ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease
•Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular database and is passed to data pre-processing.•In data pre-processing, data is transformed to considerable patterns utilizing log scaling and Feat...
Uložené v:
| Vydané v: | Biomedical signal processing and control Ročník 87; s. 105446 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2024
|
| Predmet: | |
| ISSN: | 1746-8094, 1746-8108 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular database and is passed to data pre-processing.•In data pre-processing, data is transformed to considerable patterns utilizing log scaling and Feature selection is done on pre-processed data employing ReliefF.•Heart disease detection is done by DMN that is trained by GSSA.•GSSA is designed by combining Gradient descent optimization (GDO) with Squirrel search algorithm (SSA).•GSSA-DMN attained high accuracy, sensitivity and specificity values about 93.2%, 93% and 91.5%.•The accuracy of the proposed method is 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% higher than the existing methods, such as, BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value.
Detecting heart disease is challenging in clinical settings, leading to an increase in mortality rates. Current detection processes often rely on Electrocardiography (ECG) signal analysis, which requires accurate data processing and feature extraction. Traditional methods have limitations like processing time and accuracy. To address these issues, a novel approach called Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) is proposed for more effective heart disease detection. The proposed GSSA-DMN approach involves several steps. Initially, input data is obtained from a specific database and subjected to data pre-processing, including log scaling for pattern transformation. Feature selection is then performed using ReliefF on the pre-processed data. The core of the approach lies in the Deep Maxout Network (DMN) trained by the Gradient Squirrel Search Algorithm (GSSA), which combines Gradient Descent Optimization (GDO) with the Squirrel Search Algorithm (SSA). The GSSA-DMN approach demonstrates remarkable performance. It achieves high accuracy, sensitivity, and specificity values of approximately 93.2%, 93%, and 91.5%, respectively. These results indicate its effectiveness in heart disease detection.
Comparatively, the proposed GSSA-DMN method outperforms existing techniques. Its accuracy surpasses those of other methods by margins of 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% when compared to BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value. This suggests that GSSA-DMN provides superior accuracy in detecting heart disease. In summary, the GSSA-DMN approach presents a promising solution for improving the accuracy and efficiency of heart disease detection compared to traditional methods and existing state-of-the-art techniques. |
|---|---|
| AbstractList | •Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular database and is passed to data pre-processing.•In data pre-processing, data is transformed to considerable patterns utilizing log scaling and Feature selection is done on pre-processed data employing ReliefF.•Heart disease detection is done by DMN that is trained by GSSA.•GSSA is designed by combining Gradient descent optimization (GDO) with Squirrel search algorithm (SSA).•GSSA-DMN attained high accuracy, sensitivity and specificity values about 93.2%, 93% and 91.5%.•The accuracy of the proposed method is 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% higher than the existing methods, such as, BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value.
Detecting heart disease is challenging in clinical settings, leading to an increase in mortality rates. Current detection processes often rely on Electrocardiography (ECG) signal analysis, which requires accurate data processing and feature extraction. Traditional methods have limitations like processing time and accuracy. To address these issues, a novel approach called Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) is proposed for more effective heart disease detection. The proposed GSSA-DMN approach involves several steps. Initially, input data is obtained from a specific database and subjected to data pre-processing, including log scaling for pattern transformation. Feature selection is then performed using ReliefF on the pre-processed data. The core of the approach lies in the Deep Maxout Network (DMN) trained by the Gradient Squirrel Search Algorithm (GSSA), which combines Gradient Descent Optimization (GDO) with the Squirrel Search Algorithm (SSA). The GSSA-DMN approach demonstrates remarkable performance. It achieves high accuracy, sensitivity, and specificity values of approximately 93.2%, 93%, and 91.5%, respectively. These results indicate its effectiveness in heart disease detection.
Comparatively, the proposed GSSA-DMN method outperforms existing techniques. Its accuracy surpasses those of other methods by margins of 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% when compared to BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value. This suggests that GSSA-DMN provides superior accuracy in detecting heart disease. In summary, the GSSA-DMN approach presents a promising solution for improving the accuracy and efficiency of heart disease detection compared to traditional methods and existing state-of-the-art techniques. |
| ArticleNumber | 105446 |
| Author | Vijesh Joe, C Manthiramoorthy, Chinnadurai Balasubramaniam, S Satheesh Kumar, K |
| Author_xml | – sequence: 1 givenname: S surname: Balasubramaniam fullname: Balasubramaniam, S email: baluttn@gmail.com organization: Department of Futures Studies, University of Kerala, Thiruvananthapuram, Kerala, India – sequence: 2 givenname: C surname: Vijesh Joe fullname: Vijesh Joe, C organization: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India – sequence: 3 givenname: Chinnadurai surname: Manthiramoorthy fullname: Manthiramoorthy, Chinnadurai organization: Boston University, Waltham, MA, USA – sequence: 4 givenname: K surname: Satheesh Kumar fullname: Satheesh Kumar, K organization: Department of Futures Studies, University of Kerala, Thiruvananthapuram, Kerala, India |
| BookMark | eNp9kE1PAjEQhhuDiYD-AU_9A4vtbveDxAtBQRPUxI9z022nUly22BY_jv5zuwEvHjjNZGaeN5lngHqtbQGhc0pGlNDiYjWq_UaOUpJmcZAzVhyhPi1ZkVSUVL2_nozZCRp4vyKEVSVlffTzCI0BPcO18KCwBhG2DrCHBmQwtsWiVXjuhDLQBvz0vjXOQRP3wsklnjSv1pmwXGNoRd3EgCuADb4TX3Yb8D2ET-vesLYOKwj7QKvxMtIBKxNTPJyiYy0aD2f7OkQvs-vn6U2yeJjfTieLRGaEhESVY1kyCnUhc0LZmJYiq2VeaFlAKVOdVlnG4hFUKoWSlFQrqvO6Tmut0ighG6J0lyud9d6B5htn1sJ9c0p4J5GveCeRdxL5TmKEqn-QNEF0fwQnTHMYvdyhEJ_6MOC4l1GiBGVcVMGVNYfwXwaXkc0 |
| CitedBy_id | crossref_primary_10_1007_s41870_024_01970_3 crossref_primary_10_1016_j_bspc_2024_107442 crossref_primary_10_1038_s41598_025_96437_1 crossref_primary_10_1007_s10586_025_05252_w crossref_primary_10_1016_j_procs_2025_01_137 crossref_primary_10_1007_s10278_024_01343_z crossref_primary_10_1016_j_engappai_2025_111379 crossref_primary_10_1109_ACCESS_2025_3574310 crossref_primary_10_1016_j_jobe_2025_112120 crossref_primary_10_1016_j_jobe_2025_113992 crossref_primary_10_1080_10255842_2025_2526789 crossref_primary_10_1109_ACCESS_2024_3412077 crossref_primary_10_1016_j_knosys_2025_114261 crossref_primary_10_1007_s11042_024_19680_0 crossref_primary_10_1007_s11042_024_19127_6 crossref_primary_10_1007_s11042_024_18810_y crossref_primary_10_1016_j_compbiomed_2024_109165 crossref_primary_10_4018_IJDWM_352041 crossref_primary_10_1016_j_bspc_2024_106281 crossref_primary_10_1109_ACCESS_2024_3435948 crossref_primary_10_1016_j_compbiomed_2025_110171 crossref_primary_10_1016_j_rineng_2025_104636 crossref_primary_10_1007_s00521_025_11553_3 crossref_primary_10_1007_s42979_025_04351_0 crossref_primary_10_1038_s41598_025_88277_w crossref_primary_10_1016_j_bspc_2024_107170 |
| Cites_doi | 10.1016/j.compeleceng.2017.08.005 10.1007/s12530-019-09312-6 10.1155/2023/2039217 10.1016/j.jksuci.2020.10.013 10.1016/j.bspc.2022.104392 10.1016/j.imu.2019.100174 10.1049/cit2.12042 10.1155/2019/6291968 10.1016/j.neucom.2017.05.103 10.1007/s00500-021-06218-x 10.1007/s42979-022-01156-3 10.12720/jait.12.1.14-20 10.3991/ijoe.v17i10.24499 10.46253/j.mr.v4i3.a4 10.1155/2022/2819378 10.1145/141874.141884 10.26438/ijcse/v7i7.109113 10.1016/j.bspc.2021.102898 10.1016/j.csbj.2016.12.005 10.1007/s11042-022-13195-2 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2023.105446 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2023_105446 S1746809423008790 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-d79c741eb6c5014917a3bc56fc6e7c2f28334d79e8d2e7071fd1f5bb2bfd28103 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076954500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 21:19:42 EST 2025 Sat Nov 29 07:04:35 EST 2025 Fri Feb 23 02:33:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gradient descent optimization (GDO) Log scaling Deep Maxout Network (DMN) Squirrel search algorithm (SSA) ReliefF |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-d79c741eb6c5014917a3bc56fc6e7c2f28334d79e8d2e7071fd1f5bb2bfd28103 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2023_105446 crossref_citationtrail_10_1016_j_bspc_2023_105446 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105446 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Balasubramaniam, Kavitha (b0130) 2013; 8 S. Balasubramaniam, C. Vijesh Joe, T. A. Sivakumar, A. Prasanth, K. Satheesh Kumar, V. Kavitha, Rajesh Kumar Dhanaraj, “Optimization Enabled Deep Learning-Based DDoS Attack Detection in Cloud Computing” vol. 2023, Article ID 2039217, 16 pages, 2023. Oliver, Ganesan, Yuvaraj, Jayasankar, Sikkandar, Prakash (b0020) 2021 A. Jain, M. Ahirwar, R. Pandey, “A review on intutive prediction of heart disease using data mining techniques”, International Journal of Computer Sciences and Engineering, 2019. Satapathy, Bhoi, Loganathan, Khandelwal, Barsocchi (b0120) 2021; 69 Gradient descent optimization (GDO) taken from Perry, Wolf (b0045) 1992; 17 Heart Disease Data Set taken from J. Premsmith, H. Ketmaneechairat. “A predictive model for heart disease detection using data mining techniques”, Journal of advances in Information Technology, vol.12, no.1, 2021. Ouhmida, Raihani, Cherradi, Terrada (b0060) 2021; 17 accessed on March 2023. Kavitha, Ramakrishnan, Singh (b0040) 2010; 7 Balasubramaniam, Satheesh Kumar, Kavitha, Prasanth, Siva Kumar (b0095) 2022 Sesham Anand, “Archimedes Optimization Algorithm: Heart Disease Prediction”, Multimedia Research, vol.4, no.3, 2021. Satapathy, Loganathan (b0105) 2023; 82 Log Scaling is taken from Satapathy, Loganathan (b0110) 2022; 3 Balasubramaniam, Kavitha (b0140) 2014; 13 Yang, Guo, Jin (b0035) 2018; 65 Kora, Abraham, Meenakshi (b0005) 2020; 11 Satapathy, Loganathan, Kondaveeti, Rath (b0125) 2021; 6 . Balasubramaniam, Kumar (b0100) 2023; 81 Budholiya, Shrivastava, Sharma (b0015) 2022; 34 J. Rodríguez, S. Prieto, L.J.R. López. “A novel heart rate attractor for the prediction of cardiovascular disease”, Informatics in medicine UNLOCKED, vol.15 (2019), pp.100174. Manur, Pani, Kumar (b0010) 2020; 13 Zheng, Luo (b0065) 2019; 2019 Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (b0030) 2017; 15 Satapathy, Loganathan (b0115) 2021; 25 Sun, Su, Wang (b0070) 2018; 278 Oliver (10.1016/j.bspc.2023.105446_b0020) 2021 10.1016/j.bspc.2023.105446_b0090 Kavitha (10.1016/j.bspc.2023.105446_b0040) 2010; 7 Kavakiotis (10.1016/j.bspc.2023.105446_b0030) 2017; 15 Satapathy (10.1016/j.bspc.2023.105446_b0120) 2021; 69 Balasubramaniam (10.1016/j.bspc.2023.105446_b0100) 2023; 81 10.1016/j.bspc.2023.105446_b0025 Balasubramaniam (10.1016/j.bspc.2023.105446_b0130) 2013; 8 Balasubramaniam (10.1016/j.bspc.2023.105446_b0140) 2014; 13 Kora (10.1016/j.bspc.2023.105446_b0005) 2020; 11 10.1016/j.bspc.2023.105446_b0080 Balasubramaniam (10.1016/j.bspc.2023.105446_b0095) 2022 10.1016/j.bspc.2023.105446_b0085 Perry (10.1016/j.bspc.2023.105446_b0045) 1992; 17 Yang (10.1016/j.bspc.2023.105446_b0035) 2018; 65 Satapathy (10.1016/j.bspc.2023.105446_b0125) 2021; 6 10.1016/j.bspc.2023.105446_b0135 Budholiya (10.1016/j.bspc.2023.105446_b0015) 2022; 34 Zheng (10.1016/j.bspc.2023.105446_b0065) 2019; 2019 10.1016/j.bspc.2023.105446_b0055 10.1016/j.bspc.2023.105446_b0050 Ouhmida (10.1016/j.bspc.2023.105446_b0060) 2021; 17 Satapathy (10.1016/j.bspc.2023.105446_b0115) 2021; 25 Satapathy (10.1016/j.bspc.2023.105446_b0110) 2022; 3 Manur (10.1016/j.bspc.2023.105446_b0010) 2020; 13 10.1016/j.bspc.2023.105446_b0075 Sun (10.1016/j.bspc.2023.105446_b0070) 2018; 278 Satapathy (10.1016/j.bspc.2023.105446_b0105) 2023; 82 |
| References_xml | – volume: 69 year: 2021 ident: b0120 article-title: Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal publication-title: Biomed. Signal Process. Control – volume: 6 start-page: 155 year: 2021 end-page: 174 ident: b0125 article-title: Performance analysis of machine learning algorithms on automated sleep staging feature sets publication-title: CAAI Trans. Intell. Technol. – volume: 8 start-page: 15 year: 2013 ident: b0130 article-title: A survey on data retrieval techniques in cloud computing publication-title: J. Converg. Inf. Technol. – volume: 17 start-page: 111 year: 2021 ident: b0060 article-title: A Novel Approach for Parkinson’s Disease Detection Based on Voice Classification and Features Selection Techniques publication-title: Int. J. Online Eng – volume: 17 start-page: 40 year: 1992 end-page: 52 ident: b0045 article-title: Foundations for the study of software architecture publication-title: ACM SIGSOFT Software engineering notes – start-page: 1 year: 2022 end-page: 11 ident: b0095 article-title: Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection publication-title: Comput. Intell. Neurosci. – volume: 15 start-page: 104 year: 2017 end-page: 116 ident: b0030 article-title: Machine learning and data mining methods in diabetes research publication-title: Comput. Struct. Biotechnol. J. – volume: 278 start-page: 34 year: 2018 end-page: 40 ident: b0070 article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method publication-title: Neurocomputing – reference: , vol. 2023, Article ID 2039217, 16 pages, 2023. – volume: 34 start-page: 4514 year: 2022 end-page: 4523 ident: b0015 article-title: An optimized XGBoost based diagnostic system for effective prediction of heart disease publication-title: J. King Saud Univ. Comput. Inform. Sci. – reference: J. Rodríguez, S. Prieto, L.J.R. López. “A novel heart rate attractor for the prediction of cardiovascular disease”, Informatics in medicine UNLOCKED, vol.15 (2019), pp.100174. – start-page: 1 year: 2021 end-page: 9 ident: b0020 article-title: “Accurate prediction of heart disease based on bio system using regressive learning based neural network classifier” publication-title: J. Amb. Intell. Human. Comput. – volume: 3 start-page: 276 year: 2022 ident: b0110 article-title: Multimodal multiclass machine learning model for automated sleep staging based on time series data publication-title: SN Computer Science – reference: ”. – reference: Log Scaling is taken from, “ – volume: 81 year: 2023 ident: b0100 article-title: Optimal Ensemble learning model for COVID-19 detection using chest X-ray images publication-title: Biomed. Signal Process. Control – reference: Sesham Anand, “Archimedes Optimization Algorithm: Heart Disease Prediction”, Multimedia Research, vol.4, no.3, 2021. – reference: Heart Disease Data Set taken from, “ – reference: ”, accessed on March 2023. – volume: 25 start-page: 15445 year: 2021 end-page: 15462 ident: b0115 article-title: Prognosis of automated sleep staging based on two-layer ensemble learning stacking model using single-channel EEG signal publication-title: Soft. Comput. – reference: J. Premsmith, H. Ketmaneechairat. “A predictive model for heart disease detection using data mining techniques”, Journal of advances in Information Technology, vol.12, no.1, 2021. – volume: 7 start-page: 272 year: 2010 ident: b0040 article-title: Modeling and design of evolutionary neural network for heart disease detection publication-title: Int. J. Comput. Sci. Issues (IJCSI) – volume: 11 start-page: 15 year: 2020 end-page: 28 ident: b0005 article-title: Heart disease detection using hybrid of bacterial foraging and particle swarm optimization publication-title: Evol. Syst. – volume: 2019 year: 2019 ident: b0065 article-title: An improved squirrel search algorithm for optimization publication-title: Complexity – reference: S. Balasubramaniam, C. Vijesh Joe, T. A. Sivakumar, A. Prasanth, K. Satheesh Kumar, V. Kavitha, Rajesh Kumar Dhanaraj, “Optimization Enabled Deep Learning-Based DDoS Attack Detection in Cloud Computing”, – volume: 13 start-page: 494 year: 2014 end-page: 505 ident: b0140 article-title: A survey on data encryption tecniques in cloud computing publication-title: Asian J. Inf. Technol. – reference: Gradient descent optimization (GDO) taken from “ – volume: 13 start-page: 31 year: 2020 end-page: 39 ident: b0010 article-title: A prediction technique for heart disease based on long Short term memory recurrent neural network publication-title: Int. J. Intell. Eng. Syst. – reference: A. Jain, M. Ahirwar, R. Pandey, “A review on intutive prediction of heart disease using data mining techniques”, International Journal of Computer Sciences and Engineering, 2019. – volume: 82 start-page: 8049 year: 2023 end-page: 8091 ident: b0105 article-title: Automated classification of multi-class sleep stages classification using polysomnography signals: a nine-layer 1D-convolution neural network approach publication-title: Multimed. Tools Appl. – volume: 65 start-page: 474 year: 2018 end-page: 487 ident: b0035 article-title: An improved Id3 algorithm for medical data classification publication-title: Comput. Electr. Eng. – volume: 65 start-page: 474 year: 2018 ident: 10.1016/j.bspc.2023.105446_b0035 article-title: An improved Id3 algorithm for medical data classification publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.08.005 – volume: 11 start-page: 15 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.105446_b0005 article-title: Heart disease detection using hybrid of bacterial foraging and particle swarm optimization publication-title: Evol. Syst. doi: 10.1007/s12530-019-09312-6 – ident: 10.1016/j.bspc.2023.105446_b0135 doi: 10.1155/2023/2039217 – volume: 34 start-page: 4514 issue: 7 year: 2022 ident: 10.1016/j.bspc.2023.105446_b0015 article-title: An optimized XGBoost based diagnostic system for effective prediction of heart disease publication-title: J. King Saud Univ. Comput. Inform. Sci. doi: 10.1016/j.jksuci.2020.10.013 – ident: 10.1016/j.bspc.2023.105446_b0080 – volume: 81 year: 2023 ident: 10.1016/j.bspc.2023.105446_b0100 article-title: Optimal Ensemble learning model for COVID-19 detection using chest X-ray images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104392 – ident: 10.1016/j.bspc.2023.105446_b0025 doi: 10.1016/j.imu.2019.100174 – volume: 7 start-page: 272 issue: 5 year: 2010 ident: 10.1016/j.bspc.2023.105446_b0040 article-title: Modeling and design of evolutionary neural network for heart disease detection publication-title: Int. J. Comput. Sci. Issues (IJCSI) – volume: 6 start-page: 155 issue: 2 year: 2021 ident: 10.1016/j.bspc.2023.105446_b0125 article-title: Performance analysis of machine learning algorithms on automated sleep staging feature sets publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/cit2.12042 – volume: 8 start-page: 15 issue: 16 year: 2013 ident: 10.1016/j.bspc.2023.105446_b0130 article-title: A survey on data retrieval techniques in cloud computing publication-title: J. Converg. Inf. Technol. – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105446_b0020 article-title: “Accurate prediction of heart disease based on bio system using regressive learning based neural network classifier” publication-title: J. Amb. Intell. Human. Comput. – volume: 2019 year: 2019 ident: 10.1016/j.bspc.2023.105446_b0065 article-title: An improved squirrel search algorithm for optimization publication-title: Complexity doi: 10.1155/2019/6291968 – volume: 278 start-page: 34 year: 2018 ident: 10.1016/j.bspc.2023.105446_b0070 article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.103 – ident: 10.1016/j.bspc.2023.105446_b0090 – ident: 10.1016/j.bspc.2023.105446_b0075 – volume: 25 start-page: 15445 issue: 24 year: 2021 ident: 10.1016/j.bspc.2023.105446_b0115 article-title: Prognosis of automated sleep staging based on two-layer ensemble learning stacking model using single-channel EEG signal publication-title: Soft. Comput. doi: 10.1007/s00500-021-06218-x – volume: 3 start-page: 276 issue: 4 year: 2022 ident: 10.1016/j.bspc.2023.105446_b0110 article-title: Multimodal multiclass machine learning model for automated sleep staging based on time series data publication-title: SN Computer Science doi: 10.1007/s42979-022-01156-3 – volume: 13 start-page: 494 issue: 9 year: 2014 ident: 10.1016/j.bspc.2023.105446_b0140 article-title: A survey on data encryption tecniques in cloud computing publication-title: Asian J. Inf. Technol. – volume: 13 start-page: 31 issue: 2 year: 2020 ident: 10.1016/j.bspc.2023.105446_b0010 article-title: A prediction technique for heart disease based on long Short term memory recurrent neural network publication-title: Int. J. Intell. Eng. Syst. – ident: 10.1016/j.bspc.2023.105446_b0050 doi: 10.12720/jait.12.1.14-20 – volume: 17 start-page: 111 year: 2021 ident: 10.1016/j.bspc.2023.105446_b0060 article-title: A Novel Approach for Parkinson’s Disease Detection Based on Voice Classification and Features Selection Techniques publication-title: Int. J. Online Eng doi: 10.3991/ijoe.v17i10.24499 – ident: 10.1016/j.bspc.2023.105446_b0085 doi: 10.46253/j.mr.v4i3.a4 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.105446_b0095 article-title: Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/2819378 – volume: 17 start-page: 40 issue: 4 year: 1992 ident: 10.1016/j.bspc.2023.105446_b0045 article-title: Foundations for the study of software architecture publication-title: ACM SIGSOFT Software engineering notes doi: 10.1145/141874.141884 – ident: 10.1016/j.bspc.2023.105446_b0055 doi: 10.26438/ijcse/v7i7.109113 – volume: 69 year: 2021 ident: 10.1016/j.bspc.2023.105446_b0120 article-title: Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102898 – volume: 15 start-page: 104 year: 2017 ident: 10.1016/j.bspc.2023.105446_b0030 article-title: Machine learning and data mining methods in diabetes research publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2016.12.005 – volume: 82 start-page: 8049 issue: 6 year: 2023 ident: 10.1016/j.bspc.2023.105446_b0105 article-title: Automated classification of multi-class sleep stages classification using polysomnography signals: a nine-layer 1D-convolution neural network approach publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13195-2 |
| SSID | ssj0048714 |
| Score | 2.4168487 |
| Snippet | •Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105446 |
| SubjectTerms | Deep Maxout Network (DMN) Gradient descent optimization (GDO) Log scaling ReliefF Squirrel search algorithm (SSA) |
| Title | ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease |
| URI | https://dx.doi.org/10.1016/j.bspc.2023.105446 |
| Volume | 87 |
| WOSCitedRecordID | wos001076954500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LattAFB1cp4t2Ufqk6YtZdCcUrJdntDQl6TOmkBS8ExppFMs4spDl4G3_Kx-Xe-chK24JbaEbYYRmJHSONWfunHuHkPc5l1jXrXBTlkduyHjmpmNfuIHvBV7EMh5IhfQ3Np3y2Sz-Phhc21yYqyWrKr7dxvV_hRrOAdiYOvsXcHedwgn4DaDDEWCH4x8BjyZjWZw4OD7lTiFV5U5nrfa7sd7jj41yerXOGRqBG7l0TPRjsrxYNWU7v3SkSqpCm7KsndN0i_7lqfaMK2tiLlvToZabTXtrsceuE6vsfp16WV6g8q11ZoLNjTRW-V1AFdT8BmbwWJZDc3W3J1i5kKr8krwV3T0FbsxLaLHCJSjtJZ6XVZXmmyYtuwgSKl1s3nnKv_YDHn64F_DoMnF2tif8cLMQCyvrDZOPZO-cN-L9r70e3n8ZOHQMY3Ek1jUWtvQD3AA5DPeqdKtx_wz7xVvB7G3EWTy6Rw58FsV8SA4mn49nX6wSgLmgqi3fPZtJ2tL-wv07_V4Y9cTO-WPyyMxS6ESz6wkZyOopedirXfmM_DQ8o4pn1PCMdjyjgC61PKOWZ1TzjHY8o4ZnFHlGNc-o4RkFntGOZ3RVUMUzanj2nPw4OT7_8Mk1-3m4Gbyp1s1ZnIGAlWKc4Wp27LE0EFk0LrKxZJlfgNINQrhI8tyXDLRvkXtFJIQvitwHHIMXZFitKvmS0FSkaQhfmViAgJZCCI_LSOQeTg8YjEOHxLMvM8lMsXvcc2WZWFfjIkEAEgQg0QAcEqdrU-tSL3deHVmMEiNWtQhNgFJ3tHv1j-1ekwe7P8MbMmybjXxL7mdXbblu3hnm3QC-_L9l |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReliefF+based+feature+selection+and+Gradient+Squirrel+search+Algorithm+enabled+Deep+Maxout+Network+for+detection+of+heart+disease&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Balasubramaniam%2C+S&rft.au=Vijesh+Joe%2C+C&rft.au=Manthiramoorthy%2C+Chinnadurai&rft.au=Satheesh+Kumar%2C+K&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=87&rft_id=info:doi/10.1016%2Fj.bspc.2023.105446&rft.externalDocID=S1746809423008790 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |