SKT-IDS: Unknown attack detection method based on Sigmoid Kernel Transformation and encoder–decoder architecture

Intrusion Detection Systems (IDS) are crucial in cybersecurity for monitoring network traffic and identifying potential attacks. Existing IDS research largely focuses on known attack detection, leaving a significant gap in research regarding unknown attack detection, where achieving a balance betwee...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & security Ročník 146; s. 104056
Hlavní autoři: Zha, Chao, Wang, Zhiyu, Fan, Yifei, Zhang, Xingming, Bai, Bing, Zhang, Yinjie, Shi, Sainan, Zhang, Ruyun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2024
Témata:
ISSN:0167-4048
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Intrusion Detection Systems (IDS) are crucial in cybersecurity for monitoring network traffic and identifying potential attacks. Existing IDS research largely focuses on known attack detection, leaving a significant gap in research regarding unknown attack detection, where achieving a balance between false alarm rate (identifying normal traffic as attack traffic) and recall rate of unknown attack detection remains challenging. To address these gaps, we propose a novel IDS based on Sigmoid Kernel Transformation and Encoder-Decoder architecture, namely SKT-IDS, where SKT stands for Sigmoid Kernel Transformation. We start with pre-training an attention-based encoder for coarse-grained intrusion detection. Then, we use this encoder to build an encoder–decoder model specifically for 0-day attack detection, training it solely on known traffic using the cosine similarity loss function. To enhance detection, we introduce a Sigmoid Kernel Transformation for feature engineering, improving the discriminative ability between normal traffic and 0-day attacks. Finally, we conducted a series of ablation and comparative experiments on the NSL-KDD and CSE-CIC-IDS2018 datasets, confirming the effectiveness of our proposed method. With a false alarm rate of 1%, we achieved recall rates for unknown attack detection of 65% and 69% on the two datasets, respectively, demonstrating significant performance improvements compared to existing state-of-the-art models.
AbstractList Intrusion Detection Systems (IDS) are crucial in cybersecurity for monitoring network traffic and identifying potential attacks. Existing IDS research largely focuses on known attack detection, leaving a significant gap in research regarding unknown attack detection, where achieving a balance between false alarm rate (identifying normal traffic as attack traffic) and recall rate of unknown attack detection remains challenging. To address these gaps, we propose a novel IDS based on Sigmoid Kernel Transformation and Encoder-Decoder architecture, namely SKT-IDS, where SKT stands for Sigmoid Kernel Transformation. We start with pre-training an attention-based encoder for coarse-grained intrusion detection. Then, we use this encoder to build an encoder–decoder model specifically for 0-day attack detection, training it solely on known traffic using the cosine similarity loss function. To enhance detection, we introduce a Sigmoid Kernel Transformation for feature engineering, improving the discriminative ability between normal traffic and 0-day attacks. Finally, we conducted a series of ablation and comparative experiments on the NSL-KDD and CSE-CIC-IDS2018 datasets, confirming the effectiveness of our proposed method. With a false alarm rate of 1%, we achieved recall rates for unknown attack detection of 65% and 69% on the two datasets, respectively, demonstrating significant performance improvements compared to existing state-of-the-art models.
ArticleNumber 104056
Author Bai, Bing
Zhang, Ruyun
Zha, Chao
Zhang, Yinjie
Fan, Yifei
Shi, Sainan
Zhang, Xingming
Wang, Zhiyu
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0009-0004-6611-2328
  surname: Zha
  fullname: Zha, Chao
  organization: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100049, China
– sequence: 2
  givenname: Zhiyu
  surname: Wang
  fullname: Wang, Zhiyu
  organization: Intelligent Network Research Institute, Zhejiang Laboratory, Hangzhou, 311122, Zhejiang, China
– sequence: 3
  givenname: Yifei
  surname: Fan
  fullname: Fan, Yifei
  organization: Intelligent Network Research Institute, Zhejiang Laboratory, Hangzhou, 311122, Zhejiang, China
– sequence: 4
  givenname: Xingming
  surname: Zhang
  fullname: Zhang, Xingming
  organization: Intelligent Network Research Institute, Zhejiang Laboratory, Hangzhou, 311122, Zhejiang, China
– sequence: 5
  givenname: Bing
  surname: Bai
  fullname: Bai, Bing
  organization: Intelligent Network Research Institute, Zhejiang Laboratory, Hangzhou, 311122, Zhejiang, China
– sequence: 6
  givenname: Yinjie
  surname: Zhang
  fullname: Zhang, Yinjie
  organization: Intelligent Network Research Institute, Zhejiang Laboratory, Hangzhou, 311122, Zhejiang, China
– sequence: 7
  givenname: Sainan
  surname: Shi
  fullname: Shi, Sainan
  organization: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100049, China
– sequence: 8
  givenname: Ruyun
  surname: Zhang
  fullname: Zhang, Ruyun
  email: zhangry@zhejianglab.org
  organization: Intelligent Network Research Institute, Zhejiang Laboratory, Hangzhou, 311122, Zhejiang, China
BookMark eNp9kE9OAyEUh1nUxFa9gCsuMBWmM8zUuDH1X9MmLtquCQMPS9sBA6hx5x28oSeRaV25aFg8ePC98PsGqGedBYQuKRlSQtnVZihdgGFO8iI1ClKyHuqniyorSFGfokEIG0Joxeq6j_xitsymd4trvLJb6z4sFjEKucUKIshonMUtxLVTuBEBFE7nhXlpnVF4Bt7CDi-9sEE734r9a2EVBiudAv_z9a1gv8PCy7XpBr55OEcnWuwCXPzVM7R6uF9OnrL58-N0cjvP5IiQmKlGjNOioImuNKN5zhTVUJbVmKq6UCRPycoRAclYrUVTMqlITTSMmnxcFGp0hurDXOldCB40lybuPxm9MDtOCe988Q3vfPHOFz_4Smj-D331phX-8zh0c4AghXo34HmQJqkAZXxKzpUzx_Bf5eaLOA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3495820
crossref_primary_10_3390_bdcc9080206
crossref_primary_10_1109_TIFS_2025_3551643
crossref_primary_10_1016_j_cose_2025_104496
crossref_primary_10_1109_TNSM_2025_3565614
Cites_doi 10.26599/TST.2019.9010051
10.1109/TIFS.2018.2879616
10.1109/ACCESS.2021.3073408
10.1109/ACCESS.2021.3090957
10.5937/vojtehg66-16670
10.1109/TCC.2020.3001017
10.1016/j.icte.2020.03.003
10.1109/COMST.2021.3139052
10.1109/JPROC.2016.2558521
10.1109/ACCESS.2020.3035967
10.1109/ACCESS.2018.2841987
10.1016/0169-7439(87)80084-9
10.1109/ACCESS.2022.3220622
10.1109/ACCESS.2019.2905041
10.1016/j.cose.2022.102899
10.1109/TIFS.2021.3083422
10.1109/ACCESS.2020.3011259
10.1109/TIFS.2018.2821095
10.1109/JIOT.2017.2767291
10.1109/JIOT.2021.3084796
10.1016/j.ins.2018.04.092
10.1109/ACCESS.2020.3041951
10.1109/SURV.2013.030713.00201
10.1109/JIOT.2021.3119055
10.1109/ACCESS.2023.3251354
10.1109/JIOT.2018.2873125
10.1109/JIOT.2020.3009180
10.1007/s10207-023-00676-0
10.1145/3065386
10.1109/CVPR.2018.00131
10.1109/JAS.2021.1004261
10.1109/ACCESS.2018.2868993
10.1007/s10462-023-10437-z
10.1109/TVT.2022.3186834
10.1109/CVPR.2016.90
10.1016/j.cose.2023.103567
10.1109/ACCESS.2020.3033494
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cose.2024.104056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_cose_2024_104056
S0167404824003614
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-dba9a9a1ef0f7f61226d1fe55791d84d02056530ec668fab56cd080fe3b2944d3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001298111500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4048
IngestDate Sat Nov 29 05:55:51 EST 2025
Tue Nov 18 22:43:31 EST 2025
Sat Aug 31 16:02:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Encoder–decoder
Cosine similarity
Pre-trained encoder
Intrusion detection
Sigmoid Kernel Transformation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-dba9a9a1ef0f7f61226d1fe55791d84d02056530ec668fab56cd080fe3b2944d3
ORCID 0009-0004-6611-2328
ParticipantIDs crossref_citationtrail_10_1016_j_cose_2024_104056
crossref_primary_10_1016_j_cose_2024_104056
elsevier_sciencedirect_doi_10_1016_j_cose_2024_104056
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Computers & security
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zou, Luo, Zhang, Yang, Wang (b56) 2023; 11
Zhang, Pan, Han, Chen, Wen, Xiang (b53) 2021; 9
Pu, Wang, Shen, Dong (b27) 2020; 26
Vo, Du, Nguyen (b42) 2024; 136
Ahmad, Alsmadi, Alhamdani, Tawalbeh (b1) 2023; 56
Tang, Yang, Li, Meng, Wang, Li, Sun, Pei, Wei, Xu (b39) 2020
Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro, L., Rieck, K., 2022. Dos and don’ts of machine learning in computer security. In: 31st USENIX Security Symposium. USENIX Security 22, pp. 3971–3988.
Zou, Zhu, Wang, Hanzo (b57) 2016; 104
Shlens (b34) 2014
Jayalaxmi, Saha, Kumar, Conti, Kim (b18) 2022
Wang, Du, Shan, Qin, Wang (b43) 2020; 10
Zoppi, Ceccarelli, Bondavalli (b55) 2021; 9
Gharib, Mohammadi, Dastgerdi, Sabokrou (b14) 2019
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Sommer, Paxson (b35) 2010
Ba, Kiros, Hinton (b7) 2016
Nadeem, Howarth (b24) 2013; 15
Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b31) 1999; 12
Pourpanah, Abdar, Luo, Zhou, Wang, Lim, Wang, Wu (b25) 2022; 45
Sharafaldin, Lashkari, Ghorbani (b32) 2018; 1
Ahmad, Basheri, Iqbal, Rahim (b2) 2018; 6
Wold, Esbensen, Geladi (b45) 1987; 2
Sarhan, Layeghy, Gallagher, Portmann (b30) 2023; 22
Yao, Fu, Zhang, Li, Liu (b50) 2018; 6
Li, Meng, Kwok (b21) 2021; 24
Sadiqui (b28) 2020
Benaddi, Ibrahimi, Benslimane, Jouhari, Qadir (b8) 2022; 71
Zhao, Gui, Xue, Yin, Ohtsuki, Adebisi, Gacanin (b54) 2021; 9
Apruzzese, Laskov, Schneider (b5) 2023
Ahmed, Ullah, Kim (b3) 2018; 14
Mirsky, Doitshman, Elovici, Shabtai (b22) 2018
Cruz, Coleman, Rudd, Boult (b9) 2017
Hassen, Chan (b15) 2020
Shaukat, Luo, Varadharajan, Hameed, Xu (b33) 2020; 8
Yang, Chen, Chen, Jiang, Tan (b47) 2021; 16
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M., 2018. Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1199–1208.
Mishra, Pandya (b23) 2021; 9
Wu, Chen, Li (b46) 2018; 6
Zhang, Liu, Qiu, Zhou, Zhang (b52) 2020; 8
Krizhevsky, Sutskever, Hinton (b20) 2017; 60
Sun, Dai, Liu, Singhal, Yen (b36) 2018; 13
Frustaci, Pace, Aloi, Fortino (b12) 2017; 5
Taghiyarrenani, Fanian, Mahdavi, Mirzaei, Farsi (b38) 2018
Sameera, Shashi (b29) 2020; 6
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b41) 2017; 30
Fang, Yao, Lin, Wang, Zhai (b11) 2023
Hindy, Atkinson, Tachtatzis, Colin, Bayne, Bellekens (b17) 2020
Kim, Bu, Cho (b19) 2018; 460
Engelen, Rimmer, Joosen (b10) 2021
Protić (b26) 2018; 66
Wang, Su, Zhang, Nie (b44) 2020; 8
Yang, Li, Shao, Zou, Wu (b48) 2022; 122
Tavallaee, Bagheri, Lu, Ghorbani (b40) 2009
Yang, Moubayed, Shami (b49) 2021; 9
Gao, Gan, Buschendorf, Zhang, Liu, Li, Dong, Lu (b13) 2020; 8
Al-Khater, Al-Maadeed, Ahmed, Sadiq, Khan (b4) 2020; 8
Zhang, Chen, Jin, Wang, Guo (b51) 2019; 7
Yang (10.1016/j.cose.2024.104056_b49) 2021; 9
Benaddi (10.1016/j.cose.2024.104056_b8) 2022; 71
Tang (10.1016/j.cose.2024.104056_b39) 2020
10.1016/j.cose.2024.104056_b6
Fang (10.1016/j.cose.2024.104056_b11) 2023
Cruz (10.1016/j.cose.2024.104056_b9) 2017
Apruzzese (10.1016/j.cose.2024.104056_b5) 2023
Vaswani (10.1016/j.cose.2024.104056_b41) 2017; 30
Mirsky (10.1016/j.cose.2024.104056_b22) 2018
Tavallaee (10.1016/j.cose.2024.104056_b40) 2009
Wu (10.1016/j.cose.2024.104056_b46) 2018; 6
Yang (10.1016/j.cose.2024.104056_b47) 2021; 16
10.1016/j.cose.2024.104056_b16
Ahmad (10.1016/j.cose.2024.104056_b1) 2023; 56
Schölkopf (10.1016/j.cose.2024.104056_b31) 1999; 12
Shlens (10.1016/j.cose.2024.104056_b34) 2014
Protić (10.1016/j.cose.2024.104056_b26) 2018; 66
Ahmad (10.1016/j.cose.2024.104056_b2) 2018; 6
Li (10.1016/j.cose.2024.104056_b21) 2021; 24
Gharib (10.1016/j.cose.2024.104056_b14) 2019
Krizhevsky (10.1016/j.cose.2024.104056_b20) 2017; 60
Ahmed (10.1016/j.cose.2024.104056_b3) 2018; 14
Hassen (10.1016/j.cose.2024.104056_b15) 2020
Sommer (10.1016/j.cose.2024.104056_b35) 2010
Zoppi (10.1016/j.cose.2024.104056_b55) 2021; 9
Hindy (10.1016/j.cose.2024.104056_b17) 2020
Kim (10.1016/j.cose.2024.104056_b19) 2018; 460
Sarhan (10.1016/j.cose.2024.104056_b30) 2023; 22
Zhang (10.1016/j.cose.2024.104056_b52) 2020; 8
Zhao (10.1016/j.cose.2024.104056_b54) 2021; 9
Engelen (10.1016/j.cose.2024.104056_b10) 2021
Gao (10.1016/j.cose.2024.104056_b13) 2020; 8
Wang (10.1016/j.cose.2024.104056_b44) 2020; 8
Shaukat (10.1016/j.cose.2024.104056_b33) 2020; 8
Sun (10.1016/j.cose.2024.104056_b36) 2018; 13
Yao (10.1016/j.cose.2024.104056_b50) 2018; 6
Zou (10.1016/j.cose.2024.104056_b56) 2023; 11
Ba (10.1016/j.cose.2024.104056_b7) 2016
Wold (10.1016/j.cose.2024.104056_b45) 1987; 2
Jayalaxmi (10.1016/j.cose.2024.104056_b18) 2022
Mishra (10.1016/j.cose.2024.104056_b23) 2021; 9
Nadeem (10.1016/j.cose.2024.104056_b24) 2013; 15
10.1016/j.cose.2024.104056_b37
Frustaci (10.1016/j.cose.2024.104056_b12) 2017; 5
Zhang (10.1016/j.cose.2024.104056_b51) 2019; 7
Pu (10.1016/j.cose.2024.104056_b27) 2020; 26
Zou (10.1016/j.cose.2024.104056_b57) 2016; 104
Zhang (10.1016/j.cose.2024.104056_b53) 2021; 9
Sameera (10.1016/j.cose.2024.104056_b29) 2020; 6
Yang (10.1016/j.cose.2024.104056_b48) 2022; 122
Al-Khater (10.1016/j.cose.2024.104056_b4) 2020; 8
Sadiqui (10.1016/j.cose.2024.104056_b28) 2020
Vo (10.1016/j.cose.2024.104056_b42) 2024; 136
Taghiyarrenani (10.1016/j.cose.2024.104056_b38) 2018
Sharafaldin (10.1016/j.cose.2024.104056_b32) 2018; 1
Wang (10.1016/j.cose.2024.104056_b43) 2020; 10
Pourpanah (10.1016/j.cose.2024.104056_b25) 2022; 45
References_xml – volume: 6
  start-page: 50850
  year: 2018
  end-page: 50859
  ident: b46
  article-title: A novel intrusion detection model for a massive network using convolutional neural networks
  publication-title: Ieee Access
– year: 2020
  ident: b17
  article-title: Towards an effective zero-day attack detection using outlier-based deep learning techniques
– volume: 13
  start-page: 2506
  year: 2018
  end-page: 2521
  ident: b36
  article-title: Using Bayesian networks for probabilistic identification of zero-day attack paths
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 8
  start-page: 193981
  year: 2020
  end-page: 193991
  ident: b52
  article-title: Unknown attack detection based on zero-shot learning
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 6
  ident: b9
  article-title: Open set intrusion recognition for fine-grained attack categorization
  publication-title: 2017 IEEE International Symposium on Technologies for Homeland Security
– year: 2018
  ident: b22
  article-title: Kitsune: an ensemble of autoencoders for online network intrusion detection
– volume: 8
  start-page: 201728
  year: 2020
  end-page: 201740
  ident: b44
  article-title: A deep hierarchical network for packet-level malicious traffic detection
  publication-title: IEEE Access
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: b45
  article-title: Principal component analysis
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 9
  start-page: 377
  year: 2021
  end-page: 391
  ident: b53
  article-title: Deep learning based attack detection for cyber-physical system cybersecurity: A survey
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 16
  start-page: 3538
  year: 2021
  end-page: 3553
  ident: b47
  article-title: Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 154
  year: 2020
  end-page: 162
  ident: b15
  article-title: Learning a neural-network-based representation for open set recognition
  publication-title: Proceedings of the 2020 SIAM International Conference on Data Mining
– volume: 45
  start-page: 4051
  year: 2022
  end-page: 4070
  ident: b25
  article-title: A review of generalized zero-shot learning methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 26
  start-page: 146
  year: 2020
  end-page: 153
  ident: b27
  article-title: A hybrid unsupervised clustering-based anomaly detection method
  publication-title: Tsinghua Sci. Technol.
– volume: 9
  start-page: 616
  year: 2021
  end-page: 632
  ident: b49
  article-title: MTH-IDS: A multitiered hybrid intrusion detection system for internet of vehicles
  publication-title: IEEE Internet Things J.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b20
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 5
  start-page: 2483
  year: 2017
  end-page: 2495
  ident: b12
  article-title: Evaluating critical security issues of the IoT world: Present and future challenges
  publication-title: IEEE Internet Things J.
– volume: 15
  start-page: 2027
  year: 2013
  end-page: 2045
  ident: b24
  article-title: A survey of MANET intrusion detection & prevention approaches for network layer attacks
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 305
  year: 2010
  end-page: 316
  ident: b35
  article-title: Outside the closed world: On using machine learning for network intrusion detection
  publication-title: 2010 IEEE Symposium on Security and Privacy
– volume: 8
  start-page: 951
  year: 2020
  end-page: 961
  ident: b13
  article-title: Omni SCADA intrusion detection using deep learning algorithms
  publication-title: IEEE Internet Things J.
– year: 2019
  ident: b14
  article-title: Autoids: Auto-encoder based method for intrusion detection system
– volume: 14
  start-page: 1471
  year: 2018
  end-page: 1484
  ident: b3
  article-title: Statistical application fingerprinting for DDoS attack mitigation
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 10
  start-page: 1634
  year: 2020
  end-page: 1646
  ident: b43
  article-title: Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine
  publication-title: IEEE Trans. Cloud Comput.
– start-page: 1
  year: 2009
  end-page: 6
  ident: b40
  article-title: A detailed analysis of the KDD CUP 99 data set
  publication-title: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications
– year: 2023
  ident: b11
  article-title: A feature selection based on genetic algorithm for intrusion detection of industrial control systems
  publication-title: Comput. Secur.
– volume: 1
  start-page: 108
  year: 2018
  end-page: 116
  ident: b32
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: ICISSp
– start-page: 92
  year: 2018
  end-page: 97
  ident: b38
  article-title: Transfer learning based intrusion detection
  publication-title: 2018 8th International Conference on Computer and Knowledge Engineering
– volume: 460
  start-page: 83
  year: 2018
  end-page: 102
  ident: b19
  article-title: Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders
  publication-title: Inform. Sci.
– volume: 8
  start-page: 222310
  year: 2020
  end-page: 222354
  ident: b33
  article-title: A survey on machine learning techniques for cyber security in the last decade
  publication-title: IEEE Access
– volume: 7
  start-page: 37004
  year: 2019
  end-page: 37016
  ident: b51
  article-title: Network intrusion detection: Based on deep hierarchical network and original flow data
  publication-title: IEEE Access
– volume: 122
  year: 2022
  ident: b48
  article-title: FS-IDS: A framework for intrusion detection based on few-shot learning
  publication-title: Comput. Secur.
– volume: 104
  start-page: 1727
  year: 2016
  end-page: 1765
  ident: b57
  article-title: A survey on wireless security: Technical challenges, recent advances, and future trends
  publication-title: Proc. IEEE
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
– volume: 6
  start-page: 33789
  year: 2018
  end-page: 33795
  ident: b2
  article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection
  publication-title: IEEE Access
– volume: 6
  start-page: 361
  year: 2020
  end-page: 367
  ident: b29
  article-title: Deep transductive transfer learning framework for zero-day attack detection
  publication-title: ICT Express
– reference: Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M., 2018. Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1199–1208.
– year: 2020
  ident: b28
  article-title: Putting in place an intrusion prevention system (IPS)
– start-page: 2479
  year: 2020
  end-page: 2488
  ident: b39
  article-title: Zerowall: Detecting zero-day web attacks through encoder-decoder recurrent neural networks
  publication-title: IEEE INFOCOM 2020-IEEE Conference on Computer Communications
– volume: 136
  year: 2024
  ident: b42
  article-title: APELID: Enhancing real-time intrusion detection with augmented WGAN and parallel ensemble learning
  publication-title: Comput. Secur.
– year: 2014
  ident: b34
  article-title: A tutorial on principal component analysis
– year: 2016
  ident: b7
  article-title: Layer normalization
– start-page: 592
  year: 2023
  end-page: 614
  ident: b5
  article-title: SoK: Pragmatic assessment of machine learning for network intrusion detection
  publication-title: 2023 IEEE 8th European Symposium on Security and Privacy
– start-page: 7
  year: 2021
  end-page: 12
  ident: b10
  article-title: Troubleshooting an intrusion detection dataset: the CICIDS2017 case study
  publication-title: 2021 IEEE Security and Privacy Workshops
– volume: 9
  start-page: 59353
  year: 2021
  end-page: 59377
  ident: b23
  article-title: Internet of things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review
  publication-title: IEEE Access
– volume: 12
  year: 1999
  ident: b31
  article-title: Support vector method for novelty detection
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: b18
  article-title: Machine and deep learning solutions for intrusion detection and prevention in IoTs: A survey
  publication-title: IEEE Access
– volume: 24
  start-page: 280
  year: 2021
  end-page: 305
  ident: b21
  article-title: Surveying trust-based collaborative intrusion detection: state-of-the-art, challenges and future directions
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 11
  start-page: 21404
  year: 2023
  end-page: 21416
  ident: b56
  article-title: HC-DTTSVM: A network intrusion detection method based on decision tree twin support vector machine and hierarchical clustering
  publication-title: IEEE Access
– volume: 56
  start-page: 10733
  year: 2023
  end-page: 10811
  ident: b1
  article-title: Zero-day attack detection: a systematic literature review
  publication-title: Artif. Intell. Rev.
– volume: 8
  start-page: 137293
  year: 2020
  end-page: 137311
  ident: b4
  article-title: Comprehensive review of cybercrime detection techniques
  publication-title: IEEE Access
– volume: 6
  start-page: 1949
  year: 2018
  end-page: 1959
  ident: b50
  article-title: MSML: A novel multilevel semi-supervised machine learning framework for intrusion detection system
  publication-title: IEEE Internet Things J.
– volume: 22
  start-page: 947
  year: 2023
  end-page: 959
  ident: b30
  article-title: From zero-shot machine learning to zero-day attack detection
  publication-title: Int. J. Inf. Secur.
– volume: 71
  start-page: 11089
  year: 2022
  end-page: 11102
  ident: b8
  article-title: Robust enhancement of intrusion detection systems using deep reinforcement learning and stochastic game
  publication-title: IEEE Trans. Veh. Technol.
– volume: 9
  start-page: 90603
  year: 2021
  end-page: 90615
  ident: b55
  article-title: Unsupervised algorithms to detect zero-day attacks: Strategy and application
  publication-title: Ieee Access
– volume: 9
  start-page: 9960
  year: 2021
  end-page: 9972
  ident: b54
  article-title: A novel intrusion detection method based on lightweight neural network for internet of things
  publication-title: IEEE Internet Things J.
– volume: 30
  year: 2017
  ident: b41
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro, L., Rieck, K., 2022. Dos and don’ts of machine learning in computer security. In: 31st USENIX Security Symposium. USENIX Security 22, pp. 3971–3988.
– volume: 66
  start-page: 580
  year: 2018
  end-page: 596
  ident: b26
  article-title: Review of KDD cup ‘99, NSL-KDD and Kyoto 2006+ datasets
  publication-title: Vojnotehnički Glas./Mil. Tech. Cour.
– start-page: 592
  year: 2023
  ident: 10.1016/j.cose.2024.104056_b5
  article-title: SoK: Pragmatic assessment of machine learning for network intrusion detection
– year: 2020
  ident: 10.1016/j.cose.2024.104056_b28
– volume: 26
  start-page: 146
  issue: 2
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b27
  article-title: A hybrid unsupervised clustering-based anomaly detection method
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2019.9010051
– volume: 14
  start-page: 1471
  issue: 6
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b3
  article-title: Statistical application fingerprinting for DDoS attack mitigation
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2879616
– start-page: 92
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b38
  article-title: Transfer learning based intrusion detection
– volume: 9
  start-page: 59353
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b23
  article-title: Internet of things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073408
– year: 2020
  ident: 10.1016/j.cose.2024.104056_b17
– year: 2018
  ident: 10.1016/j.cose.2024.104056_b22
– volume: 9
  start-page: 90603
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b55
  article-title: Unsupervised algorithms to detect zero-day attacks: Strategy and application
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2021.3090957
– volume: 66
  start-page: 580
  issue: 3
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b26
  article-title: Review of KDD cup ‘99, NSL-KDD and Kyoto 2006+ datasets
  publication-title: Vojnotehnički Glas./Mil. Tech. Cour.
  doi: 10.5937/vojtehg66-16670
– volume: 10
  start-page: 1634
  issue: 3
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b43
  article-title: Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2020.3001017
– volume: 6
  start-page: 361
  issue: 4
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b29
  article-title: Deep transductive transfer learning framework for zero-day attack detection
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.03.003
– volume: 30
  year: 2017
  ident: 10.1016/j.cose.2024.104056_b41
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 280
  issue: 1
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b21
  article-title: Surveying trust-based collaborative intrusion detection: state-of-the-art, challenges and future directions
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3139052
– volume: 104
  start-page: 1727
  issue: 9
  year: 2016
  ident: 10.1016/j.cose.2024.104056_b57
  article-title: A survey on wireless security: Technical challenges, recent advances, and future trends
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2558521
– volume: 1
  start-page: 108
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b32
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: ICISSp
– volume: 8
  start-page: 201728
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b44
  article-title: A deep hierarchical network for packet-level malicious traffic detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035967
– ident: 10.1016/j.cose.2024.104056_b6
– volume: 6
  start-page: 33789
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b2
  article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2841987
– year: 2023
  ident: 10.1016/j.cose.2024.104056_b11
  article-title: A feature selection based on genetic algorithm for intrusion detection of industrial control systems
  publication-title: Comput. Secur.
– start-page: 1
  year: 2009
  ident: 10.1016/j.cose.2024.104056_b40
  article-title: A detailed analysis of the KDD CUP 99 data set
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  ident: 10.1016/j.cose.2024.104056_b45
  article-title: Principal component analysis
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– year: 2022
  ident: 10.1016/j.cose.2024.104056_b18
  article-title: Machine and deep learning solutions for intrusion detection and prevention in IoTs: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3220622
– volume: 7
  start-page: 37004
  year: 2019
  ident: 10.1016/j.cose.2024.104056_b51
  article-title: Network intrusion detection: Based on deep hierarchical network and original flow data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905041
– volume: 122
  year: 2022
  ident: 10.1016/j.cose.2024.104056_b48
  article-title: FS-IDS: A framework for intrusion detection based on few-shot learning
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2022.102899
– volume: 16
  start-page: 3538
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b47
  article-title: Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2021.3083422
– volume: 8
  start-page: 137293
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b4
  article-title: Comprehensive review of cybercrime detection techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011259
– start-page: 305
  year: 2010
  ident: 10.1016/j.cose.2024.104056_b35
  article-title: Outside the closed world: On using machine learning for network intrusion detection
– volume: 13
  start-page: 2506
  issue: 10
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b36
  article-title: Using Bayesian networks for probabilistic identification of zero-day attack paths
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2821095
– year: 2016
  ident: 10.1016/j.cose.2024.104056_b7
– volume: 5
  start-page: 2483
  issue: 4
  year: 2017
  ident: 10.1016/j.cose.2024.104056_b12
  article-title: Evaluating critical security issues of the IoT world: Present and future challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2767291
– volume: 9
  start-page: 616
  issue: 1
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b49
  article-title: MTH-IDS: A multitiered hybrid intrusion detection system for internet of vehicles
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3084796
– year: 2014
  ident: 10.1016/j.cose.2024.104056_b34
– volume: 460
  start-page: 83
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b19
  article-title: Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.04.092
– volume: 8
  start-page: 222310
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b33
  article-title: A survey on machine learning techniques for cyber security in the last decade
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041951
– volume: 15
  start-page: 2027
  issue: 4
  year: 2013
  ident: 10.1016/j.cose.2024.104056_b24
  article-title: A survey of MANET intrusion detection & prevention approaches for network layer attacks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.030713.00201
– volume: 9
  start-page: 9960
  issue: 12
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b54
  article-title: A novel intrusion detection method based on lightweight neural network for internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3119055
– volume: 11
  start-page: 21404
  year: 2023
  ident: 10.1016/j.cose.2024.104056_b56
  article-title: HC-DTTSVM: A network intrusion detection method based on decision tree twin support vector machine and hierarchical clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3251354
– volume: 6
  start-page: 1949
  issue: 2
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b50
  article-title: MSML: A novel multilevel semi-supervised machine learning framework for intrusion detection system
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2873125
– year: 2019
  ident: 10.1016/j.cose.2024.104056_b14
– volume: 8
  start-page: 951
  issue: 2
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b13
  article-title: Omni SCADA intrusion detection using deep learning algorithms
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3009180
– volume: 22
  start-page: 947
  issue: 4
  year: 2023
  ident: 10.1016/j.cose.2024.104056_b30
  article-title: From zero-shot machine learning to zero-day attack detection
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-023-00676-0
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.cose.2024.104056_b20
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 10.1016/j.cose.2024.104056_b37
  doi: 10.1109/CVPR.2018.00131
– volume: 9
  start-page: 377
  issue: 3
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b53
  article-title: Deep learning based attack detection for cyber-physical system cybersecurity: A survey
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004261
– start-page: 1
  year: 2017
  ident: 10.1016/j.cose.2024.104056_b9
  article-title: Open set intrusion recognition for fine-grained attack categorization
– volume: 12
  year: 1999
  ident: 10.1016/j.cose.2024.104056_b31
  article-title: Support vector method for novelty detection
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 50850
  year: 2018
  ident: 10.1016/j.cose.2024.104056_b46
  article-title: A novel intrusion detection model for a massive network using convolutional neural networks
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2018.2868993
– volume: 56
  start-page: 10733
  issue: 10
  year: 2023
  ident: 10.1016/j.cose.2024.104056_b1
  article-title: Zero-day attack detection: a systematic literature review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10437-z
– volume: 71
  start-page: 11089
  issue: 10
  year: 2022
  ident: 10.1016/j.cose.2024.104056_b8
  article-title: Robust enhancement of intrusion detection systems using deep reinforcement learning and stochastic game
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3186834
– start-page: 7
  year: 2021
  ident: 10.1016/j.cose.2024.104056_b10
  article-title: Troubleshooting an intrusion detection dataset: the CICIDS2017 case study
– start-page: 154
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b15
  article-title: Learning a neural-network-based representation for open set recognition
– ident: 10.1016/j.cose.2024.104056_b16
  doi: 10.1109/CVPR.2016.90
– start-page: 2479
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b39
  article-title: Zerowall: Detecting zero-day web attacks through encoder-decoder recurrent neural networks
– volume: 136
  year: 2024
  ident: 10.1016/j.cose.2024.104056_b42
  article-title: APELID: Enhancing real-time intrusion detection with augmented WGAN and parallel ensemble learning
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103567
– volume: 8
  start-page: 193981
  year: 2020
  ident: 10.1016/j.cose.2024.104056_b52
  article-title: Unknown attack detection based on zero-shot learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033494
– volume: 45
  start-page: 4051
  issue: 4
  year: 2022
  ident: 10.1016/j.cose.2024.104056_b25
  article-title: A review of generalized zero-shot learning methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
SSID ssj0017688
Score 2.4297283
Snippet Intrusion Detection Systems (IDS) are crucial in cybersecurity for monitoring network traffic and identifying potential attacks. Existing IDS research largely...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104056
SubjectTerms Cosine similarity
Encoder–decoder
Intrusion detection
Pre-trained encoder
Sigmoid Kernel Transformation
Title SKT-IDS: Unknown attack detection method based on Sigmoid Kernel Transformation and encoder–decoder architecture
URI https://dx.doi.org/10.1016/j.cose.2024.104056
Volume 146
WOSCitedRecordID wos001298111500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-4048
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017688
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohSQHvgZjmy47XXy62CIkqlCimpFLhY632AS-pUiVu1N_4AJ_4hv4RZ73rjtlDRA7Jk2ZY9sTKfZ-c9CL2iGRU0LnVYJoqEBEyM0PjLwpKlMpaEw0eo22ETdH8_n83Yx8HgR1cLczqndZ2fnbHj_8pquAbMNqWzN2C3JwoX4BiYDntgO-z_ifGTvWm4-3ZiTP2D2rjM6oA3DRffAqkaZSeD27nRgVnCpAkXTKovR4tKBntqWau57Xjuyxrb-ILpd2l6jbjciESq9jzoByL6im43LWLVYmvlpuT13NQu1r9Ye_St1Pn8tTo_8aiy7tlPlVbVFRf3DFbdo27ldY6LMXEVfD1fpmm5HtlGm14Yk744BVsxsn3Hr0h663Q4HJm0_pEhP1rffLGt9qXlzichdvlth4WhURgahaVxC22MacryIdrY3t2ZffBhKbDNct8sHt7cVWHZhMHLb_JnTaenvUzvo7vO7MDbFi4P0EDVD9G9jknYSfhHaOnQ8xo77GCLHeyxgy12cIsdDOcOO9hiB1_EDgbsYIedX99_OtTgPmoeo4N3O9M370M3liMUSRQ1oSw5gy1WOtJUg4Y8zmSsVZpSFsucSDBAwEpIIiWyLNe8TDMhwS7RKinHjBCZPEHDelGrpwjTVHITeNaJyglXnGU8E5lmuRCaUF1uorj7Cwvhetab0Snz4u_M20SBf-bYdmy59u6040zhdE6rSxYAtGuee3ajX9lCd9ZfwHM0bJYn6gW6LU6barV86VD2G-vdo5M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SKT-IDS%3A+Unknown+attack+detection+method+based+on+Sigmoid+Kernel+Transformation+and+encoder%E2%80%93decoder+architecture&rft.jtitle=Computers+%26+security&rft.au=Zha%2C+Chao&rft.au=Wang%2C+Zhiyu&rft.au=Fan%2C+Yifei&rft.au=Zhang%2C+Xingming&rft.date=2024-11-01&rft.issn=0167-4048&rft.volume=146&rft.spage=104056&rft_id=info:doi/10.1016%2Fj.cose.2024.104056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2024_104056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon