Volume 28
WOSCitedRecordID wos000449242900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: AIEXJ
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB60K-KLuKviemMefFBKJOlMOjP7VpYuKrgKVuhbmKtsNUlpqyz-eudyEsOuLir4EsK004Q5H-ecOZ3zfQg9K12uiVQuM9rwjE4nJhNu6jLpHWFp5GQqrYxiE-z0lC-X4j10l2yjnABrGn5-Ltb_1dR-zBs7tM7-hbn7H_UD_t4b3V-92f31jwz_tt3Ydp0qfuNPbei0Smew6lAVCFHLjOvWh8Nx2AzXddSSA0bn36SqOko_dGVDCJo9qEDheF4PassL-1lJLaOrPfET-w_effcxLg4f29oHp11H_Q2Vh4L3R6ugHHapJSZ6UM5YFv4cTQFmOAZeFdwu9IQnv0nJIAInJtpLvj2VGVYvV60OPOsFj9yrSbz4Amf2h_DE8BIFI0XgGLyO9iasFHyE9mav58s3fRkukOGIKKLdvzi0VqVTgBcf9uv0ZZCSLO6g22AgPEsY2EfXbHOAbnatDAdoHxz3Fj8HdvEXd9ER4OMIz3BABx6gA0d04IgOPEAHTui4hz6ezBfHrzIQ0Mg0yfNdZnPmpKaWlIYQnRc2JHdcS0FLyzUTzBWSSVNqJSZKGmd5UGhUikxz46gV5D4aNW1jHyCcM6aVLKgirqDWbxv8tl1Qf-esJUqKQ1R061JpYJcPIidfqu4Y4aoKa1mFtayC8mlOD9G4n7NO3CpXfrvslrsCoKesr_IAuWLew3-c9wjd-gn6x2i023y1T9AN_W13tt08BRz9AAFpiak
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moreopt%3A+A+goal+programming+based+movie+recommender+system&rft.jtitle=Journal+of+computational+science&rft.au=Inan%2C+Emrah&rft.au=Tekbacak%2C+Fatih&rft.au=Ozturk%2C+Cemalettin&rft.date=2018-09-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=28&rft.spage=43&rft.epage=50&rft_id=info:doi/10.1016%2Fj.jocs.2018.08.004&rft.externalDocID=S1877750317314540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon