Automatic phishing website detection and prevention model using transformer deep belief network

In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The proliferation of phishing attacks on the internet poses a substantial threat to individuals and organizations, compromising sensitive information a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & security Ročník 147; s. 104071
Hlavní autori: Majgave, Amol Babaso, Gavankar, Nitin L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2024
Predmet:
ISSN:0167-4048
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The proliferation of phishing attacks on the internet poses a substantial threat to individuals and organizations, compromising sensitive information and causing financial and reputational damage. This study's goal is to establish an automated system for the early detection and prevention of phishing websites, thereby enhancing online security and protecting users from cyber threats. This research initially employs One Hot Encoding (OHE) mechanism-based pre-processing mechanism that converts every URL string into a numerical vector with a particular dimension. This study utilizes two feature selection techniques which are transfer learning-based feature extraction using DarkNet19 and Variational Autoencoder (VAE) to select the value of the most important feature. The robust security mechanisms are presented to prevent phishing attacks and safeguard personal information on websites. List-based deep learning-based systems to prevent and detect phishing URLs more efficiently. The study proposes a transformer-based Deep Belief Network (TB-DBN), a veritable pre-trained deep transformer network model for phishing behaviour detection. A cross-validation technique with grid search hyper-parameter tuning based on the Intelligence Binary Bat Algorithm (IBBA) was designed using the proposed hybrid model. Predictions were made to classify the phishing URLs using a probabilistic estimation guided boosting classifier model and evaluate their performance in terms of accuracy, precision, recall, specificity, and F1- score. The risk level associated with the URL will be assessed based on various factors, such as the source's reputation, content analysis results, and behavioural anomalies. The computational complexity of DL model training is influenced by various factors, such as the model's complexity, the training data's size, and the optimization algorithm exploited, for training. The outcome demonstrates that tweaking variables increases the effectiveness of Python-based deep learning systems. The findings of the proposed method excel, achieving an accuracy of 99.4 %, precision of 99.2 %, recall of 99.3 %, and an F1-score of 99.2 %. This innovative automatic phishing website detection and prevention model, based on a Transformer-based Deep Belief Network, offers advanced accuracy and adaptability, strengthening cybersecurity measures to safeguard sensitive user information and mitigate the substantial threat of phishing attacks in the digitally connected world.
AbstractList In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The proliferation of phishing attacks on the internet poses a substantial threat to individuals and organizations, compromising sensitive information and causing financial and reputational damage. This study's goal is to establish an automated system for the early detection and prevention of phishing websites, thereby enhancing online security and protecting users from cyber threats. This research initially employs One Hot Encoding (OHE) mechanism-based pre-processing mechanism that converts every URL string into a numerical vector with a particular dimension. This study utilizes two feature selection techniques which are transfer learning-based feature extraction using DarkNet19 and Variational Autoencoder (VAE) to select the value of the most important feature. The robust security mechanisms are presented to prevent phishing attacks and safeguard personal information on websites. List-based deep learning-based systems to prevent and detect phishing URLs more efficiently. The study proposes a transformer-based Deep Belief Network (TB-DBN), a veritable pre-trained deep transformer network model for phishing behaviour detection. A cross-validation technique with grid search hyper-parameter tuning based on the Intelligence Binary Bat Algorithm (IBBA) was designed using the proposed hybrid model. Predictions were made to classify the phishing URLs using a probabilistic estimation guided boosting classifier model and evaluate their performance in terms of accuracy, precision, recall, specificity, and F1- score. The risk level associated with the URL will be assessed based on various factors, such as the source's reputation, content analysis results, and behavioural anomalies. The computational complexity of DL model training is influenced by various factors, such as the model's complexity, the training data's size, and the optimization algorithm exploited, for training. The outcome demonstrates that tweaking variables increases the effectiveness of Python-based deep learning systems. The findings of the proposed method excel, achieving an accuracy of 99.4 %, precision of 99.2 %, recall of 99.3 %, and an F1-score of 99.2 %. This innovative automatic phishing website detection and prevention model, based on a Transformer-based Deep Belief Network, offers advanced accuracy and adaptability, strengthening cybersecurity measures to safeguard sensitive user information and mitigate the substantial threat of phishing attacks in the digitally connected world.
ArticleNumber 104071
Author Majgave, Amol Babaso
Gavankar, Nitin L.
Author_xml – sequence: 1
  givenname: Amol Babaso
  surname: Majgave
  fullname: Majgave, Amol Babaso
  email: majgaveamolb@gmail.com
  organization: Research Scholar, Shivaji University, Kolhapur, Maharashtra 416004, India
– sequence: 2
  givenname: Nitin L.
  orcidid: 0000-0002-8511-5143
  surname: Gavankar
  fullname: Gavankar, Nitin L.
  email: nitin.gavankar@walchandsangli.ac.in
  organization: Assistant Professor, Walchand College of Engineering, Sangli, Maharashtra 416415, India
BookMark eNp9kLtOwzAUhj0UibbwAkx-gRTfmqQSS1VxkyqxwGw59gl1SezIdlvx9jiUiaHT0bl8R_q_GZo47wChO0oWlNDyfr_QPsKCESbyQJCKTtA0L6pCEFFfo1mMe0JoVdb1FMn1IfleJavxsLNxZ90nPkETbQJsIIFO1jusnMFDgCO437b3Bjp8iONxCsrF1oceQgZgwA10FlrsIJ18-LpBV63qItz-1Tn6eHp837wU27fn1816W2hOSCpMawwIyiglvDWa1kuAZSlYo1e1ZqY0AnhJKwJqxZUutaiM4Fxzw9myaZThc8TOf3XwMQZo5RBsr8K3pESOWuRejlrkqEWetWSo_gdpm9QYMaey3WX04YxCDnW0EGTUFpwGY0OWJo23l_AfZIGE_A
CitedBy_id crossref_primary_10_1007_s10660_025_10029_9
Cites_doi 10.3390/fi14110340
10.1007/s11042-023-17707-6
10.3390/app10238631
10.1049/ise2.12106
10.3390/app10238614
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cose.2024.104071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_cose_2024_104071
S0167404824003766
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-dfdde4121103fdc185ee5642bc98c2d6d4e36170ea93ac6c47d433c3d325bbad3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001308924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4048
IngestDate Tue Nov 18 22:16:24 EST 2025
Sat Nov 29 05:55:52 EST 2025
Sat Oct 26 15:43:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Variation auto encoder
DarkNet19
Intelligence binary bat algorithm detection
Phishing website
One hot encoding
Transformer-based deep belief networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-dfdde4121103fdc185ee5642bc98c2d6d4e36170ea93ac6c47d433c3d325bbad3
ORCID 0000-0002-8511-5143
ParticipantIDs crossref_primary_10_1016_j_cose_2024_104071
crossref_citationtrail_10_1016_j_cose_2024_104071
elsevier_sciencedirect_doi_10_1016_j_cose_2024_104071
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Computers & security
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gaurav, Singh, Kumar (bib0002) 2024; 83
Shirazi, Haefner, Ray (bib0021) 2017
Jain, Gupta (bib0004) 2023
Maneriker (bib0011) 2021
Jha, Muthalagu, Pawar (bib0005) 2023
Mahajan, Navale, Patil, Khadse, Mahalle (bib0009) 2023; 21
Jha, Kunwar (bib0006) 2023
Rodríguez, Álvaro Ibrain, and Lara Lloret Iglesias. "Fake news detection using deep learning." arXiv preprint arXiv:1910.03496 (2019).
Ulfath (bib0025) 2021
Gudnavar, Manjanaik (bib0003) 2022; 12
Venkatesh, tejaswini, soumya, priya (bib0026) 2023; 14
Ogundokun, Arowolo, Damaševičius, Misra (bib0015) 2023; 4
Xu, Pingfan. "A transformer-based model to detect phishing URLs." arXiv preprint arXiv:2109.02138 (2021).
Alshalan, Al-Khalifa (bib0001) 2020; 10
Mehdi Gholampour, Verma (bib0013) 2023
Sadaf (bib0019) 2023
Maslej-Krešňáková (bib0012) 2020; 10
Şentürk, Yerli, Soğukpınar (bib0020) 2017
Wang, Zhu, Xu, Qin, Ren, Ma (bib0028) 2023
Sujatha, Ayyannan, Priya, Arun, Arularasan, Kumar (bib0023) 2023
Prabakaran, Meenakshi Sundaram, Chandrasekar (bib0016) 2023; 17
Menaka, Harshika, Philip, John, Bharathiraja, Murugesan (bib0014) 2023
Kavitha, Hemalatha, Mounica, Niveda, Kumar (bib0007) 2023
Srivastava, Sharan (bib0022) 2023
Roy (bib0018) 2022; 14
Tzschoppe, Löhr (bib0024) 2023
Mahajan, Siddavatam (bib0010) 2018; 181
Vijjali, Rutvik, et al. "Two stage transformer model for COVID-19 fake news detection and fact checking." arXiv preprint arXiv:2011.13253 (2020).
Roy (10.1016/j.cose.2024.104071_bib0018) 2022; 14
Venkatesh (10.1016/j.cose.2024.104071_bib0026) 2023; 14
Mahajan (10.1016/j.cose.2024.104071_bib0010) 2018; 181
Menaka (10.1016/j.cose.2024.104071_bib0014) 2023
Gudnavar (10.1016/j.cose.2024.104071_bib0003) 2022; 12
Mahajan (10.1016/j.cose.2024.104071_bib0009) 2023; 21
Prabakaran (10.1016/j.cose.2024.104071_bib0016) 2023; 17
Jha (10.1016/j.cose.2024.104071_bib0005) 2023
Jain (10.1016/j.cose.2024.104071_bib0004) 2023
10.1016/j.cose.2024.104071_bib0027
Maslej-Krešňáková (10.1016/j.cose.2024.104071_bib0012) 2020; 10
Ogundokun (10.1016/j.cose.2024.104071_bib0015) 2023; 4
Sujatha (10.1016/j.cose.2024.104071_bib0023) 2023
Wang (10.1016/j.cose.2024.104071_bib0028) 2023
10.1016/j.cose.2024.104071_bib0029
Maneriker (10.1016/j.cose.2024.104071_bib0011) 2021
Sadaf (10.1016/j.cose.2024.104071_bib0019) 2023
Tzschoppe (10.1016/j.cose.2024.104071_bib0024) 2023
Alshalan (10.1016/j.cose.2024.104071_bib0001) 2020; 10
Kavitha (10.1016/j.cose.2024.104071_bib0007) 2023
Şentürk (10.1016/j.cose.2024.104071_bib0020) 2017
Mehdi Gholampour (10.1016/j.cose.2024.104071_bib0013) 2023
Shirazi (10.1016/j.cose.2024.104071_bib0021) 2017
10.1016/j.cose.2024.104071_bib0017
Srivastava (10.1016/j.cose.2024.104071_bib0022) 2023
Gaurav (10.1016/j.cose.2024.104071_bib0002) 2024; 83
Jha (10.1016/j.cose.2024.104071_bib0006) 2023
Ulfath (10.1016/j.cose.2024.104071_bib0025) 2021
References_xml – volume: 4
  start-page: 279
  year: 2023
  end-page: 297
  ident: bib0015
  article-title: Phishing Detection in Blockchain Transaction Networks Using Ensemble Learning
  publication-title: Telecom
– start-page: 67
  year: 2023
  end-page: 76
  ident: bib0013
  article-title: Adversarial Robustness of Phishing Email Detection Models
  publication-title: Proceedings of the 9th ACM International Workshop on Security and Privacy Analytics
– reference: Xu, Pingfan. "A transformer-based model to detect phishing URLs." arXiv preprint arXiv:2109.02138 (2021).
– start-page: 1
  year: 2023
  end-page: 6
  ident: bib0004
  article-title: A support vector machine learning technique for detection of phishing websites
  publication-title: 2023 6th International Conference on Information Systems and Computer Networks (ISCON)
– start-page: 707
  year: 2017
  end-page: 712
  ident: bib0020
  article-title: Email phishing detection and prevention by using data mining techniques
  publication-title: 2017 International Conference on Computer Science and Engineering (UBMK)
– year: 2021
  ident: bib0025
  article-title: Hybrid CNN-GRU framework with integrated pre-trained language transformer for SMS phishing detection
  publication-title: The 5th International Conference on Future Networks & Distributed Systems
– volume: 14
  start-page: 537
  year: 2023
  end-page: 552
  ident: bib0026
  article-title: Malicious URL detection using machine learning
  publication-title: Turkish J. Comput. Math. Educ. (turcomat)
– start-page: 725
  year: 2023
  end-page: 733
  ident: bib0022
  article-title: Phishing Website Detection Based on Hybrid Resampling KMeansSMOTENCR and Cost-Sensitive Classification
  publication-title: Advances in Cognitive Science and Communications: Selected Articles from the 5th International Conference on Communications and Cyber-Physical Engineering (ICCCE 2022), Hyderabad, India
– start-page: 1
  year: 2023
  end-page: 26
  ident: bib0005
  article-title: Intelligent phishing website detection using machine learning
  publication-title: Multimed. Tools Appl.
– volume: 12
  start-page: 724
  year: 2022
  end-page: 730
  ident: bib0003
  article-title: Novel framework for enhancing data quality using data correlation factor in wireless sensor network
  publication-title: Int. J. Comput. Dig. Syst. (Scopus-Q3)
– volume: 10
  start-page: 8631
  year: 2020
  ident: bib0012
  article-title: Comparison of deep learning models and various text pre-processing techniques for the toxic comments classification
  publication-title: Appl. Sci.
– start-page: 1
  year: 2023
  end-page: 5
  ident: bib0023
  article-title: Hybrid Optimization Algorithm to Mitigate Phishing URL Attacks in Smart Cities
  publication-title: 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)
– start-page: 1
  year: 2023
  end-page: 5
  ident: bib0006
  article-title: Machine Learning based URL Analysis for Phishing Detection
  publication-title: 2023 6th International Conference on Information Systems and Computer Networks (ISCON)
– volume: 14
  start-page: 340
  year: 2022
  ident: bib0018
  article-title: Multimodel phishing url detection using lstm, bidirectional lstm, and gru models
  publication-title: Future Internet
– start-page: 137
  year: 2017
  end-page: 143
  ident: bib0021
  article-title: Fresh-phish: a framework for auto-detection of phishing websites
  publication-title: 2017 IEEE international conference on information reuse and integration (IRI)
– volume: 83
  start-page: 61287
  year: 2024
  end-page: 61311
  ident: bib0002
  article-title: Intelligent fault monitoring and reliability analysis in safety–critical systems of nuclear power plants using SIAO-CNN-ORNN
  publication-title: Multimed Tools Appl
– volume: 17
  start-page: 423
  year: 2023
  end-page: 440
  ident: bib0016
  article-title: An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders
  publication-title: IET Inform. Secu.
– volume: 21
  start-page: 162
  year: 2023
  end-page: 184
  ident: bib0009
  article-title: The hybrid framework of ensemble technique in machine learning for phishing detection
  publication-title: Int. J. Inform. Comput. Secu.
– start-page: 1
  year: 2023
  end-page: 6
  ident: bib0007
  article-title: A visionary approach to detect spoofing website using machine learning algorithms
  publication-title: 2023 International Conference on Computer Communication and Informatics (ICCCI)
– start-page: 15
  year: 2023
  end-page: 20
  ident: bib0024
  article-title: Browser-in-the-Middle-Evaluation of a modern approach to phishing
  publication-title: Proceedings of the 16th European Workshop on System Security
– volume: 10
  start-page: 8614
  year: 2020
  ident: bib0001
  article-title: A deep learning approach for automatic hate speech detection in the saudi twittersphere
  publication-title: Appl. Sci.
– start-page: 1251
  year: 2023
  end-page: 1256
  ident: bib0014
  article-title: Analysing the Accuracy of Detecting Phishing Websites using Ensemble Methods in Machine Learning
  publication-title: 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)
– reference: Rodríguez, Álvaro Ibrain, and Lara Lloret Iglesias. "Fake news detection using deep learning." arXiv preprint arXiv:1910.03496 (2019).
– reference: Vijjali, Rutvik, et al. "Two stage transformer model for COVID-19 fake news detection and fact checking." arXiv preprint arXiv:2011.13253 (2020).
– start-page: 1
  year: 2023
  end-page: 5
  ident: bib0028
  article-title: A Large-Scale Pretrained Deep Model for Phishing URL Detection
  publication-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 1
  year: 2023
  end-page: 6
  ident: bib0019
  article-title: Phishing Website detection using xgboost and catboost classifiers
  publication-title: 2023 International Conference on Smart Computing and Application (ICSCA)
– volume: 181
  start-page: 45
  year: 2018
  end-page: 47
  ident: bib0010
  article-title: Phishing website detection using machine learning algorithms
  publication-title: Int. J. Comput. Appl.
– year: 2021
  ident: bib0011
  article-title: URLTran: improving phishing URL detection using transformers
  publication-title: MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM)
– start-page: 1
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0005
  article-title: Intelligent phishing website detection using machine learning
  publication-title: Multimed. Tools Appl.
– volume: 14
  start-page: 340
  issue: 11
  year: 2022
  ident: 10.1016/j.cose.2024.104071_bib0018
  article-title: Multimodel phishing url detection using lstm, bidirectional lstm, and gru models
  publication-title: Future Internet
  doi: 10.3390/fi14110340
– volume: 83
  start-page: 61287
  year: 2024
  ident: 10.1016/j.cose.2024.104071_bib0002
  article-title: Intelligent fault monitoring and reliability analysis in safety–critical systems of nuclear power plants using SIAO-CNN-ORNN
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-17707-6
– ident: 10.1016/j.cose.2024.104071_bib0029
– volume: 10
  start-page: 8631
  issue: 23
  year: 2020
  ident: 10.1016/j.cose.2024.104071_bib0012
  article-title: Comparison of deep learning models and various text pre-processing techniques for the toxic comments classification
  publication-title: Appl. Sci.
  doi: 10.3390/app10238631
– volume: 17
  start-page: 423
  issue: 3
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0016
  article-title: An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders
  publication-title: IET Inform. Secu.
  doi: 10.1049/ise2.12106
– volume: 10
  start-page: 8614
  issue: 23
  year: 2020
  ident: 10.1016/j.cose.2024.104071_bib0001
  article-title: A deep learning approach for automatic hate speech detection in the saudi twittersphere
  publication-title: Appl. Sci.
  doi: 10.3390/app10238614
– ident: 10.1016/j.cose.2024.104071_bib0027
– start-page: 1
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0007
  article-title: A visionary approach to detect spoofing website using machine learning algorithms
– start-page: 15
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0024
  article-title: Browser-in-the-Middle-Evaluation of a modern approach to phishing
– start-page: 1
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0028
  article-title: A Large-Scale Pretrained Deep Model for Phishing URL Detection
– start-page: 67
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0013
  article-title: Adversarial Robustness of Phishing Email Detection Models
– year: 2021
  ident: 10.1016/j.cose.2024.104071_bib0025
  article-title: Hybrid CNN-GRU framework with integrated pre-trained language transformer for SMS phishing detection
– start-page: 1
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0006
  article-title: Machine Learning based URL Analysis for Phishing Detection
– start-page: 1
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0019
  article-title: Phishing Website detection using xgboost and catboost classifiers
– start-page: 1251
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0014
  article-title: Analysing the Accuracy of Detecting Phishing Websites using Ensemble Methods in Machine Learning
– ident: 10.1016/j.cose.2024.104071_bib0017
– volume: 21
  start-page: 162
  issue: 1–2
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0009
  article-title: The hybrid framework of ensemble technique in machine learning for phishing detection
  publication-title: Int. J. Inform. Comput. Secu.
– volume: 12
  start-page: 724
  issue: 1
  year: 2022
  ident: 10.1016/j.cose.2024.104071_bib0003
  article-title: Novel framework for enhancing data quality using data correlation factor in wireless sensor network
  publication-title: Int. J. Comput. Dig. Syst. (Scopus-Q3)
– volume: 181
  start-page: 45
  issue: 23
  year: 2018
  ident: 10.1016/j.cose.2024.104071_bib0010
  article-title: Phishing website detection using machine learning algorithms
  publication-title: Int. J. Comput. Appl.
– start-page: 707
  year: 2017
  ident: 10.1016/j.cose.2024.104071_bib0020
  article-title: Email phishing detection and prevention by using data mining techniques
– start-page: 1
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0023
  article-title: Hybrid Optimization Algorithm to Mitigate Phishing URL Attacks in Smart Cities
– start-page: 1
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0004
  article-title: A support vector machine learning technique for detection of phishing websites
– start-page: 137
  year: 2017
  ident: 10.1016/j.cose.2024.104071_bib0021
  article-title: Fresh-phish: a framework for auto-detection of phishing websites
– volume: 14
  start-page: 537
  issue: 2
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0026
  article-title: Malicious URL detection using machine learning
  publication-title: Turkish J. Comput. Math. Educ. (turcomat)
– year: 2021
  ident: 10.1016/j.cose.2024.104071_bib0011
  article-title: URLTran: improving phishing URL detection using transformers
– volume: 4
  start-page: 279
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0015
  article-title: Phishing Detection in Blockchain Transaction Networks Using Ensemble Learning
– start-page: 725
  year: 2023
  ident: 10.1016/j.cose.2024.104071_bib0022
  article-title: Phishing Website Detection Based on Hybrid Resampling KMeansSMOTENCR and Cost-Sensitive Classification
SSID ssj0017688
Score 2.4268174
Snippet In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104071
SubjectTerms DarkNet19
Intelligence binary bat algorithm detection
One hot encoding
Phishing website
Transformer-based deep belief networks
Variation auto encoder
Title Automatic phishing website detection and prevention model using transformer deep belief network
URI https://dx.doi.org/10.1016/j.cose.2024.104071
Volume 147
WOSCitedRecordID wos001308924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-4048
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017688
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9tAEF3SpIdemqQfNE1T9tCbkNlqZX0cnZKQlmACScE3sZ-tnVQ2kRzy8zOrWa2NW0JbyEUY4ZVg3jL7NDv7HiGfcmDRiWB5bPPExLDisVgCb44VU4nNpBCWo9lEPh4Xk0l54W3ums5OIK_r4v6-XDwp1HAPwHZHZ_8B7vBQuAG_AXS4Auxw_SvgR8t2jjqsi5--wASp0m0SR9q0xluDozxA3-zY-eFEy8abRiCV7bzDjWvlAp5qoxobxtfZbG8J0XQTqPFWeKsi9-yHuMOC6a_5TXQsYMmch4YfARz-Gtu7x9N2Wkfng_USRJJutHOEszGrRqSuVOkU1RnqaIZci_Kav-VtLCHMBq5Jf-Be4faeGZqzbOhhX3YHJ-C5rvsV0mP2jOwk-bCErLwz-noy-RY2keBLqgjS7jDAn5nC9r7NN_2Zl6xxjas98tJ_JNARgrtPtkz9iuz20aY-H78mVcCa9lhTjzUNWFPAmq6wph3WtMOarmFNHdYUsaYe6zfk--nJ1Zez2DtmxIoz1sbawmqVOtU-xq1WwMWMGcIXplRloRKd6dRwp8BvRMmFylSa65RzxTVPhlIKzd-S7Xpem3eEihSCy6SRNhepLWSZisIAv9SJzAol7QH53MerUl5O3rma3FR93-CscjGuXIwrjPEBicKYBYqpPPrvYQ9D5ekg0rwKZs0j497_57hD8mI1uT-Q7fZ2aY7Ic3XXTpvbj35yPQAYMoik
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+phishing+website+detection+and+prevention+model+using+transformer+deep+belief+network&rft.jtitle=Computers+%26+security&rft.au=Majgave%2C+Amol+Babaso&rft.au=Gavankar%2C+Nitin+L.&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0167-4048&rft.volume=147&rft_id=info:doi/10.1016%2Fj.cose.2024.104071&rft.externalDocID=S0167404824003766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon