Unified multi-protocol MRI for Alzheimer’s disease diagnosis: Dual-decoder adversarial autoencoder and ensemble residual shrinkage attention network

Magnetic Resonance Imaging (MRI) has emerged as a critical tool in Alzheimer’s Disease (AD) clinical research, owing to its exceptional soft tissue contrast and high-resolution 3D imaging capabilities. Despite its advantages, current diagnostic models often overlook the potential of multi-protocol M...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomedical signal processing and control Ročník 105; s. 107660
Hlavní autori: Li, Shiyao, Lin, Shukuan, Tu, Yue, Qiao, Jianzhong, Xiao, Shenao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2025
Predmet:
ISSN:1746-8094
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Magnetic Resonance Imaging (MRI) has emerged as a critical tool in Alzheimer’s Disease (AD) clinical research, owing to its exceptional soft tissue contrast and high-resolution 3D imaging capabilities. Despite its advantages, current diagnostic models often overlook the potential of multi-protocol MRI imaging, leading to limited clinical applicability and practical challenges in generalizing to diverse data protocols. Furthermore, existing multi-protocol models lack a robust method for effectively aligning MRI images, resulting in model inefficient due to inconsistencies across protocols. To address these limitations, we propose a novel approach utilizing unified multi-protocol MRIs for AD diagnosis. Specifically, we introduce a double decoder adversarial autoencoder (DDAAE) to align MRIs from different protocols. The aligned MRI images are then integrated into our proposed ensemble residual soft shrinkage threshold attention (ERS2TA) diagnostic network for disease diagnosis. This framework not only leverages multi-protocol MRI images but also emphasizes disease-relevant regions while minimizing the impact of noise on diagnostic accuracy. Experimental evaluations on the ADNI dataset demonstrate superior performance in both the AD vs. Normal Controls (NC) classification task and the stable mild cognitive impairment (sMCI) vs. progressive mild cognitive impairment (pMCI) classification task, surpassing existing state-of-the-art methods. •Unified MRI Network Model improves AD classification and clinical utility.•DDAAE aligns diverse MRI protocols for accurate and standardized image generation.•ERS2TA focuses on specific disease regions and reduces imaging noise interference.•Model excels at distinguishing AD and MCI, boosting clinical diagnosis efficiency.
AbstractList Magnetic Resonance Imaging (MRI) has emerged as a critical tool in Alzheimer’s Disease (AD) clinical research, owing to its exceptional soft tissue contrast and high-resolution 3D imaging capabilities. Despite its advantages, current diagnostic models often overlook the potential of multi-protocol MRI imaging, leading to limited clinical applicability and practical challenges in generalizing to diverse data protocols. Furthermore, existing multi-protocol models lack a robust method for effectively aligning MRI images, resulting in model inefficient due to inconsistencies across protocols. To address these limitations, we propose a novel approach utilizing unified multi-protocol MRIs for AD diagnosis. Specifically, we introduce a double decoder adversarial autoencoder (DDAAE) to align MRIs from different protocols. The aligned MRI images are then integrated into our proposed ensemble residual soft shrinkage threshold attention (ERS2TA) diagnostic network for disease diagnosis. This framework not only leverages multi-protocol MRI images but also emphasizes disease-relevant regions while minimizing the impact of noise on diagnostic accuracy. Experimental evaluations on the ADNI dataset demonstrate superior performance in both the AD vs. Normal Controls (NC) classification task and the stable mild cognitive impairment (sMCI) vs. progressive mild cognitive impairment (pMCI) classification task, surpassing existing state-of-the-art methods. •Unified MRI Network Model improves AD classification and clinical utility.•DDAAE aligns diverse MRI protocols for accurate and standardized image generation.•ERS2TA focuses on specific disease regions and reduces imaging noise interference.•Model excels at distinguishing AD and MCI, boosting clinical diagnosis efficiency.
ArticleNumber 107660
Author Lin, Shukuan
Tu, Yue
Li, Shiyao
Xiao, Shenao
Qiao, Jianzhong
Author_xml – sequence: 1
  givenname: Shiyao
  surname: Li
  fullname: Li, Shiyao
– sequence: 2
  givenname: Shukuan
  surname: Lin
  fullname: Lin, Shukuan
  email: linshukuan@cse.neu.edu.cn
– sequence: 3
  givenname: Yue
  surname: Tu
  fullname: Tu, Yue
– sequence: 4
  givenname: Jianzhong
  surname: Qiao
  fullname: Qiao, Jianzhong
  email: qiaojianzhong@mail.neu.edu.cn
– sequence: 5
  givenname: Shenao
  surname: Xiao
  fullname: Xiao, Shenao
BookMark eNp9kM1KAzEUhbOoYK2-gKu8wNQkM50fcSP-gyKIXYdMcqe9dSYpSaroyqcQfD2fxBnqykVXBw58h3u_AzKyzgIhx5xNOeP5yWpah7WeCiZmfVHkORuRMS-yPClZle2TgxBWjGVlwbMx-ZpbbBAM7TZtxGTtXXTatfTh6Y42ztPz9mMJ2IH_-fwO1GAAFaBPtbAuYDillxvVJga0M-CpMq_gg_KoWqo20YH9662hYAN0dQvUQ0DTUzQsPdoXtQCqYgQb0VlqIb45_3JI9hrVBjj6ywmZX189X9wm9483dxfn94lOGYuJqRXMirrITVHzKs01F2UJFUtNzjNeNpXQRghmiiplJROg0rwUTPdYJTKjm3RCyu2u9i4ED43UGNVwSfQKW8mZHJzKlRycysGp3DrtUfEPXXvslH_fDZ1tIeifekXwMmjsLYFBDzpK43AX_gsfGZmO
CitedBy_id crossref_primary_10_1002_hsr2_70802
crossref_primary_10_1002_hbm_70276
crossref_primary_10_1016_j_bspc_2025_108358
Cites_doi 10.1038/s41598-024-76313-0
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuri.2022.100066
10.1186/s13195-023-01234-5
10.1109/TPAMI.2018.2889096
10.1016/j.neunet.2023.10.046
10.1016/j.compmedimag.2019.101663
10.1038/s43587-024-00599-y
10.33851/JMIS.2022.9.4.245
10.3389/fnins.2021.646013
10.1002/ana.10424
10.3390/s23218708
10.3389/fnins.2022.831533
10.1523/JNEUROSCI.4356-13.2014
10.1016/j.neucom.2023.126512
10.1006/nimg.2002.1132
10.1016/S1474-4422(21)00066-1
10.1109/JBHI.2023.3280823
10.1016/j.bspc.2020.102362
10.1016/j.bspc.2023.105442
10.1109/TNSRE.2018.2828143
10.1109/TMI.2021.3063150
10.1109/TMI.2021.3077079
10.1016/j.jalz.2016.08.010
10.1001/archneur.58.12.1985
10.1016/j.knosys.2020.106688
10.3390/diagnostics13182871
10.1016/j.artmed.2023.102678
10.1016/j.compmedimag.2022.102057
10.1109/JBHI.2021.3097721
10.1016/j.patcog.2021.107944
10.1016/j.compbiomed.2021.104678
10.1016/j.jneumeth.2024.110239
10.1109/TNSRE.2021.3101240
10.1007/s11063-021-10514-w
10.1049/iet-ipr.2019.0617
10.1186/s12967-024-05025-w
10.1016/j.neunet.2023.10.040
10.1016/j.media.2019.101625
10.1016/j.compbiomed.2023.107396
10.1016/j.bspc.2020.101903
10.1002/jmri.21049
10.1016/j.bspc.2023.104787
10.1016/j.inffus.2017.02.004
10.1109/TNSRE.2019.2939655
10.1016/j.patcog.2024.110341
10.1093/bib/bbac137
10.1016/j.cmpb.2022.107291
10.1016/j.compbiomed.2022.105901
10.1016/j.neuroscience.2019.05.014
10.3389/fpsyt.2021.772068
10.3390/s21227634
10.1016/j.cmpb.2019.105290
10.1016/j.compmedimag.2023.102303
10.1016/S0140-6736(06)68542-5
10.1109/TFUZZ.2019.2903753
10.1016/j.compbiomed.2021.105032
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2025.107660
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2025_107660
S1746809425001715
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9DU
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c300t-dbae57b76d7b1936c1288e903d61418f92cd220d7930802ea36820cdba924dcf3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001426619200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 21:57:30 EST 2025
Thu Nov 27 00:59:57 EST 2025
Wed Dec 10 14:41:50 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Soft shrinkage threshold attention
Unified multi-protocol MRI
Alzheimer’s disease
Computer-aided diagnosis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-dbae57b76d7b1936c1288e903d61418f92cd220d7930802ea36820cdba924dcf3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2025_107660
crossref_primary_10_1016_j_bspc_2025_107660
elsevier_sciencedirect_doi_10_1016_j_bspc_2025_107660
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Salvadó, Horie, Barthélemy, Vogel, Pichet Binette, Chen, Aschenbrenner, Gordon, Benzinger, Holtzman (b10) 2024; 4
Zhu, Sun, Huang, Han, Zhang (b40) 2021; 40
Turkson, Qu, Mawuli, Eghan (b57) 2021; 53
Zhao, Huang, Xu, Chen, Li, Yuan, Zhong, Pun, Huang (b38) 2023; 84
Li, Yuan, Pu, Li, Fan, Wu, Chao, Chen, He, Han (b34) 2014; 34
Toa, Elsayed, Sim (b55) 2023
Lian, Liu, Zhang, Shen (b41) 2018; 42
Bi, Zhou, Luo, Mao, Hu, Zeng, Xu (b14) 2022; 23
Tu, Lin, Qiao, Zhang, Hao (b64) 2023; 23
Abuhmed, El-Sappagh, Alonso (b16) 2021; 213
Hu, Wang, Jin, Hou (b19) 2023; 229
Richhariya, Tanveer, Rashid, Alzheimer’s Disease Neuroimaging Initiative (b36) 2020; 59
Fang, Liu, Xu (b15) 2020; 14
Kang, Lin, Zhang, Shen, Wu, Alzheimer’s Disease Neuroimaging Initiative (b50) 2021; 136
Shao, Peng, Zu, Wang, Zhang, Alzheimer’s Disease Neuroimaging Initiative (b70) 2020; 80
Gauthier, Reisberg, Zaudig, Petersen, Ritchie, Broich, Belleville, Brodaty, Bennett, Chertkow (b4) 2006; 367
Chen, Weng, Hosseini, Dening, Zuo, Zhang (b47) 2024; 169
Xiao, Cui, Qiao, Zheng, Zhang, Zhang, Liu (b45) 2021; 66
Fischl (b53) 2012; 62
Randhawa, Varghese (b2) 2022
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L. Whitwell, Ward (b51) 2008; 27
Chen, Xia (b63) 2021; 116
Petersen, Doody, Kurz, Mohs, Morris, Rabins, Ritchie, Rossor, Thal, Winblad (b3) 2001; 58
Zhang, Lin, Qiao, Tu (b62) 2021; 21
Jenkinson, Bannister, Brady, Smith (b52) 2002; 17
Zhang, Tian, Chen, Ma, Li, Guo (b35) 2019; 414
Wang, Liu, Zeng, Cheng, Wang, Wang (b28) 2020; 187
Hao, Bao, Guo, Yu, Zhang, Risacher, Saykin, Yao, Shen, Alzheimer’s Disease Neuroimaging Initiative (b67) 2020; 60
Krawczyk, Minku, Gama, Stefanowski, Woźniak (b21) 2017; 37
Prasath, Sumathi (b46) 2024; 87
Yu, Li, Lei, Wang (b8) 2019; 27
Orouskhani, Zhu, Rostamian, Zadeh, Shafiei, Orouskhani (b48) 2022; 2
Emmamuel, Asim, Yu, Kim (b24) 2022; 9
Tu, Lin, Qiao, Zhuang, Zhang (b69) 2022; 148
Lin, Lin, Chen, Zhang, Gao, Huang, Tong, Du, Alzheimer’s Disease Neuroimaging Initiative (b17) 2021; 15
Zhang, Zhao, Dong, Zhao (b30) 2023; 27
Górska, Santos-García, Eiriz, Brüning, Nyman, Pahnke (b9) 2024; 411
Nozadi, Kadoury, Alzheimer’s Disease Neuroimaging Initiative (b65) 2018; 2018
Han, Li, Fang, Yang (b31) 2023
Golilarz, Demirel (b58) 2017
Song, Zhan, Liu (b56) 2024; 170
Zhang, Shi (b25) 2023
Bi, Wang, Luo, Chen, Xing, Xu (b13) 2022
Gao, Shi, Shen, Liu (b68) 2021; 26
Wang, Gao, Wei, Johnston, Yuan, Zhang, Yu, Alzheimer’s Disease Neuroimaging Initiative (b5) 2024; 22
Abbas, Chi, Chen (b33) 2023; 133
Yu, Wu, Cai, Deng, Wang (b7) 2018; 26
Li, Wang, Li, Yu, Zhu, Liu, Wu (b12) 2021; 29
O’Connor, Cash, Poole, Markiewicz, Fraser, Malone, Jiao, Weston, Flores, Hornbeck (b60) 2023; 15
Saoud, AlMarzouqi (b27) 2024; 14
Zhang, Han, Han, Chen, Dancey, Zhang (b37) 2023
Pegueroles, Vilaplana, Montal, Sampedro, Alcolea, Carmona-Iragui, Clarimon, Blesa, Lleó, Fortea (b61) 2017; 13
Yu, Lei, Song, Liu, Wang (b11) 2019; 28
Itkyal, Abrol, LaGrow, Fedorov, Calhoun (b23) 2023
Qiang, Zhang, Li, Li, Zhou, Initiative (b39) 2023; 145
Zhang, Zhao, Wang, Wang, Luo, Hramov, Kurths (b42) 2023; 552
Schott, Fox, Frost, Scahill, Janssen, Chan, Jenkins, Rossor (b20) 2003; 53
Shahzadi, Butt, Sana, Pascual, Urbano, Díez, Ashraf (b22) 2023; 13
Feng, Zhang, Chen, Zuo, Alzheimer’s Disease Neuroimaging Initiative (b43) 2022; 98
Dubois, Villain, Frisoni, Rabinovici, Sabbagh, Cappa, Bejanin, Bombois, Epelbaum, Teichmann (b1) 2021; 20
Cui, Yan, Yan, Peng, Leng, Liu, Chen, Jiang, Zheng, Yang (b66) 2022; 16
Liu, Wang, Zha (b59) 2021; 12
Zhou, Hu, Jiang, Liu (b44) 2021; 2021
Grueso, Viejo-Sobera (b6) 2021; 13
Dai, Zou, Zhu, Li, Chen, Ji, Kui, Zhang (b29) 2023; 165
Gao, Shi, Shen, Liu (b18) 2023; 110
Zhu, Li, Wang, Li (b54) 2023
Wang, Dai (b26) 2024; 150
Ning, Xiao, Feng, Chen, Zhang (b32) 2021; 40
Loddo, Buttau, Di Ruberto (b49) 2022; 141
Krawczyk (10.1016/j.bspc.2025.107660_b21) 2017; 37
Bi (10.1016/j.bspc.2025.107660_b14) 2022; 23
Feng (10.1016/j.bspc.2025.107660_b43) 2022; 98
Toa (10.1016/j.bspc.2025.107660_b55) 2023
Pegueroles (10.1016/j.bspc.2025.107660_b61) 2017; 13
Zhang (10.1016/j.bspc.2025.107660_b25) 2023
Cui (10.1016/j.bspc.2025.107660_b66) 2022; 16
Fischl (10.1016/j.bspc.2025.107660_b53) 2012; 62
Lian (10.1016/j.bspc.2025.107660_b41) 2018; 42
Saoud (10.1016/j.bspc.2025.107660_b27) 2024; 14
Randhawa (10.1016/j.bspc.2025.107660_b2) 2022
Petersen (10.1016/j.bspc.2025.107660_b3) 2001; 58
Yu (10.1016/j.bspc.2025.107660_b11) 2019; 28
Li (10.1016/j.bspc.2025.107660_b34) 2014; 34
Lin (10.1016/j.bspc.2025.107660_b17) 2021; 15
Loddo (10.1016/j.bspc.2025.107660_b49) 2022; 141
Zhang (10.1016/j.bspc.2025.107660_b30) 2023; 27
Qiang (10.1016/j.bspc.2025.107660_b39) 2023; 145
Hao (10.1016/j.bspc.2025.107660_b67) 2020; 60
Jenkinson (10.1016/j.bspc.2025.107660_b52) 2002; 17
Wang (10.1016/j.bspc.2025.107660_b28) 2020; 187
Kang (10.1016/j.bspc.2025.107660_b50) 2021; 136
Schott (10.1016/j.bspc.2025.107660_b20) 2003; 53
Turkson (10.1016/j.bspc.2025.107660_b57) 2021; 53
Li (10.1016/j.bspc.2025.107660_b12) 2021; 29
Jack (10.1016/j.bspc.2025.107660_b51) 2008; 27
Zhang (10.1016/j.bspc.2025.107660_b62) 2021; 21
Chen (10.1016/j.bspc.2025.107660_b63) 2021; 116
Shao (10.1016/j.bspc.2025.107660_b70) 2020; 80
Abbas (10.1016/j.bspc.2025.107660_b33) 2023; 133
Hu (10.1016/j.bspc.2025.107660_b19) 2023; 229
Abuhmed (10.1016/j.bspc.2025.107660_b16) 2021; 213
Ning (10.1016/j.bspc.2025.107660_b32) 2021; 40
Yu (10.1016/j.bspc.2025.107660_b7) 2018; 26
Han (10.1016/j.bspc.2025.107660_b31) 2023
Dai (10.1016/j.bspc.2025.107660_b29) 2023; 165
Grueso (10.1016/j.bspc.2025.107660_b6) 2021; 13
Yu (10.1016/j.bspc.2025.107660_b8) 2019; 27
Zhang (10.1016/j.bspc.2025.107660_b42) 2023; 552
Zhang (10.1016/j.bspc.2025.107660_b35) 2019; 414
Wang (10.1016/j.bspc.2025.107660_b5) 2024; 22
Zhao (10.1016/j.bspc.2025.107660_b38) 2023; 84
Fang (10.1016/j.bspc.2025.107660_b15) 2020; 14
Song (10.1016/j.bspc.2025.107660_b56) 2024; 170
Xiao (10.1016/j.bspc.2025.107660_b45) 2021; 66
Prasath (10.1016/j.bspc.2025.107660_b46) 2024; 87
Zhang (10.1016/j.bspc.2025.107660_b37) 2023
Gauthier (10.1016/j.bspc.2025.107660_b4) 2006; 367
Itkyal (10.1016/j.bspc.2025.107660_b23) 2023
Chen (10.1016/j.bspc.2025.107660_b47) 2024; 169
Tu (10.1016/j.bspc.2025.107660_b64) 2023; 23
Zhu (10.1016/j.bspc.2025.107660_b54) 2023
Salvadó (10.1016/j.bspc.2025.107660_b10) 2024; 4
Gao (10.1016/j.bspc.2025.107660_b18) 2023; 110
Golilarz (10.1016/j.bspc.2025.107660_b58) 2017
Orouskhani (10.1016/j.bspc.2025.107660_b48) 2022; 2
Bi (10.1016/j.bspc.2025.107660_b13) 2022
Richhariya (10.1016/j.bspc.2025.107660_b36) 2020; 59
O’Connor (10.1016/j.bspc.2025.107660_b60) 2023; 15
Tu (10.1016/j.bspc.2025.107660_b69) 2022; 148
Dubois (10.1016/j.bspc.2025.107660_b1) 2021; 20
Zhu (10.1016/j.bspc.2025.107660_b40) 2021; 40
Shahzadi (10.1016/j.bspc.2025.107660_b22) 2023; 13
Liu (10.1016/j.bspc.2025.107660_b59) 2021; 12
Górska (10.1016/j.bspc.2025.107660_b9) 2024; 411
Nozadi (10.1016/j.bspc.2025.107660_b65) 2018; 2018
Emmamuel (10.1016/j.bspc.2025.107660_b24) 2022; 9
Gao (10.1016/j.bspc.2025.107660_b68) 2021; 26
Zhou (10.1016/j.bspc.2025.107660_b44) 2021; 2021
Wang (10.1016/j.bspc.2025.107660_b26) 2024; 150
References_xml – volume: 133
  year: 2023
  ident: b33
  article-title: Transformed domain convolutional neural network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: Pattern Recognit.
– volume: 40
  start-page: 2354
  year: 2021
  end-page: 2366
  ident: b40
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 1557
  year: 2021
  end-page: 1567
  ident: b12
  article-title: Feature extraction and identification of Alzheimer’s disease based on latent factor of multi-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 187
  year: 2020
  ident: b28
  article-title: Region-of-interest based sparse feature learning method for Alzheimer’s disease identification
  publication-title: Comput. Methods Programs Biomed.
– volume: 165
  year: 2023
  ident: b29
  article-title: DE-JANet: A unified network based on dual encoder and joint attention for Alzheimer’s disease classification using multi-modal data
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: b52
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 414
  start-page: 273
  year: 2019
  end-page: 279
  ident: b35
  article-title: Voxel-based morphometry: improving the diagnosis of Alzheimer’s disease based on an extreme learning machine method from the ADNI cohort
  publication-title: Neuroscience
– volume: 58
  start-page: 1985
  year: 2001
  end-page: 1992
  ident: b3
  article-title: Current concepts in mild cognitive impairment
  publication-title: Arch. Neurol.
– volume: 367
  start-page: 1262
  year: 2006
  end-page: 1270
  ident: b4
  article-title: Mild cognitive impairment
  publication-title: Lancet
– volume: 15
  start-page: 99
  year: 2023
  ident: b60
  article-title: Tau accumulation in autosomal dominant Alzheimer’s disease: a longitudinal [18F] flortaucipir study
  publication-title: Alzheimer’s Res. Ther.
– volume: 80
  year: 2020
  ident: b70
  article-title: Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
– volume: 136
  year: 2021
  ident: b50
  article-title: Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis
  publication-title: Comput. Biol. Med.
– volume: 141
  year: 2022
  ident: b49
  article-title: Deep learning based pipelines for Alzheimer’s disease diagnosis: a comparative study and a novel deep-ensemble method
  publication-title: Comput. Biol. Med.
– volume: 42
  start-page: 880
  year: 2018
  end-page: 893
  ident: b41
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 116
  year: 2021
  ident: b63
  article-title: Iterative sparse and deep learning for accurate diagnosis of Alzheimer’s disease
  publication-title: Pattern Recognit.
– year: 2023
  ident: b54
  article-title: Control sequences generation for testing vehicle extreme operating conditions based on latent feature space sampling
  publication-title: IEEE Trans. Intell. Veh.
– volume: 16
  year: 2022
  ident: b66
  article-title: BMNet: A new region-based metric learning method for early Alzheimer’s disease identification with FDG-PET images
  publication-title: Front. Neurosci.
– start-page: 55
  year: 2023
  end-page: 62
  ident: b25
  article-title: Personalized patch-based normality assessment of brain atrophy in Alzheimer’s disease
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 2
  year: 2022
  ident: b48
  article-title: Alzheimer’s disease detection from structural MRI using conditional deep triplet network
  publication-title: Neurosci. Inform.
– volume: 60
  year: 2020
  ident: b67
  article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 27756
  year: 2024
  ident: b27
  article-title: Explainable early detection of Alzheimer’s disease using ROIs and an ensemble of 138 3D vision transformers
  publication-title: Sci. Rep.
– volume: 13
  start-page: 499
  year: 2017
  end-page: 509
  ident: b61
  article-title: Longitudinal brain structural changes in preclinical Alzheimer’s disease
  publication-title: Alzheimer’s Dement.
– volume: 23
  start-page: 8708
  year: 2023
  ident: b64
  article-title: Diagnosis of Alzheimer’s disease based on accelerated mirror descent optimization and a three-dimensional aggregated residual network
  publication-title: Sensors
– volume: 170
  start-page: 468
  year: 2024
  end-page: 477
  ident: b56
  article-title: Combining external-latent attention for medical image segmentation
  publication-title: Neural Netw.
– volume: 15
  year: 2021
  ident: b17
  article-title: Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer’s disease
  publication-title: Front. Neurosci.
– volume: 14
  start-page: 318
  year: 2020
  end-page: 326
  ident: b15
  article-title: Ensemble of deep convolutional neural networks based multi-modality images for Alzheimer’s disease diagnosis
  publication-title: IET Image Process.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  ident: b44
  article-title: A correlation analysis between SNPs and ROIs of Alzheimer’s disease based on deep learning
  publication-title: BioMed Res. Int.
– volume: 53
  start-page: 2649
  year: 2021
  end-page: 2663
  ident: b57
  article-title: Classification of Alzheimer’s disease using deep convolutional spiking neural network
  publication-title: Neural Process. Lett.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 29
  ident: b6
  article-title: Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review
  publication-title: Alzheimer’s Res. Ther.
– volume: 2018
  year: 2018
  ident: b65
  article-title: Classification of Alzheimer’s and MCI patients from semantically parcelled PET images: A comparison between AV45 and FDG-PET
  publication-title: Int. J. Biomed. Imaging
– volume: 26
  start-page: 36
  year: 2021
  end-page: 43
  ident: b68
  article-title: Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimer’s disease
  publication-title: IEEE J. Biomed. Heal. Inform.
– volume: 84
  year: 2023
  ident: b38
  article-title: IDA-Net: Inheritable deformable attention network of structural MRI for Alzheimer’s disease diagnosis
  publication-title: Biomed. Signal Process. Control.
– volume: 34
  start-page: 10541
  year: 2014
  end-page: 10553
  ident: b34
  article-title: Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients
  publication-title: J. Neurosci.
– volume: 148
  year: 2022
  ident: b69
  article-title: Alzheimer’s disease diagnosis via multimodal feature fusion
  publication-title: Comput. Biol. Med.
– volume: 13
  start-page: 2871
  year: 2023
  ident: b22
  article-title: Voxel extraction and multiclass classification of Identified Brain Regions across various stages of Alzheimer’s disease using machine learning approaches
  publication-title: Diagnostics
– volume: 28
  start-page: 60
  year: 2019
  end-page: 71
  ident: b11
  article-title: Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 23
  start-page: bbac137
  year: 2022
  ident: b14
  article-title: Feature aggregation graph convolutional network based on imaging genetic data for diagnosis and pathogeny identification of Alzheimer’s disease
  publication-title: Brief. Bioinform.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: b53
  article-title: FreeSurfer
  publication-title: Neuroimage
– year: 2023
  ident: b23
  article-title: Voxel-wise fusion of resting fMRI networks and gray matter volume for Alzheimer’s disease classification using deep multimodal learning
  publication-title: Res. Sq.
– volume: 411
  year: 2024
  ident: b9
  article-title: Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer’s disease biomarkers
  publication-title: J. Neurosci. Methods
– volume: 53
  start-page: 181
  year: 2003
  end-page: 188
  ident: b20
  article-title: Assessing the onset of structural change in familial Alzheimer’s disease
  publication-title: Ann. Neurol.: Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
– volume: 87
  year: 2024
  ident: b46
  article-title: Pipelined deep learning architecture for the detection of Alzheimer’s disease
  publication-title: Biomed. Signal Process. Control.
– volume: 213
  year: 2021
  ident: b16
  article-title: Robust hybrid deep learning models for Alzheimer’s progression detection
  publication-title: Knowl.-Based Syst.
– volume: 22
  start-page: 265
  year: 2024
  ident: b5
  article-title: Predicting long-term progression of Alzheimer’s disease using a multimodal deep learning model incorporating interaction effects
  publication-title: J. Transl. Med.
– volume: 552
  year: 2023
  ident: b42
  article-title: Edge-centric effective connection network based on muti-modal MRI for the diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
– year: 2023
  ident: b37
  article-title: sMRI-PatchNet: A novel explainable patch-based deep learning network for Alzheimer’s disease diagnosis and discriminative atrophy localisation with structural MRI
– year: 2022
  ident: b2
  article-title: Geriatric evaluation and treatment of age-related cognitive decline
– volume: 145
  year: 2023
  ident: b39
  article-title: Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data
  publication-title: Artif. Intell. Med.
– volume: 66
  year: 2021
  ident: b45
  article-title: Early diagnosis model of Alzheimer’s disease based on sparse logistic regression with the generalized elastic net
  publication-title: Biomed. Signal Process. Control.
– start-page: 67
  year: 2017
  end-page: 71
  ident: b58
  article-title: Thresholding neural network (TNN) with smooth sigmoid based shrinkage (SSBS) function for image de-noising
  publication-title: 2017 9th International Conference on Computational Intelligence and Communication Networks
– volume: 9
  start-page: 245
  year: 2022
  end-page: 252
  ident: b24
  article-title: 3D-CNN method over shifted patch tokenization for MRI-based diagnosis of Alzheimer’s disease using segmented hippocampus
  publication-title: J. Multimed. Inf. Syst.
– volume: 37
  start-page: 132
  year: 2017
  end-page: 156
  ident: b21
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Inf. Fusion
– volume: 40
  start-page: 1632
  year: 2021
  end-page: 1645
  ident: b32
  article-title: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 59
  year: 2020
  ident: b36
  article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)
  publication-title: Biomed. Signal Process. Control.
– volume: 150
  year: 2024
  ident: b26
  article-title: A patch distribution-based active learning method for multiple instance Alzheimer’s disease diagnosis
  publication-title: Pattern Recognit.
– year: 2022
  ident: b13
  article-title: Hypergraph structural information aggregation generative adversarial networks for diagnosis and pathogenetic factors identification of Alzheimer’s disease with imaging genetic data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2023
  ident: b31
  article-title: Multi-template meta-information regularized network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 27
  start-page: 1973
  year: 2019
  end-page: 1984
  ident: b8
  article-title: Modulation effect of acupuncture on functional brain networks and classification of its manipulation with EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 20
  start-page: 484
  year: 2021
  end-page: 496
  ident: b1
  article-title: Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group
  publication-title: Lancet Neurol.
– volume: 26
  start-page: 977
  year: 2018
  end-page: 986
  ident: b7
  article-title: Modulation of spectral power and functional connectivity in human brain by acupuncture stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 12
  year: 2021
  ident: b59
  article-title: Brain functional and structural changes in Alzheimer’s disease with sleep disorders: A systematic review
  publication-title: Front. Psychiatry
– volume: 98
  year: 2022
  ident: b43
  article-title: Detection of Alzheimer’s disease using features of brain region-of-interest-based individual network constructed with the sMRI image
  publication-title: Comput. Med. Imaging Graph.
– volume: 169
  start-page: 442
  year: 2024
  end-page: 452
  ident: b47
  article-title: A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s disease involving data synthesis
  publication-title: Neural Netw.
– volume: 229
  year: 2023
  ident: b19
  article-title: VGG-TSwinformer: Transformer-based deep learning model for early Alzheimer’s disease prediction
  publication-title: Comput. Methods Programs Biomed.
– volume: 110
  year: 2023
  ident: b18
  article-title: Multimodal transformer network for incomplete image generation and diagnosis of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
– start-page: 1
  year: 2023
  end-page: 11
  ident: b55
  article-title: Deep residual learning with attention mechanism for breast cancer classification
  publication-title: Soft Comput.
– volume: 21
  start-page: 7634
  year: 2021
  ident: b62
  article-title: Diagnosis of Alzheimer’s disease with ensemble learning classifier and 3D convolutional neural network
  publication-title: Sensors
– volume: 4
  start-page: 694
  year: 2024
  end-page: 708
  ident: b10
  article-title: Disease staging of Alzheimer’s disease using a CSF-based biomarker model
  publication-title: Nat. Aging
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: b51
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med.
– volume: 27
  start-page: 4040
  year: 2023
  end-page: 4051
  ident: b30
  article-title: Improving Alzheimer’s disease diagnosis with multi-modal PET embedding features by a 3D multi-task MLP-mixer neural network
  publication-title: IEEE J. Biomed. Heal. Inform.
– volume: 14
  start-page: 27756
  issue: 1
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b27
  article-title: Explainable early detection of Alzheimer’s disease using ROIs and an ensemble of 138 3D vision transformers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-76313-0
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b6
  article-title: Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review
  publication-title: Alzheimer’s Res. Ther.
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 10.1016/j.bspc.2025.107660_b53
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 2018
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2025.107660_b65
  article-title: Classification of Alzheimer’s and MCI patients from semantically parcelled PET images: A comparison between AV45 and FDG-PET
  publication-title: Int. J. Biomed. Imaging
– volume: 133
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b33
  article-title: Transformed domain convolutional neural network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: Pattern Recognit.
– volume: 2
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2025.107660_b48
  article-title: Alzheimer’s disease detection from structural MRI using conditional deep triplet network
  publication-title: Neurosci. Inform.
  doi: 10.1016/j.neuri.2022.100066
– volume: 15
  start-page: 99
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b60
  article-title: Tau accumulation in autosomal dominant Alzheimer’s disease: a longitudinal [18F] flortaucipir study
  publication-title: Alzheimer’s Res. Ther.
  doi: 10.1186/s13195-023-01234-5
– volume: 42
  start-page: 880
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2025.107660_b41
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2889096
– volume: 170
  start-page: 468
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b56
  article-title: Combining external-latent attention for medical image segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.10.046
– volume: 80
  year: 2020
  ident: 10.1016/j.bspc.2025.107660_b70
  article-title: Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101663
– volume: 4
  start-page: 694
  issue: 5
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b10
  article-title: Disease staging of Alzheimer’s disease using a CSF-based biomarker model
  publication-title: Nat. Aging
  doi: 10.1038/s43587-024-00599-y
– volume: 9
  start-page: 245
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2025.107660_b24
  article-title: 3D-CNN method over shifted patch tokenization for MRI-based diagnosis of Alzheimer’s disease using segmented hippocampus
  publication-title: J. Multimed. Inf. Syst.
  doi: 10.33851/JMIS.2022.9.4.245
– volume: 15
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b17
  article-title: Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer’s disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.646013
– volume: 53
  start-page: 181
  issue: 2
  year: 2003
  ident: 10.1016/j.bspc.2025.107660_b20
  article-title: Assessing the onset of structural change in familial Alzheimer’s disease
  publication-title: Ann. Neurol.: Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
  doi: 10.1002/ana.10424
– year: 2023
  ident: 10.1016/j.bspc.2025.107660_b54
  article-title: Control sequences generation for testing vehicle extreme operating conditions based on latent feature space sampling
  publication-title: IEEE Trans. Intell. Veh.
– volume: 23
  start-page: 8708
  issue: 21
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b64
  article-title: Diagnosis of Alzheimer’s disease based on accelerated mirror descent optimization and a three-dimensional aggregated residual network
  publication-title: Sensors
  doi: 10.3390/s23218708
– volume: 16
  year: 2022
  ident: 10.1016/j.bspc.2025.107660_b66
  article-title: BMNet: A new region-based metric learning method for early Alzheimer’s disease identification with FDG-PET images
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.831533
– volume: 34
  start-page: 10541
  issue: 32
  year: 2014
  ident: 10.1016/j.bspc.2025.107660_b34
  article-title: Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4356-13.2014
– volume: 552
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b42
  article-title: Edge-centric effective connection network based on muti-modal MRI for the diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126512
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.bspc.2025.107660_b52
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 20
  start-page: 484
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b1
  article-title: Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(21)00066-1
– volume: 27
  start-page: 4040
  issue: 8
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b30
  article-title: Improving Alzheimer’s disease diagnosis with multi-modal PET embedding features by a 3D multi-task MLP-mixer neural network
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2023.3280823
– volume: 66
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b45
  article-title: Early diagnosis model of Alzheimer’s disease based on sparse logistic regression with the generalized elastic net
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102362
– volume: 87
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b46
  article-title: Pipelined deep learning architecture for the detection of Alzheimer’s disease
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105442
– volume: 26
  start-page: 977
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2025.107660_b7
  article-title: Modulation of spectral power and functional connectivity in human brain by acupuncture stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2828143
– volume: 40
  start-page: 1632
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b32
  article-title: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3063150
– volume: 40
  start-page: 2354
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b40
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077079
– year: 2022
  ident: 10.1016/j.bspc.2025.107660_b13
  article-title: Hypergraph structural information aggregation generative adversarial networks for diagnosis and pathogenetic factors identification of Alzheimer’s disease with imaging genetic data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 13
  start-page: 499
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2025.107660_b61
  article-title: Longitudinal brain structural changes in preclinical Alzheimer’s disease
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2016.08.010
– volume: 58
  start-page: 1985
  issue: 12
  year: 2001
  ident: 10.1016/j.bspc.2025.107660_b3
  article-title: Current concepts in mild cognitive impairment
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.58.12.1985
– volume: 213
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b16
  article-title: Robust hybrid deep learning models for Alzheimer’s progression detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106688
– volume: 13
  start-page: 2871
  issue: 18
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b22
  article-title: Voxel extraction and multiclass classification of Identified Brain Regions across various stages of Alzheimer’s disease using machine learning approaches
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13182871
– volume: 145
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b39
  article-title: Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102678
– volume: 98
  year: 2022
  ident: 10.1016/j.bspc.2025.107660_b43
  article-title: Detection of Alzheimer’s disease using features of brain region-of-interest-based individual network constructed with the sMRI image
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2022.102057
– year: 2023
  ident: 10.1016/j.bspc.2025.107660_b23
  article-title: Voxel-wise fusion of resting fMRI networks and gray matter volume for Alzheimer’s disease classification using deep multimodal learning
  publication-title: Res. Sq.
– volume: 26
  start-page: 36
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b68
  article-title: Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimer’s disease
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2021.3097721
– year: 2023
  ident: 10.1016/j.bspc.2025.107660_b37
– volume: 116
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b63
  article-title: Iterative sparse and deep learning for accurate diagnosis of Alzheimer’s disease
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107944
– volume: 136
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b50
  article-title: Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104678
– volume: 411
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b9
  article-title: Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer’s disease biomarkers
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2024.110239
– volume: 29
  start-page: 1557
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b12
  article-title: Feature extraction and identification of Alzheimer’s disease based on latent factor of multi-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3101240
– start-page: 1
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b55
  article-title: Deep residual learning with attention mechanism for breast cancer classification
  publication-title: Soft Comput.
– volume: 53
  start-page: 2649
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b57
  article-title: Classification of Alzheimer’s disease using deep convolutional spiking neural network
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-021-10514-w
– volume: 14
  start-page: 318
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2025.107660_b15
  article-title: Ensemble of deep convolutional neural networks based multi-modality images for Alzheimer’s disease diagnosis
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0617
– volume: 22
  start-page: 265
  issue: 1
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b5
  article-title: Predicting long-term progression of Alzheimer’s disease using a multimodal deep learning model incorporating interaction effects
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-024-05025-w
– volume: 169
  start-page: 442
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b47
  article-title: A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s disease involving data synthesis
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.10.040
– volume: 60
  year: 2020
  ident: 10.1016/j.bspc.2025.107660_b67
  article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101625
– volume: 165
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b29
  article-title: DE-JANet: A unified network based on dual encoder and joint attention for Alzheimer’s disease classification using multi-modal data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107396
– volume: 59
  year: 2020
  ident: 10.1016/j.bspc.2025.107660_b36
  article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.101903
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.bspc.2025.107660_b51
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med.
  doi: 10.1002/jmri.21049
– volume: 84
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b38
  article-title: IDA-Net: Inheritable deformable attention network of structural MRI for Alzheimer’s disease diagnosis
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.104787
– start-page: 67
  year: 2017
  ident: 10.1016/j.bspc.2025.107660_b58
  article-title: Thresholding neural network (TNN) with smooth sigmoid based shrinkage (SSBS) function for image de-noising
– volume: 37
  start-page: 132
  year: 2017
  ident: 10.1016/j.bspc.2025.107660_b21
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.02.004
– year: 2023
  ident: 10.1016/j.bspc.2025.107660_b31
  article-title: Multi-template meta-information regularized network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b44
  article-title: A correlation analysis between SNPs and ROIs of Alzheimer’s disease based on deep learning
  publication-title: BioMed Res. Int.
– volume: 27
  start-page: 1973
  issue: 10
  year: 2019
  ident: 10.1016/j.bspc.2025.107660_b8
  article-title: Modulation effect of acupuncture on functional brain networks and classification of its manipulation with EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2939655
– year: 2022
  ident: 10.1016/j.bspc.2025.107660_b2
– volume: 150
  year: 2024
  ident: 10.1016/j.bspc.2025.107660_b26
  article-title: A patch distribution-based active learning method for multiple instance Alzheimer’s disease diagnosis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.110341
– volume: 23
  start-page: bbac137
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2025.107660_b14
  article-title: Feature aggregation graph convolutional network based on imaging genetic data for diagnosis and pathogeny identification of Alzheimer’s disease
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac137
– volume: 229
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b19
  article-title: VGG-TSwinformer: Transformer-based deep learning model for early Alzheimer’s disease prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.107291
– volume: 148
  year: 2022
  ident: 10.1016/j.bspc.2025.107660_b69
  article-title: Alzheimer’s disease diagnosis via multimodal feature fusion
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105901
– start-page: 55
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b25
  article-title: Personalized patch-based normality assessment of brain atrophy in Alzheimer’s disease
– volume: 414
  start-page: 273
  year: 2019
  ident: 10.1016/j.bspc.2025.107660_b35
  article-title: Voxel-based morphometry: improving the diagnosis of Alzheimer’s disease based on an extreme learning machine method from the ADNI cohort
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.05.014
– volume: 12
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b59
  article-title: Brain functional and structural changes in Alzheimer’s disease with sleep disorders: A systematic review
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2021.772068
– volume: 21
  start-page: 7634
  issue: 22
  year: 2021
  ident: 10.1016/j.bspc.2025.107660_b62
  article-title: Diagnosis of Alzheimer’s disease with ensemble learning classifier and 3D convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s21227634
– volume: 187
  year: 2020
  ident: 10.1016/j.bspc.2025.107660_b28
  article-title: Region-of-interest based sparse feature learning method for Alzheimer’s disease identification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105290
– volume: 110
  year: 2023
  ident: 10.1016/j.bspc.2025.107660_b18
  article-title: Multimodal transformer network for incomplete image generation and diagnosis of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2023.102303
– volume: 367
  start-page: 1262
  issue: 9518
  year: 2006
  ident: 10.1016/j.bspc.2025.107660_b4
  article-title: Mild cognitive impairment
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68542-5
– volume: 28
  start-page: 60
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2025.107660_b11
  article-title: Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2903753
– volume: 141
  year: 2022
  ident: 10.1016/j.bspc.2025.107660_b49
  article-title: Deep learning based pipelines for Alzheimer’s disease diagnosis: a comparative study and a novel deep-ensemble method
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105032
SSID ssj0048714
Score 2.3913121
Snippet Magnetic Resonance Imaging (MRI) has emerged as a critical tool in Alzheimer’s Disease (AD) clinical research, owing to its exceptional soft tissue contrast...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107660
SubjectTerms Alzheimer’s disease
Computer-aided diagnosis
Soft shrinkage threshold attention
Unified multi-protocol MRI
Title Unified multi-protocol MRI for Alzheimer’s disease diagnosis: Dual-decoder adversarial autoencoder and ensemble residual shrinkage attention network
URI https://dx.doi.org/10.1016/j.bspc.2025.107660
Volume 105
WOSCitedRecordID wos001426619200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgUsEE9RXvKC3Sgok3fYjaCIIqiADtLsIjt2mpQhGU0mVemKr0DiB_gwvoR7bceTFlQBEpsossZJNPckPtc-55qQx5EA2gE8wQkD33cC6UcOD4oEzoqkkICagKs6s6_j_f1kPk_fjkbfey_M8SKu6-TkJF3-11BDGwQbrbN_EW57UWiAcwg6HCHscPyjwAOLLJBXKqmgg3UYGgj2-M37PSUpnC5OS1nhnilG5pC2_SoNTsSi7q5SMrnnHVs4QqLnfYVSAeCJTG3xwbp1g-UvVXstxpAIy09owILMXVu72nIFKS6qgbB6p9ZT1lpvfmYRWVn_tS-zOkRavNS2hd44aXT0VjSklAcHZfWZNZs2PYFbdh-7DdBnnRpaOovadxXTS0zwNpyWjRmuzWyHF1plrJmC6204G80TfrXjAKsq692S7Wdd2bl_HSL0bMXRE94usYSlF0JTHOlNDc6V3j7AC-N1gSdiXaHwEtn24jCFAWB7urc7f9WP-ZD1qSry9kGMPUsrCc_f6fcUaEBrZtfJNZOP0KnG0Q0ykvVNcnVQpfIW-WoQRc8iigKiKCCKWkT9-PKtpQZL1GLpKR0iiQ6QRAdIohBv2iOJ9kiiFknUIokaJN0mH17szp69dMx2Hk7uu-7aEZzJMOZxJGIOaUOUAzVKZOr6AijiJClSLxee5woYMdAALpkfAT3NoVvqBSIv_Dtkq25qeZfQlEU582MRTDwWiIAnLi8iwWPOBd6B7ZBJ_w9nual1j1uuLLJe1HiUYVQyjEqmo7JDxrbPUld6ufDXYR-4zHBVzUEzwNkF_e79Y7_75MrmdXhAttarTj4kl_PjddWuHhk4_gQTCsFn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+multi-protocol+MRI+for+Alzheimer%E2%80%99s+disease+diagnosis%3A+Dual-decoder+adversarial+autoencoder+and+ensemble+residual+shrinkage+attention+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Li%2C+Shiyao&rft.au=Lin%2C+Shukuan&rft.au=Tu%2C+Yue&rft.au=Qiao%2C+Jianzhong&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=105&rft_id=info:doi/10.1016%2Fj.bspc.2025.107660&rft.externalDocID=S1746809425001715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon