Automatic phishing website detection and prevention model using transformer deep belief network
In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The proliferation of phishing attacks on the internet poses a substantial threat to individuals and organizations, compromising sensitive information a...
Uložené v:
| Vydané v: | Computers & security Ročník 147; s. 104071 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2024
|
| Predmet: | |
| ISSN: | 0167-4048 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The proliferation of phishing attacks on the internet poses a substantial threat to individuals and organizations, compromising sensitive information and causing financial and reputational damage. This study's goal is to establish an automated system for the early detection and prevention of phishing websites, thereby enhancing online security and protecting users from cyber threats. This research initially employs One Hot Encoding (OHE) mechanism-based pre-processing mechanism that converts every URL string into a numerical vector with a particular dimension. This study utilizes two feature selection techniques which are transfer learning-based feature extraction using DarkNet19 and Variational Autoencoder (VAE) to select the value of the most important feature. The robust security mechanisms are presented to prevent phishing attacks and safeguard personal information on websites. List-based deep learning-based systems to prevent and detect phishing URLs more efficiently. The study proposes a transformer-based Deep Belief Network (TB-DBN), a veritable pre-trained deep transformer network model for phishing behaviour detection. A cross-validation technique with grid search hyper-parameter tuning based on the Intelligence Binary Bat Algorithm (IBBA) was designed using the proposed hybrid model. Predictions were made to classify the phishing URLs using a probabilistic estimation guided boosting classifier model and evaluate their performance in terms of accuracy, precision, recall, specificity, and F1- score. The risk level associated with the URL will be assessed based on various factors, such as the source's reputation, content analysis results, and behavioural anomalies. The computational complexity of DL model training is influenced by various factors, such as the model's complexity, the training data's size, and the optimization algorithm exploited, for training. The outcome demonstrates that tweaking variables increases the effectiveness of Python-based deep learning systems. The findings of the proposed method excel, achieving an accuracy of 99.4 %, precision of 99.2 %, recall of 99.3 %, and an F1-score of 99.2 %. This innovative automatic phishing website detection and prevention model, based on a Transformer-based Deep Belief Network, offers advanced accuracy and adaptability, strengthening cybersecurity measures to safeguard sensitive user information and mitigate the substantial threat of phishing attacks in the digitally connected world. |
|---|---|
| AbstractList | In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The proliferation of phishing attacks on the internet poses a substantial threat to individuals and organizations, compromising sensitive information and causing financial and reputational damage. This study's goal is to establish an automated system for the early detection and prevention of phishing websites, thereby enhancing online security and protecting users from cyber threats. This research initially employs One Hot Encoding (OHE) mechanism-based pre-processing mechanism that converts every URL string into a numerical vector with a particular dimension. This study utilizes two feature selection techniques which are transfer learning-based feature extraction using DarkNet19 and Variational Autoencoder (VAE) to select the value of the most important feature. The robust security mechanisms are presented to prevent phishing attacks and safeguard personal information on websites. List-based deep learning-based systems to prevent and detect phishing URLs more efficiently. The study proposes a transformer-based Deep Belief Network (TB-DBN), a veritable pre-trained deep transformer network model for phishing behaviour detection. A cross-validation technique with grid search hyper-parameter tuning based on the Intelligence Binary Bat Algorithm (IBBA) was designed using the proposed hybrid model. Predictions were made to classify the phishing URLs using a probabilistic estimation guided boosting classifier model and evaluate their performance in terms of accuracy, precision, recall, specificity, and F1- score. The risk level associated with the URL will be assessed based on various factors, such as the source's reputation, content analysis results, and behavioural anomalies. The computational complexity of DL model training is influenced by various factors, such as the model's complexity, the training data's size, and the optimization algorithm exploited, for training. The outcome demonstrates that tweaking variables increases the effectiveness of Python-based deep learning systems. The findings of the proposed method excel, achieving an accuracy of 99.4 %, precision of 99.2 %, recall of 99.3 %, and an F1-score of 99.2 %. This innovative automatic phishing website detection and prevention model, based on a Transformer-based Deep Belief Network, offers advanced accuracy and adaptability, strengthening cybersecurity measures to safeguard sensitive user information and mitigate the substantial threat of phishing attacks in the digitally connected world. |
| ArticleNumber | 104071 |
| Author | Majgave, Amol Babaso Gavankar, Nitin L. |
| Author_xml | – sequence: 1 givenname: Amol Babaso surname: Majgave fullname: Majgave, Amol Babaso email: majgaveamolb@gmail.com organization: Research Scholar, Shivaji University, Kolhapur, Maharashtra 416004, India – sequence: 2 givenname: Nitin L. orcidid: 0000-0002-8511-5143 surname: Gavankar fullname: Gavankar, Nitin L. email: nitin.gavankar@walchandsangli.ac.in organization: Assistant Professor, Walchand College of Engineering, Sangli, Maharashtra 416415, India |
| BookMark | eNp9kLtOwzAUhj0UibbwAkx-gRTfmqQSS1VxkyqxwGw59gl1SezIdlvx9jiUiaHT0bl8R_q_GZo47wChO0oWlNDyfr_QPsKCESbyQJCKTtA0L6pCEFFfo1mMe0JoVdb1FMn1IfleJavxsLNxZ90nPkETbQJsIIFO1jusnMFDgCO437b3Bjp8iONxCsrF1oceQgZgwA10FlrsIJ18-LpBV63qItz-1Tn6eHp837wU27fn1816W2hOSCpMawwIyiglvDWa1kuAZSlYo1e1ZqY0AnhJKwJqxZUutaiM4Fxzw9myaZThc8TOf3XwMQZo5RBsr8K3pESOWuRejlrkqEWetWSo_gdpm9QYMaey3WX04YxCDnW0EGTUFpwGY0OWJo23l_AfZIGE_A |
| CitedBy_id | crossref_primary_10_1007_s10660_025_10029_9 |
| Cites_doi | 10.3390/fi14110340 10.1007/s11042-023-17707-6 10.3390/app10238631 10.1049/ise2.12106 10.3390/app10238614 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cose.2024.104071 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_cose_2024_104071 S0167404824003766 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFSI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-dfdde4121103fdc185ee5642bc98c2d6d4e36170ea93ac6c47d433c3d325bbad3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001308924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-4048 |
| IngestDate | Tue Nov 18 22:16:24 EST 2025 Sat Nov 29 05:55:52 EST 2025 Sat Oct 26 15:43:51 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variation auto encoder DarkNet19 Intelligence binary bat algorithm detection Phishing website One hot encoding Transformer-based deep belief networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-dfdde4121103fdc185ee5642bc98c2d6d4e36170ea93ac6c47d433c3d325bbad3 |
| ORCID | 0000-0002-8511-5143 |
| ParticipantIDs | crossref_primary_10_1016_j_cose_2024_104071 crossref_citationtrail_10_1016_j_cose_2024_104071 elsevier_sciencedirect_doi_10_1016_j_cose_2024_104071 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & security |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gaurav, Singh, Kumar (bib0002) 2024; 83 Shirazi, Haefner, Ray (bib0021) 2017 Jain, Gupta (bib0004) 2023 Maneriker (bib0011) 2021 Jha, Muthalagu, Pawar (bib0005) 2023 Mahajan, Navale, Patil, Khadse, Mahalle (bib0009) 2023; 21 Jha, Kunwar (bib0006) 2023 Rodríguez, Álvaro Ibrain, and Lara Lloret Iglesias. "Fake news detection using deep learning." arXiv preprint arXiv:1910.03496 (2019). Ulfath (bib0025) 2021 Gudnavar, Manjanaik (bib0003) 2022; 12 Venkatesh, tejaswini, soumya, priya (bib0026) 2023; 14 Ogundokun, Arowolo, Damaševičius, Misra (bib0015) 2023; 4 Xu, Pingfan. "A transformer-based model to detect phishing URLs." arXiv preprint arXiv:2109.02138 (2021). Alshalan, Al-Khalifa (bib0001) 2020; 10 Mehdi Gholampour, Verma (bib0013) 2023 Sadaf (bib0019) 2023 Maslej-Krešňáková (bib0012) 2020; 10 Şentürk, Yerli, Soğukpınar (bib0020) 2017 Wang, Zhu, Xu, Qin, Ren, Ma (bib0028) 2023 Sujatha, Ayyannan, Priya, Arun, Arularasan, Kumar (bib0023) 2023 Prabakaran, Meenakshi Sundaram, Chandrasekar (bib0016) 2023; 17 Menaka, Harshika, Philip, John, Bharathiraja, Murugesan (bib0014) 2023 Kavitha, Hemalatha, Mounica, Niveda, Kumar (bib0007) 2023 Srivastava, Sharan (bib0022) 2023 Roy (bib0018) 2022; 14 Tzschoppe, Löhr (bib0024) 2023 Mahajan, Siddavatam (bib0010) 2018; 181 Vijjali, Rutvik, et al. "Two stage transformer model for COVID-19 fake news detection and fact checking." arXiv preprint arXiv:2011.13253 (2020). Roy (10.1016/j.cose.2024.104071_bib0018) 2022; 14 Venkatesh (10.1016/j.cose.2024.104071_bib0026) 2023; 14 Mahajan (10.1016/j.cose.2024.104071_bib0010) 2018; 181 Menaka (10.1016/j.cose.2024.104071_bib0014) 2023 Gudnavar (10.1016/j.cose.2024.104071_bib0003) 2022; 12 Mahajan (10.1016/j.cose.2024.104071_bib0009) 2023; 21 Prabakaran (10.1016/j.cose.2024.104071_bib0016) 2023; 17 Jha (10.1016/j.cose.2024.104071_bib0005) 2023 Jain (10.1016/j.cose.2024.104071_bib0004) 2023 10.1016/j.cose.2024.104071_bib0027 Maslej-Krešňáková (10.1016/j.cose.2024.104071_bib0012) 2020; 10 Ogundokun (10.1016/j.cose.2024.104071_bib0015) 2023; 4 Sujatha (10.1016/j.cose.2024.104071_bib0023) 2023 Wang (10.1016/j.cose.2024.104071_bib0028) 2023 10.1016/j.cose.2024.104071_bib0029 Maneriker (10.1016/j.cose.2024.104071_bib0011) 2021 Sadaf (10.1016/j.cose.2024.104071_bib0019) 2023 Tzschoppe (10.1016/j.cose.2024.104071_bib0024) 2023 Alshalan (10.1016/j.cose.2024.104071_bib0001) 2020; 10 Kavitha (10.1016/j.cose.2024.104071_bib0007) 2023 Şentürk (10.1016/j.cose.2024.104071_bib0020) 2017 Mehdi Gholampour (10.1016/j.cose.2024.104071_bib0013) 2023 Shirazi (10.1016/j.cose.2024.104071_bib0021) 2017 10.1016/j.cose.2024.104071_bib0017 Srivastava (10.1016/j.cose.2024.104071_bib0022) 2023 Gaurav (10.1016/j.cose.2024.104071_bib0002) 2024; 83 Jha (10.1016/j.cose.2024.104071_bib0006) 2023 Ulfath (10.1016/j.cose.2024.104071_bib0025) 2021 |
| References_xml | – volume: 4 start-page: 279 year: 2023 end-page: 297 ident: bib0015 article-title: Phishing Detection in Blockchain Transaction Networks Using Ensemble Learning publication-title: Telecom – start-page: 67 year: 2023 end-page: 76 ident: bib0013 article-title: Adversarial Robustness of Phishing Email Detection Models publication-title: Proceedings of the 9th ACM International Workshop on Security and Privacy Analytics – reference: Xu, Pingfan. "A transformer-based model to detect phishing URLs." arXiv preprint arXiv:2109.02138 (2021). – start-page: 1 year: 2023 end-page: 6 ident: bib0004 article-title: A support vector machine learning technique for detection of phishing websites publication-title: 2023 6th International Conference on Information Systems and Computer Networks (ISCON) – start-page: 707 year: 2017 end-page: 712 ident: bib0020 article-title: Email phishing detection and prevention by using data mining techniques publication-title: 2017 International Conference on Computer Science and Engineering (UBMK) – year: 2021 ident: bib0025 article-title: Hybrid CNN-GRU framework with integrated pre-trained language transformer for SMS phishing detection publication-title: The 5th International Conference on Future Networks & Distributed Systems – volume: 14 start-page: 537 year: 2023 end-page: 552 ident: bib0026 article-title: Malicious URL detection using machine learning publication-title: Turkish J. Comput. Math. Educ. (turcomat) – start-page: 725 year: 2023 end-page: 733 ident: bib0022 article-title: Phishing Website Detection Based on Hybrid Resampling KMeansSMOTENCR and Cost-Sensitive Classification publication-title: Advances in Cognitive Science and Communications: Selected Articles from the 5th International Conference on Communications and Cyber-Physical Engineering (ICCCE 2022), Hyderabad, India – start-page: 1 year: 2023 end-page: 26 ident: bib0005 article-title: Intelligent phishing website detection using machine learning publication-title: Multimed. Tools Appl. – volume: 12 start-page: 724 year: 2022 end-page: 730 ident: bib0003 article-title: Novel framework for enhancing data quality using data correlation factor in wireless sensor network publication-title: Int. J. Comput. Dig. Syst. (Scopus-Q3) – volume: 10 start-page: 8631 year: 2020 ident: bib0012 article-title: Comparison of deep learning models and various text pre-processing techniques for the toxic comments classification publication-title: Appl. Sci. – start-page: 1 year: 2023 end-page: 5 ident: bib0023 article-title: Hybrid Optimization Algorithm to Mitigate Phishing URL Attacks in Smart Cities publication-title: 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM) – start-page: 1 year: 2023 end-page: 5 ident: bib0006 article-title: Machine Learning based URL Analysis for Phishing Detection publication-title: 2023 6th International Conference on Information Systems and Computer Networks (ISCON) – volume: 14 start-page: 340 year: 2022 ident: bib0018 article-title: Multimodel phishing url detection using lstm, bidirectional lstm, and gru models publication-title: Future Internet – start-page: 137 year: 2017 end-page: 143 ident: bib0021 article-title: Fresh-phish: a framework for auto-detection of phishing websites publication-title: 2017 IEEE international conference on information reuse and integration (IRI) – volume: 83 start-page: 61287 year: 2024 end-page: 61311 ident: bib0002 article-title: Intelligent fault monitoring and reliability analysis in safety–critical systems of nuclear power plants using SIAO-CNN-ORNN publication-title: Multimed Tools Appl – volume: 17 start-page: 423 year: 2023 end-page: 440 ident: bib0016 article-title: An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders publication-title: IET Inform. Secu. – volume: 21 start-page: 162 year: 2023 end-page: 184 ident: bib0009 article-title: The hybrid framework of ensemble technique in machine learning for phishing detection publication-title: Int. J. Inform. Comput. Secu. – start-page: 1 year: 2023 end-page: 6 ident: bib0007 article-title: A visionary approach to detect spoofing website using machine learning algorithms publication-title: 2023 International Conference on Computer Communication and Informatics (ICCCI) – start-page: 15 year: 2023 end-page: 20 ident: bib0024 article-title: Browser-in-the-Middle-Evaluation of a modern approach to phishing publication-title: Proceedings of the 16th European Workshop on System Security – volume: 10 start-page: 8614 year: 2020 ident: bib0001 article-title: A deep learning approach for automatic hate speech detection in the saudi twittersphere publication-title: Appl. Sci. – start-page: 1251 year: 2023 end-page: 1256 ident: bib0014 article-title: Analysing the Accuracy of Detecting Phishing Websites using Ensemble Methods in Machine Learning publication-title: 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS) – reference: Rodríguez, Álvaro Ibrain, and Lara Lloret Iglesias. "Fake news detection using deep learning." arXiv preprint arXiv:1910.03496 (2019). – reference: Vijjali, Rutvik, et al. "Two stage transformer model for COVID-19 fake news detection and fact checking." arXiv preprint arXiv:2011.13253 (2020). – start-page: 1 year: 2023 end-page: 5 ident: bib0028 article-title: A Large-Scale Pretrained Deep Model for Phishing URL Detection publication-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 1 year: 2023 end-page: 6 ident: bib0019 article-title: Phishing Website detection using xgboost and catboost classifiers publication-title: 2023 International Conference on Smart Computing and Application (ICSCA) – volume: 181 start-page: 45 year: 2018 end-page: 47 ident: bib0010 article-title: Phishing website detection using machine learning algorithms publication-title: Int. J. Comput. Appl. – year: 2021 ident: bib0011 article-title: URLTran: improving phishing URL detection using transformers publication-title: MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM) – start-page: 1 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0005 article-title: Intelligent phishing website detection using machine learning publication-title: Multimed. Tools Appl. – volume: 14 start-page: 340 issue: 11 year: 2022 ident: 10.1016/j.cose.2024.104071_bib0018 article-title: Multimodel phishing url detection using lstm, bidirectional lstm, and gru models publication-title: Future Internet doi: 10.3390/fi14110340 – volume: 83 start-page: 61287 year: 2024 ident: 10.1016/j.cose.2024.104071_bib0002 article-title: Intelligent fault monitoring and reliability analysis in safety–critical systems of nuclear power plants using SIAO-CNN-ORNN publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-17707-6 – ident: 10.1016/j.cose.2024.104071_bib0029 – volume: 10 start-page: 8631 issue: 23 year: 2020 ident: 10.1016/j.cose.2024.104071_bib0012 article-title: Comparison of deep learning models and various text pre-processing techniques for the toxic comments classification publication-title: Appl. Sci. doi: 10.3390/app10238631 – volume: 17 start-page: 423 issue: 3 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0016 article-title: An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders publication-title: IET Inform. Secu. doi: 10.1049/ise2.12106 – volume: 10 start-page: 8614 issue: 23 year: 2020 ident: 10.1016/j.cose.2024.104071_bib0001 article-title: A deep learning approach for automatic hate speech detection in the saudi twittersphere publication-title: Appl. Sci. doi: 10.3390/app10238614 – ident: 10.1016/j.cose.2024.104071_bib0027 – start-page: 1 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0007 article-title: A visionary approach to detect spoofing website using machine learning algorithms – start-page: 15 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0024 article-title: Browser-in-the-Middle-Evaluation of a modern approach to phishing – start-page: 1 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0028 article-title: A Large-Scale Pretrained Deep Model for Phishing URL Detection – start-page: 67 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0013 article-title: Adversarial Robustness of Phishing Email Detection Models – year: 2021 ident: 10.1016/j.cose.2024.104071_bib0025 article-title: Hybrid CNN-GRU framework with integrated pre-trained language transformer for SMS phishing detection – start-page: 1 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0006 article-title: Machine Learning based URL Analysis for Phishing Detection – start-page: 1 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0019 article-title: Phishing Website detection using xgboost and catboost classifiers – start-page: 1251 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0014 article-title: Analysing the Accuracy of Detecting Phishing Websites using Ensemble Methods in Machine Learning – ident: 10.1016/j.cose.2024.104071_bib0017 – volume: 21 start-page: 162 issue: 1–2 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0009 article-title: The hybrid framework of ensemble technique in machine learning for phishing detection publication-title: Int. J. Inform. Comput. Secu. – volume: 12 start-page: 724 issue: 1 year: 2022 ident: 10.1016/j.cose.2024.104071_bib0003 article-title: Novel framework for enhancing data quality using data correlation factor in wireless sensor network publication-title: Int. J. Comput. Dig. Syst. (Scopus-Q3) – volume: 181 start-page: 45 issue: 23 year: 2018 ident: 10.1016/j.cose.2024.104071_bib0010 article-title: Phishing website detection using machine learning algorithms publication-title: Int. J. Comput. Appl. – start-page: 707 year: 2017 ident: 10.1016/j.cose.2024.104071_bib0020 article-title: Email phishing detection and prevention by using data mining techniques – start-page: 1 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0023 article-title: Hybrid Optimization Algorithm to Mitigate Phishing URL Attacks in Smart Cities – start-page: 1 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0004 article-title: A support vector machine learning technique for detection of phishing websites – start-page: 137 year: 2017 ident: 10.1016/j.cose.2024.104071_bib0021 article-title: Fresh-phish: a framework for auto-detection of phishing websites – volume: 14 start-page: 537 issue: 2 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0026 article-title: Malicious URL detection using machine learning publication-title: Turkish J. Comput. Math. Educ. (turcomat) – year: 2021 ident: 10.1016/j.cose.2024.104071_bib0011 article-title: URLTran: improving phishing URL detection using transformers – volume: 4 start-page: 279 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0015 article-title: Phishing Detection in Blockchain Transaction Networks Using Ensemble Learning – start-page: 725 year: 2023 ident: 10.1016/j.cose.2024.104071_bib0022 article-title: Phishing Website Detection Based on Hybrid Resampling KMeansSMOTENCR and Cost-Sensitive Classification |
| SSID | ssj0017688 |
| Score | 2.4268174 |
| Snippet | In the digitally connected world cybersecurity is paramount, phishing where attackers pose as trusted entities to steal sensitive data, looms large. The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104071 |
| SubjectTerms | DarkNet19 Intelligence binary bat algorithm detection One hot encoding Phishing website Transformer-based deep belief networks Variation auto encoder |
| Title | Automatic phishing website detection and prevention model using transformer deep belief network |
| URI | https://dx.doi.org/10.1016/j.cose.2024.104071 |
| Volume | 147 |
| WOSCitedRecordID | wos001308924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0167-4048 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017688 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9tAEF3SpIdemqQfNE1T9tCbkNlqZX0cnZKQlmACScE3sZ-tnVQ2kRzy8zOrWa2NW0JbyEUY4ZVg3jL7NDv7HiGfcmDRiWB5bPPExLDisVgCb44VU4nNpBCWo9lEPh4Xk0l54W3ums5OIK_r4v6-XDwp1HAPwHZHZ_8B7vBQuAG_AXS4Auxw_SvgR8t2jjqsi5--wASp0m0SR9q0xluDozxA3-zY-eFEy8abRiCV7bzDjWvlAp5qoxobxtfZbG8J0XQTqPFWeKsi9-yHuMOC6a_5TXQsYMmch4YfARz-Gtu7x9N2Wkfng_USRJJutHOEszGrRqSuVOkU1RnqaIZci_Kav-VtLCHMBq5Jf-Be4faeGZqzbOhhX3YHJ-C5rvsV0mP2jOwk-bCErLwz-noy-RY2keBLqgjS7jDAn5nC9r7NN_2Zl6xxjas98tJ_JNARgrtPtkz9iuz20aY-H78mVcCa9lhTjzUNWFPAmq6wph3WtMOarmFNHdYUsaYe6zfk--nJ1Zez2DtmxIoz1sbawmqVOtU-xq1WwMWMGcIXplRloRKd6dRwp8BvRMmFylSa65RzxTVPhlIKzd-S7Xpem3eEihSCy6SRNhepLWSZisIAv9SJzAol7QH53MerUl5O3rma3FR93-CscjGuXIwrjPEBicKYBYqpPPrvYQ9D5ekg0rwKZs0j497_57hD8mI1uT-Q7fZ2aY7Ic3XXTpvbj35yPQAYMoik |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+phishing+website+detection+and+prevention+model+using+transformer+deep+belief+network&rft.jtitle=Computers+%26+security&rft.au=Majgave%2C+Amol+Babaso&rft.au=Gavankar%2C+Nitin+L.&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0167-4048&rft.volume=147&rft_id=info:doi/10.1016%2Fj.cose.2024.104071&rft.externalDocID=S0167404824003766 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |