Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization
A more efficient optimization algorithm has always been the pursuit of researchers, but the performance of the current optimization algorithm in some complex test functions is not always satisfactory. In order to solve this problem, a new meta-heuristic optimization algorithm—Football Team Training...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 245; S. 123088 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.07.2024
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A more efficient optimization algorithm has always been the pursuit of researchers, but the performance of the current optimization algorithm in some complex test functions is not always satisfactory. In order to solve this problem, a new meta-heuristic optimization algorithm—Football Team Training Algorithm (FTTA) is proposed according to the training method of the football team, which simulates the three stages of the training session: Collective Training, Group Training and Individual Extra Training. By the test on two groups of test functions, CEC2005 and CEC2020, the proposed optimization algorithm (FTTA) achieves the best results, which far exceeds the traditional Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA) algorithms and so on. In the engineering application, a new hybrid wind speed prediction system is proposed based on FTTA. The FTTA is used to optimize variational mode decomposition (VMD) to improve the effect of data denoising. At the same time, based on unconstrained weighting algorithm, FTTA and combination prediction model build a new hybrid prediction strategy. Through the experiments on four groups of wind speed data in Dalian, the accuracy, stability, advancement, and CPU running speed of the system are verified. It is obvious that the practical application ability of the system is much better than previous methods, which can effectively improve the utilization efficiency of renewable energy. |
|---|---|
| AbstractList | A more efficient optimization algorithm has always been the pursuit of researchers, but the performance of the current optimization algorithm in some complex test functions is not always satisfactory. In order to solve this problem, a new meta-heuristic optimization algorithm—Football Team Training Algorithm (FTTA) is proposed according to the training method of the football team, which simulates the three stages of the training session: Collective Training, Group Training and Individual Extra Training. By the test on two groups of test functions, CEC2005 and CEC2020, the proposed optimization algorithm (FTTA) achieves the best results, which far exceeds the traditional Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA) algorithms and so on. In the engineering application, a new hybrid wind speed prediction system is proposed based on FTTA. The FTTA is used to optimize variational mode decomposition (VMD) to improve the effect of data denoising. At the same time, based on unconstrained weighting algorithm, FTTA and combination prediction model build a new hybrid prediction strategy. Through the experiments on four groups of wind speed data in Dalian, the accuracy, stability, advancement, and CPU running speed of the system are verified. It is obvious that the practical application ability of the system is much better than previous methods, which can effectively improve the utilization efficiency of renewable energy. |
| ArticleNumber | 123088 |
| Author | Tian, Zhirui Gai, Mei |
| Author_xml | – sequence: 1 givenname: Zhirui orcidid: 0000-0001-7680-6770 surname: Tian fullname: Tian, Zhirui email: zhiruitian@link.cuhk.edu.cn organization: School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, Guangdong, China – sequence: 2 givenname: Mei orcidid: 0000-0003-3500-5760 surname: Gai fullname: Gai, Mei email: gaimei71@lnnu.edu.cn organization: Key Research Base of Humanities and Social Sciences of the Ministry of Education, Center for Studies of Marine Economy and Sustainable Development, Liaoning Normal University, Dalian 116029, Liaoning, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DyD6T4FTtBbKqKAlIlNrC2HNtpXSVxZJsi-HoSioRg0dVs5tyZe2Zg0vnOAnCN0QIjzG_2Cxvf1YIgQheYUFQUZ2CKC0EzLko6AVNU5iJjWLALMItxjxAWCIkpOKy9T5VqGpisamEKynWu20LVbH1wadfewiXs_ME2MPY-pMx1sXfBGtjapLKdfQsuJqeh75Nr3adKzne_NKx9gNvGDxf-bFyC81o10V79zDl4Xd-_rB6zzfPD02q5yTRFKGWmZsRqw4QqhSk4Y4QwoUWBaM2N4FYTQ43mVFU8ryhmpspJzg3LbUVzVXI6B8UxVwcfY7C11C59fzA2bSRGcvQn93L0J0d_8uhvQMk_tA-uVeHjNHR3hOxQ6uBskFE722lrBmc6SePdKfwLFXKPTQ |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04892_8 crossref_primary_10_1016_j_cma_2025_118318 crossref_primary_10_4108_eetpht_10_5853 crossref_primary_10_1016_j_eswa_2025_127578 crossref_primary_10_3390_biomimetics10080542 crossref_primary_10_1016_j_eswa_2025_126769 crossref_primary_10_1371_journal_pone_0311602 crossref_primary_10_1016_j_engappai_2025_111160 crossref_primary_10_3390_biomimetics10090628 crossref_primary_10_1038_s41598_025_94418_y crossref_primary_10_1088_1402_4896_ade646 crossref_primary_10_1002_ett_70237 crossref_primary_10_1007_s10586_025_05508_5 crossref_primary_10_1016_j_renene_2025_123277 crossref_primary_10_1016_j_apenergy_2025_125330 crossref_primary_10_1007_s10586_025_05348_3 crossref_primary_10_3390_biomimetics10060380 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_3390_sym17060841 crossref_primary_10_1177_09544062251351161 crossref_primary_10_1007_s10462_025_11192_z crossref_primary_10_1016_j_chaos_2024_115636 crossref_primary_10_1016_j_eswa_2025_126686 crossref_primary_10_1016_j_knosys_2024_112564 crossref_primary_10_1038_s41598_024_56521_4 crossref_primary_10_1038_s41598_024_83589_9 crossref_primary_10_1016_j_swevo_2025_102004 crossref_primary_10_1007_s10586_025_05241_z crossref_primary_10_3390_app15052855 crossref_primary_10_3390_app15105232 crossref_primary_10_1016_j_aei_2025_103582 crossref_primary_10_3390_biomimetics10080496 crossref_primary_10_1038_s41598_025_01678_9 crossref_primary_10_1038_s41598_025_13539_6 crossref_primary_10_1002_rob_22603 crossref_primary_10_3390_biomimetics10010003 crossref_primary_10_1016_j_measurement_2025_118361 crossref_primary_10_1038_s41598_025_99730_1 crossref_primary_10_1016_j_electacta_2025_147261 crossref_primary_10_1016_j_apenergy_2024_124717 crossref_primary_10_3390_biomimetics9070419 crossref_primary_10_1007_s11227_024_06713_6 crossref_primary_10_1016_j_advengsoft_2024_103862 crossref_primary_10_1016_j_array_2025_100401 crossref_primary_10_1016_j_scitotenv_2024_177924 crossref_primary_10_1007_s10614_024_10828_6 crossref_primary_10_3390_batteries11090344 crossref_primary_10_3390_biomimetics10050310 crossref_primary_10_1016_j_heliyon_2024_e35595 crossref_primary_10_1007_s10586_025_05445_3 crossref_primary_10_1038_s41598_025_88080_7 crossref_primary_10_1007_s00521_024_10009_4 crossref_primary_10_1016_j_energy_2025_135926 crossref_primary_10_3390_biomimetics10010014 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1017_S0263574725000049 crossref_primary_10_1007_s10462_025_11235_5 crossref_primary_10_1109_ACCESS_2025_3601091 crossref_primary_10_3390_math12101506 crossref_primary_10_1016_j_asoc_2024_111863 crossref_primary_10_3390_biomimetics10040233 crossref_primary_10_1016_j_cma_2024_117718 crossref_primary_10_1038_s41598_024_72541_6 crossref_primary_10_1007_s10586_024_04867_9 crossref_primary_10_1016_j_asej_2025_103694 crossref_primary_10_1007_s42235_025_00674_z crossref_primary_10_1038_s41598_025_05477_0 crossref_primary_10_1108_EC_10_2024_0904 crossref_primary_10_1016_j_eswa_2025_127206 crossref_primary_10_1002_cpe_70282 crossref_primary_10_1016_j_eswa_2024_125567 crossref_primary_10_1155_jom_6018044 crossref_primary_10_23919_PCMP_2023_000189 crossref_primary_10_3390_biomimetics9100603 crossref_primary_10_1016_j_entcom_2024_100913 crossref_primary_10_1038_s41598_025_00728_6 crossref_primary_10_1007_s10586_024_04950_1 crossref_primary_10_3390_biomimetics10090620 crossref_primary_10_1109_JIOT_2025_3557875 crossref_primary_10_1007_s11227_025_07629_5 crossref_primary_10_3390_biomimetics9110678 crossref_primary_10_1007_s42044_025_00317_w crossref_primary_10_1038_s41598_025_93754_3 crossref_primary_10_1016_j_knosys_2025_114273 crossref_primary_10_3390_biomimetics10080504 |
| Cites_doi | 10.1016/j.fcij.2018.03.002 10.1016/j.apr.2023.101761 10.1016/j.advengsoft.2013.12.007 10.1016/j.compstruc.2004.01.002 10.1016/j.energy.2022.126383 10.1016/j.ijepes.2021.107365 10.1016/j.asoc.2023.110939 10.1016/j.ecolind.2023.111138 10.1016/j.asoc.2023.111090 10.1016/j.advengsoft.2016.01.008 10.1016/j.renene.2023.118932 10.1016/j.enconman.2023.117880 10.1016/j.asoc.2023.110487 10.1016/j.mcm.2006.12.019 10.1016/j.swevo.2013.12.004 10.1016/j.apenergy.2023.122015 10.1016/j.energy.2023.129824 10.1016/j.eswa.2023.120968 10.1016/j.energy.2023.128225 10.1016/j.eswa.2022.119129 10.1016/j.energy.2022.124249 10.1016/j.measurement.2021.110654 10.1016/j.renene.2023.119357 10.1016/j.eswa.2023.122788 10.1016/j.apenergy.2023.122248 10.1016/0377-2217(93)E0228-P 10.1016/j.advengsoft.2017.01.004 10.1016/j.asoc.2014.08.025 10.1016/j.eswa.2023.121438 10.1016/j.biosystemseng.2023.11.012 10.1016/j.eswa.2011.01.091 10.1016/j.jclepro.2022.134048 10.1016/j.asoc.2017.11.043 10.1016/j.seta.2016.08.004 10.1016/j.eswa.2023.122487 10.4018/978-1-4666-2086-5.ch013 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.123088 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_123088 S095741742303590X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-df42ecd47a97d86442247c7803f6d76ec2d3dc63ab65b314db5256d45eb35a963 |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164473300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 20:55:30 EST 2025 Sat Nov 29 07:08:11 EST 2025 Sat Apr 13 16:35:12 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data preprocessing strategy Football team training algorithm Wind speed prediction Neural network Unconstrained weighting method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-df42ecd47a97d86442247c7803f6d76ec2d3dc63ab65b314db5256d45eb35a963 |
| ORCID | 0000-0003-3500-5760 0000-0001-7680-6770 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_123088 crossref_primary_10_1016_j_eswa_2023_123088 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_123088 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Parsopoulos, Vrahatis (b0105) 2007; 46 Shi, Wang, Zhang (b0130) 2024; 353 Sharifuzzaman Sagar, Chen, Xie, Kim (b0125) 2024; 241 Xin, Chen, Li, Lu, Li, Wang, He (b0180) 2022; 189 Tian, Gai (b0140) 2022; 375 Mirjalili, Lewis (b0075) 2016; 95 Chen, Vempati, Aljaber (b0020) 1995; 80 Fadakar, Ebrahimi (b0035) 2016 Du, Han, Shen, Meng, Chen, Yao, Castro-García (b0030) 2024; 237 Pandey, Chaudhary, Mehrotra (b0095) 2014; 24 Tian, Gai (b0145) 2023; 281 Tian, Wang (b0150) 2022; 254 Li, Jiang, Li, Hong, Xu (b0055) 2023; 144 Wang, Niu, Zhang, Liu, Huang (b0165) 2024; 241 Ali, El-Hameed, El-Fergany, El-Arini (b0005) 2016; 17 Anggraeni, Yuniarno, Rachmadi, Sumpeno, Pujiadi, Sugiyanto, Purnomo (b0010) 2024; 237 Parri, Teeparthi, Kosana (b0100) 2024; 288 Moghdani, Salimifard (b0085) 2018; 64 Sun, Liu, Wang, Zhao (b0135) 2024; 150 Xiong, Yao, Huang, Yu, Liu (b0185) 2024; 353 Bommidi, Teeparthi, Kosana (b0015) 2023; 265 Karijadi, Chou, Dewabharata (b0045) 2023; 218 Saremi, Mirjalili, Lewis (b0120) 2017; 105 Wang, Lv, Li, Zeng (b0160) 2023; 214 Mirjalili, Mirjalili, Lewis (b0080) 2014; 69 Wu, Huang, Wu, Dai (b0175) 2023; 233 Li, Xu, Jin, Wang (b0060) 2011; 38 Nandhini, Balasundaram (b0090) 2014; 16 Huang, Qian (b0040) 2023; 156 Tian, Wang (b0155) 2023; 215 Luo, Gong (b0065) 2023; 14 Lee, Geem (b0050) 2004; 82 Purnomo, Wee (b0110) 2013; 386–420 Ray, Lama, Mishra, Biswas, Sankar Das, Gurung (b0115) 2023; 149 Mahmoodabadi, Rasekh, Zohari (b0070) 2018; 3 Chen, Tang, Zeng, Zhou, Kang, Long (b0025) 2022; 134 Zhang, Yin (b0190) 2024; 299 Parsopoulos (10.1016/j.eswa.2023.123088_b0105) 2007; 46 Wang (10.1016/j.eswa.2023.123088_b0165) 2024; 241 Mahmoodabadi (10.1016/j.eswa.2023.123088_b0070) 2018; 3 Fadakar (10.1016/j.eswa.2023.123088_b0035) 2016 Shi (10.1016/j.eswa.2023.123088_b0130) 2024; 353 Ali (10.1016/j.eswa.2023.123088_b0005) 2016; 17 Nandhini (10.1016/j.eswa.2023.123088_b0090) 2014; 16 Bommidi (10.1016/j.eswa.2023.123088_b0015) 2023; 265 Moghdani (10.1016/j.eswa.2023.123088_b0085) 2018; 64 Mirjalili (10.1016/j.eswa.2023.123088_b0075) 2016; 95 Du (10.1016/j.eswa.2023.123088_b0030) 2024; 237 Parri (10.1016/j.eswa.2023.123088_b0100) 2024; 288 Karijadi (10.1016/j.eswa.2023.123088_b0045) 2023; 218 Xin (10.1016/j.eswa.2023.123088_b0180) 2022; 189 Chen (10.1016/j.eswa.2023.123088_b0025) 2022; 134 Pandey (10.1016/j.eswa.2023.123088_b0095) 2014; 24 Wang (10.1016/j.eswa.2023.123088_b0160) 2023; 214 Li (10.1016/j.eswa.2023.123088_b0060) 2011; 38 Tian (10.1016/j.eswa.2023.123088_b0150) 2022; 254 Tian (10.1016/j.eswa.2023.123088_b0140) 2022; 375 Chen (10.1016/j.eswa.2023.123088_b0020) 1995; 80 Mirjalili (10.1016/j.eswa.2023.123088_b0080) 2014; 69 Saremi (10.1016/j.eswa.2023.123088_b0120) 2017; 105 Li (10.1016/j.eswa.2023.123088_b0055) 2023; 144 Anggraeni (10.1016/j.eswa.2023.123088_b0010) 2024; 237 Lee (10.1016/j.eswa.2023.123088_b0050) 2004; 82 Purnomo (10.1016/j.eswa.2023.123088_b0110) 2013; 386–420 Ray (10.1016/j.eswa.2023.123088_b0115) 2023; 149 Sun (10.1016/j.eswa.2023.123088_b0135) 2024; 150 Tian (10.1016/j.eswa.2023.123088_b0155) 2023; 215 Tian (10.1016/j.eswa.2023.123088_b0145) 2023; 281 Zhang (10.1016/j.eswa.2023.123088_b0190) 2024; 299 Huang (10.1016/j.eswa.2023.123088_b0040) 2023; 156 Xiong (10.1016/j.eswa.2023.123088_b0185) 2024; 353 Wu (10.1016/j.eswa.2023.123088_b0175) 2023; 233 Sharifuzzaman Sagar (10.1016/j.eswa.2023.123088_b0125) 2024; 241 Luo (10.1016/j.eswa.2023.123088_b0065) 2023; 14 |
| References_xml | – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: b0085 article-title: Volleyball Premier League algorithm publication-title: Applied Soft Computing – volume: 3 start-page: 191 year: 2018 end-page: 199 ident: b0070 article-title: TGA: Team Game Algorithm publication-title: Future Computing and Informatics Journal – volume: 14 year: 2023 ident: b0065 article-title: Air pollutant prediction based on Arima-WOA-LSTM model publication-title: Atmospheric Pollution Research – volume: 375 year: 2022 ident: b0140 article-title: New PM2.5 forecasting system based on combined neural network and an improved multi-objective optimization algorithm: Taking the economic belt surrounding the Bohai Sea as an example publication-title: Journal of Cleaner Production – volume: 299 year: 2024 ident: b0190 article-title: Spatial-temporal offshore wind speed characteristics prediction based on an improved purely 2d CNN approach in a large-scale perspective using reanalysis dataset publication-title: Energy Conversion and Management – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0080 article-title: Grey Wolf optimizer publication-title: Advances in Engineering Software – volume: 46 start-page: 198 year: 2007 end-page: 213 ident: b0105 article-title: Parameter selection and adaptation in unified particle swarm optimization publication-title: Mathematical and Computer Modelling – volume: 144 year: 2023 ident: b0055 article-title: A floating offshore platform Motion Forecasting Approach based on EEMD hybrid ConvLSTM and Chaotic Quantum Alo publication-title: Applied Soft Computing – year: 2016 ident: b0035 article-title: A new metaheuristic football game inspired algorithm publication-title: 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) – volume: 82 start-page: 781 year: 2004 end-page: 798 ident: b0050 article-title: A new structural optimization method based on the harmony search algorithm publication-title: Computers & Structures – volume: 17 start-page: 68 year: 2016 end-page: 76 ident: b0005 article-title: Parameter extraction of photovoltaic generating units using multi-verse optimizer publication-title: Sustainable Energy Technologies and Assessments – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b0120 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in Engineering Software – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0075 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 241 year: 2024 ident: b0125 article-title: MSA R-CNN: A comprehensive approach to remote sensing object detection and scene understanding publication-title: Expert Systems with Applications – volume: 241 year: 2024 ident: b0165 article-title: A wind speed forecasting system for the construction of a smart grid with two-stage data processing based on improved elm and Deep Learning Strategies publication-title: Expert Systems with Applications – volume: 218 year: 2023 ident: b0045 article-title: Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method publication-title: Renewable Energy – volume: 16 start-page: 19 year: 2014 end-page: 27 ident: b0090 article-title: Extracting easy to understand summary using differential evolution algorithm publication-title: Swarm and Evolutionary Computation – volume: 156 year: 2023 ident: b0040 article-title: Modeling PM2.5 forecast using a self-weighted ensemble GRU network: Method Optimization and Evaluation publication-title: Ecological Indicators – volume: 149 year: 2023 ident: b0115 article-title: An Arima-LSTM model for predicting volatile agricultural price series with Random Forest Technique publication-title: Applied Soft Computing – volume: 281 year: 2023 ident: b0145 article-title: A novel hybrid wind speed prediction framework based on multi-strategy Improved Optimizer and new data pre-processing system with feedback mechanism publication-title: Energy – volume: 353 year: 2024 ident: b0130 article-title: A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power publication-title: Applied Energy – volume: 134 year: 2022 ident: b0025 article-title: Short-term wind speed forecasting based on long short-term memory and improved BP Neural Network publication-title: International Journal of Electrical Power & Energy Systems – volume: 254 year: 2022 ident: b0150 article-title: Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm publication-title: Energy – volume: 237 start-page: 38 year: 2024 end-page: 49 ident: b0030 article-title: Natural frequency identification model based on BP neural network for Camellia oleifera fruit harvesting publication-title: Biosystems Engineering – volume: 386–420 year: 2013 ident: b0110 article-title: Soccer game optimization publication-title: Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance – volume: 24 start-page: 1047 year: 2014 end-page: 1077 ident: b0095 article-title: A comparative review of approaches to prevent premature convergence in Ga publication-title: Applied Soft Computing – volume: 265 year: 2023 ident: b0015 article-title: Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function publication-title: Energy – volume: 214 year: 2023 ident: b0160 article-title: Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective Chameleon Swarm algorithm publication-title: Expert Systems with Applications – volume: 233 year: 2023 ident: b0175 article-title: A novel graph-based hybrid deep learning of cumulative GRU and deeper GCN for recognition of abnormal gait patterns using wearable sensors publication-title: Expert Systems with Applications – volume: 353 year: 2024 ident: b0185 article-title: A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition publication-title: Applied Energy – volume: 189 year: 2022 ident: b0180 article-title: Deformation characterization of oil and gas pipeline by ACM technique based on SSA-BP Neural Network model publication-title: Measurement – volume: 237 year: 2024 ident: b0010 article-title: A hybrid EMD-GRNN-PSO in intermittent time-series data for dengue fever forecasting publication-title: Expert Systems with Applications – volume: 150 year: 2024 ident: b0135 article-title: Interval forecasting for wind speed using a combination model based on multiobjective artificial hummingbird algorithm publication-title: Applied Soft Computing – volume: 80 start-page: 389 year: 1995 end-page: 396 ident: b0020 article-title: An application of genetic algorithms for flow shop problems publication-title: European Journal of Operational Research – volume: 288 year: 2024 ident: b0100 article-title: A hybrid methodology using VMD and disentangled features for wind speed forecasting publication-title: Energy – volume: 38 start-page: 8804 year: 2011 end-page: 8811 ident: b0060 article-title: Intelligent Bionic Genetic Algorithm (IB-GA) and its convergence publication-title: Expert Systems with Applications – volume: 215 year: 2023 ident: b0155 article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer publication-title: Renewable Energy – volume: 3 start-page: 191 issue: 2 year: 2018 ident: 10.1016/j.eswa.2023.123088_b0070 article-title: TGA: Team Game Algorithm publication-title: Future Computing and Informatics Journal doi: 10.1016/j.fcij.2018.03.002 – volume: 14 issue: 6 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0065 article-title: Air pollutant prediction based on Arima-WOA-LSTM model publication-title: Atmospheric Pollution Research doi: 10.1016/j.apr.2023.101761 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2023.123088_b0080 article-title: Grey Wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 82 start-page: 781 issue: 9–10 year: 2004 ident: 10.1016/j.eswa.2023.123088_b0050 article-title: A new structural optimization method based on the harmony search algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2004.01.002 – volume: 265 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0015 article-title: Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function publication-title: Energy doi: 10.1016/j.energy.2022.126383 – year: 2016 ident: 10.1016/j.eswa.2023.123088_b0035 article-title: A new metaheuristic football game inspired algorithm – volume: 134 year: 2022 ident: 10.1016/j.eswa.2023.123088_b0025 article-title: Short-term wind speed forecasting based on long short-term memory and improved BP Neural Network publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2021.107365 – volume: 149 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0115 article-title: An Arima-LSTM model for predicting volatile agricultural price series with Random Forest Technique publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110939 – volume: 156 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0040 article-title: Modeling PM2.5 forecast using a self-weighted ensemble GRU network: Method Optimization and Evaluation publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2023.111138 – volume: 150 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0135 article-title: Interval forecasting for wind speed using a combination model based on multiobjective artificial hummingbird algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.111090 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2023.123088_b0075 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 215 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0155 article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer publication-title: Renewable Energy doi: 10.1016/j.renene.2023.118932 – volume: 299 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0190 article-title: Spatial-temporal offshore wind speed characteristics prediction based on an improved purely 2d CNN approach in a large-scale perspective using reanalysis dataset publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2023.117880 – volume: 144 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0055 article-title: A floating offshore platform Motion Forecasting Approach based on EEMD hybrid ConvLSTM and Chaotic Quantum Alo publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110487 – volume: 46 start-page: 198 issue: 1–2 year: 2007 ident: 10.1016/j.eswa.2023.123088_b0105 article-title: Parameter selection and adaptation in unified particle swarm optimization publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2006.12.019 – volume: 16 start-page: 19 year: 2014 ident: 10.1016/j.eswa.2023.123088_b0090 article-title: Extracting easy to understand summary using differential evolution algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.12.004 – volume: 353 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0130 article-title: A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power publication-title: Applied Energy doi: 10.1016/j.apenergy.2023.122015 – volume: 288 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0100 article-title: A hybrid methodology using VMD and disentangled features for wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2023.129824 – volume: 233 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0175 article-title: A novel graph-based hybrid deep learning of cumulative GRU and deeper GCN for recognition of abnormal gait patterns using wearable sensors publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120968 – volume: 281 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0145 article-title: A novel hybrid wind speed prediction framework based on multi-strategy Improved Optimizer and new data pre-processing system with feedback mechanism publication-title: Energy doi: 10.1016/j.energy.2023.128225 – volume: 214 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0160 article-title: Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective Chameleon Swarm algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119129 – volume: 254 year: 2022 ident: 10.1016/j.eswa.2023.123088_b0150 article-title: Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2022.124249 – volume: 189 year: 2022 ident: 10.1016/j.eswa.2023.123088_b0180 article-title: Deformation characterization of oil and gas pipeline by ACM technique based on SSA-BP Neural Network model publication-title: Measurement doi: 10.1016/j.measurement.2021.110654 – volume: 218 year: 2023 ident: 10.1016/j.eswa.2023.123088_b0045 article-title: Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method publication-title: Renewable Energy doi: 10.1016/j.renene.2023.119357 – volume: 241 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0125 article-title: MSA R-CNN: A comprehensive approach to remote sensing object detection and scene understanding publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122788 – volume: 353 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0185 article-title: A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition publication-title: Applied Energy doi: 10.1016/j.apenergy.2023.122248 – volume: 80 start-page: 389 issue: 2 year: 1995 ident: 10.1016/j.eswa.2023.123088_b0020 article-title: An application of genetic algorithms for flow shop problems publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(93)E0228-P – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.eswa.2023.123088_b0120 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 – volume: 24 start-page: 1047 year: 2014 ident: 10.1016/j.eswa.2023.123088_b0095 article-title: A comparative review of approaches to prevent premature convergence in Ga publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.08.025 – volume: 237 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0010 article-title: A hybrid EMD-GRNN-PSO in intermittent time-series data for dengue fever forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121438 – volume: 237 start-page: 38 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0030 article-title: Natural frequency identification model based on BP neural network for Camellia oleifera fruit harvesting publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2023.11.012 – volume: 38 start-page: 8804 issue: 7 year: 2011 ident: 10.1016/j.eswa.2023.123088_b0060 article-title: Intelligent Bionic Genetic Algorithm (IB-GA) and its convergence publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.091 – volume: 375 year: 2022 ident: 10.1016/j.eswa.2023.123088_b0140 article-title: New PM2.5 forecasting system based on combined neural network and an improved multi-objective optimization algorithm: Taking the economic belt surrounding the Bohai Sea as an example publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2022.134048 – volume: 64 start-page: 161 year: 2018 ident: 10.1016/j.eswa.2023.123088_b0085 article-title: Volleyball Premier League algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.11.043 – volume: 17 start-page: 68 year: 2016 ident: 10.1016/j.eswa.2023.123088_b0005 article-title: Parameter extraction of photovoltaic generating units using multi-verse optimizer publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2016.08.004 – volume: 241 year: 2024 ident: 10.1016/j.eswa.2023.123088_b0165 article-title: A wind speed forecasting system for the construction of a smart grid with two-stage data processing based on improved elm and Deep Learning Strategies publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122487 – volume: 386–420 year: 2013 ident: 10.1016/j.eswa.2023.123088_b0110 article-title: Soccer game optimization publication-title: Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance doi: 10.4018/978-1-4666-2086-5.ch013 |
| SSID | ssj0017007 |
| Score | 2.6570091 |
| Snippet | A more efficient optimization algorithm has always been the pursuit of researchers, but the performance of the current optimization algorithm in some complex... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 123088 |
| SubjectTerms | Data preprocessing strategy Football team training algorithm Neural network Unconstrained weighting method Wind speed prediction |
| Title | Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.123088 |
| Volume | 245 |
| WOSCitedRecordID | wos001164473300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHLSz5wi1y5SRzH3Cq0K0BihcQiVVxC_AjNqk1W3bTsz2dc22m6oBUgcYmqaFyn_r5OxuN5IPSaUm0ovPiAvLqCDYpQRMpKEgH8ESpXVFflttkEPz3NZzPxaTT6FnJhNgveNPnVlbj4r1DDPQDbps7-Bdz9l8IN-AygwxVgh-sfAX_Stp20B84A37JvARGVi-_tqu7mzjEfNe3GLKLtnpbUjT1uB8tzabqSzM3aVW-OWlAnS5-nuRu_DUz0dUSGEns-fltAufNlokMC3eCovPcX1M7_-nVer9Z1HwvkWmR_NPXQJxGnffyqd5SFZJldZJLzOHKSTlxTnrFx-jbnCcm4a5IYFHLsCkz-otydn-F8bC5_2IpRcTKG1y51XQGvFc3-bCezc4FAwgSd3UKHMWcCVPfh9P3x7EN_0sSpS6kPD-cTq1wM4PWZfm-8DAySs_vort9J4KljwAM0Ms1DdC906cBeaT9Cm0AIbAmBAyFwD-gbPMVbOuB9OuB9OuAh2LvRGOiAHR32JB6jLyfHZ2_fEd9tg6iE0o7oKo2N0ikvBdc5mMlg3HHFc5pUmeaZUbFOtMqSUmZMJpNUSwbmsk6ZkQkrQY8_QQdN25inCHNWUZAUlfU2SJOLNBcZM5pVZlJKLY_QJCxjoXwpevvrF0WIOTwv7NIXdukLt_RHKOrHXLhCLDdKs4BO4U1JZyIWQKYbxj37x3HP0Z3d_-AFOuhWa_MS3Vabrr5cvfKc-wnXnp9A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Football+team+training+algorithm%3A+A+novel+sport-inspired+meta-heuristic+optimization+algorithm+for+global+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Tian%2C+Zhirui&rft.au=Gai%2C+Mei&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=245&rft_id=info:doi/10.1016%2Fj.eswa.2023.123088&rft.externalDocID=S095741742303590X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |