ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease

•Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular database and is passed to data pre-processing.•In data pre-processing, data is transformed to considerable patterns utilizing log scaling and Feat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomedical signal processing and control Ročník 87; s. 105446
Hlavní autori: Balasubramaniam, S, Vijesh Joe, C, Manthiramoorthy, Chinnadurai, Satheesh Kumar, K
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2024
Predmet:
ISSN:1746-8094, 1746-8108
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular database and is passed to data pre-processing.•In data pre-processing, data is transformed to considerable patterns utilizing log scaling and Feature selection is done on pre-processed data employing ReliefF.•Heart disease detection is done by DMN that is trained by GSSA.•GSSA is designed by combining Gradient descent optimization (GDO) with Squirrel search algorithm (SSA).•GSSA-DMN attained high accuracy, sensitivity and specificity values about 93.2%, 93% and 91.5%.•The accuracy of the proposed method is 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% higher than the existing methods, such as, BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value. Detecting heart disease is challenging in clinical settings, leading to an increase in mortality rates. Current detection processes often rely on Electrocardiography (ECG) signal analysis, which requires accurate data processing and feature extraction. Traditional methods have limitations like processing time and accuracy. To address these issues, a novel approach called Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) is proposed for more effective heart disease detection. The proposed GSSA-DMN approach involves several steps. Initially, input data is obtained from a specific database and subjected to data pre-processing, including log scaling for pattern transformation. Feature selection is then performed using ReliefF on the pre-processed data. The core of the approach lies in the Deep Maxout Network (DMN) trained by the Gradient Squirrel Search Algorithm (GSSA), which combines Gradient Descent Optimization (GDO) with the Squirrel Search Algorithm (SSA). The GSSA-DMN approach demonstrates remarkable performance. It achieves high accuracy, sensitivity, and specificity values of approximately 93.2%, 93%, and 91.5%, respectively. These results indicate its effectiveness in heart disease detection. Comparatively, the proposed GSSA-DMN method outperforms existing techniques. Its accuracy surpasses those of other methods by margins of 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% when compared to BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value. This suggests that GSSA-DMN provides superior accuracy in detecting heart disease. In summary, the GSSA-DMN approach presents a promising solution for improving the accuracy and efficiency of heart disease detection compared to traditional methods and existing state-of-the-art techniques.
AbstractList •Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular database and is passed to data pre-processing.•In data pre-processing, data is transformed to considerable patterns utilizing log scaling and Feature selection is done on pre-processed data employing ReliefF.•Heart disease detection is done by DMN that is trained by GSSA.•GSSA is designed by combining Gradient descent optimization (GDO) with Squirrel search algorithm (SSA).•GSSA-DMN attained high accuracy, sensitivity and specificity values about 93.2%, 93% and 91.5%.•The accuracy of the proposed method is 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% higher than the existing methods, such as, BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value. Detecting heart disease is challenging in clinical settings, leading to an increase in mortality rates. Current detection processes often rely on Electrocardiography (ECG) signal analysis, which requires accurate data processing and feature extraction. Traditional methods have limitations like processing time and accuracy. To address these issues, a novel approach called Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) is proposed for more effective heart disease detection. The proposed GSSA-DMN approach involves several steps. Initially, input data is obtained from a specific database and subjected to data pre-processing, including log scaling for pattern transformation. Feature selection is then performed using ReliefF on the pre-processed data. The core of the approach lies in the Deep Maxout Network (DMN) trained by the Gradient Squirrel Search Algorithm (GSSA), which combines Gradient Descent Optimization (GDO) with the Squirrel Search Algorithm (SSA). The GSSA-DMN approach demonstrates remarkable performance. It achieves high accuracy, sensitivity, and specificity values of approximately 93.2%, 93%, and 91.5%, respectively. These results indicate its effectiveness in heart disease detection. Comparatively, the proposed GSSA-DMN method outperforms existing techniques. Its accuracy surpasses those of other methods by margins of 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% when compared to BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value. This suggests that GSSA-DMN provides superior accuracy in detecting heart disease. In summary, the GSSA-DMN approach presents a promising solution for improving the accuracy and efficiency of heart disease detection compared to traditional methods and existing state-of-the-art techniques.
ArticleNumber 105446
Author Vijesh Joe, C
Manthiramoorthy, Chinnadurai
Balasubramaniam, S
Satheesh Kumar, K
Author_xml – sequence: 1
  givenname: S
  surname: Balasubramaniam
  fullname: Balasubramaniam, S
  email: baluttn@gmail.com
  organization: Department of Futures Studies, University of Kerala, Thiruvananthapuram, Kerala, India
– sequence: 2
  givenname: C
  surname: Vijesh Joe
  fullname: Vijesh Joe, C
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
– sequence: 3
  givenname: Chinnadurai
  surname: Manthiramoorthy
  fullname: Manthiramoorthy, Chinnadurai
  organization: Boston University, Waltham, MA, USA
– sequence: 4
  givenname: K
  surname: Satheesh Kumar
  fullname: Satheesh Kumar, K
  organization: Department of Futures Studies, University of Kerala, Thiruvananthapuram, Kerala, India
BookMark eNp9kE1PAjEQhhuDiYD-AU_9A4vtbveDxAtBQRPUxI9z022nUly22BY_jv5zuwEvHjjNZGaeN5lngHqtbQGhc0pGlNDiYjWq_UaOUpJmcZAzVhyhPi1ZkVSUVL2_nozZCRp4vyKEVSVlffTzCI0BPcO18KCwBhG2DrCHBmQwtsWiVXjuhDLQBvz0vjXOQRP3wsklnjSv1pmwXGNoRd3EgCuADb4TX3Yb8D2ET-vesLYOKwj7QKvxMtIBKxNTPJyiYy0aD2f7OkQvs-vn6U2yeJjfTieLRGaEhESVY1kyCnUhc0LZmJYiq2VeaFlAKVOdVlnG4hFUKoWSlFQrqvO6Tmut0ighG6J0lyud9d6B5htn1sJ9c0p4J5GveCeRdxL5TmKEqn-QNEF0fwQnTHMYvdyhEJ_6MOC4l1GiBGVcVMGVNYfwXwaXkc0
CitedBy_id crossref_primary_10_1007_s41870_024_01970_3
crossref_primary_10_1016_j_bspc_2024_107442
crossref_primary_10_1038_s41598_025_96437_1
crossref_primary_10_1007_s10586_025_05252_w
crossref_primary_10_1016_j_procs_2025_01_137
crossref_primary_10_1007_s10278_024_01343_z
crossref_primary_10_1016_j_engappai_2025_111379
crossref_primary_10_1109_ACCESS_2025_3574310
crossref_primary_10_1016_j_jobe_2025_112120
crossref_primary_10_1016_j_jobe_2025_113992
crossref_primary_10_1080_10255842_2025_2526789
crossref_primary_10_1109_ACCESS_2024_3412077
crossref_primary_10_1016_j_knosys_2025_114261
crossref_primary_10_1007_s11042_024_19680_0
crossref_primary_10_1007_s11042_024_19127_6
crossref_primary_10_1007_s11042_024_18810_y
crossref_primary_10_1016_j_compbiomed_2024_109165
crossref_primary_10_4018_IJDWM_352041
crossref_primary_10_1016_j_bspc_2024_106281
crossref_primary_10_1109_ACCESS_2024_3435948
crossref_primary_10_1016_j_compbiomed_2025_110171
crossref_primary_10_1016_j_rineng_2025_104636
crossref_primary_10_1007_s00521_025_11553_3
crossref_primary_10_1007_s42979_025_04351_0
crossref_primary_10_1038_s41598_025_88277_w
crossref_primary_10_1016_j_bspc_2024_107170
Cites_doi 10.1016/j.compeleceng.2017.08.005
10.1007/s12530-019-09312-6
10.1155/2023/2039217
10.1016/j.jksuci.2020.10.013
10.1016/j.bspc.2022.104392
10.1016/j.imu.2019.100174
10.1049/cit2.12042
10.1155/2019/6291968
10.1016/j.neucom.2017.05.103
10.1007/s00500-021-06218-x
10.1007/s42979-022-01156-3
10.12720/jait.12.1.14-20
10.3991/ijoe.v17i10.24499
10.46253/j.mr.v4i3.a4
10.1155/2022/2819378
10.1145/141874.141884
10.26438/ijcse/v7i7.109113
10.1016/j.bspc.2021.102898
10.1016/j.csbj.2016.12.005
10.1007/s11042-022-13195-2
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105446
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105446
S1746809423008790
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-d79c741eb6c5014917a3bc56fc6e7c2f28334d79e8d2e7071fd1f5bb2bfd28103
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076954500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 21:19:42 EST 2025
Sat Nov 29 07:04:35 EST 2025
Fri Feb 23 02:33:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gradient descent optimization (GDO)
Log scaling
Deep Maxout Network (DMN)
Squirrel search algorithm (SSA)
ReliefF
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d79c741eb6c5014917a3bc56fc6e7c2f28334d79e8d2e7071fd1f5bb2bfd28103
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_105446
crossref_citationtrail_10_1016_j_bspc_2023_105446
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105446
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Balasubramaniam, Kavitha (b0130) 2013; 8
S. Balasubramaniam, C. Vijesh Joe, T. A. Sivakumar, A. Prasanth, K. Satheesh Kumar, V. Kavitha, Rajesh Kumar Dhanaraj, “Optimization Enabled Deep Learning-Based DDoS Attack Detection in Cloud Computing”
vol. 2023, Article ID 2039217, 16 pages, 2023.
Oliver, Ganesan, Yuvaraj, Jayasankar, Sikkandar, Prakash (b0020) 2021
A. Jain, M. Ahirwar, R. Pandey, “A review on intutive prediction of heart disease using data mining techniques”, International Journal of Computer Sciences and Engineering, 2019.
Satapathy, Bhoi, Loganathan, Khandelwal, Barsocchi (b0120) 2021; 69
Gradient descent optimization (GDO) taken from
Perry, Wolf (b0045) 1992; 17
Heart Disease Data Set taken from
J. Premsmith, H. Ketmaneechairat. “A predictive model for heart disease detection using data mining techniques”, Journal of advances in Information Technology, vol.12, no.1, 2021.
Ouhmida, Raihani, Cherradi, Terrada (b0060) 2021; 17
accessed on March 2023.
Kavitha, Ramakrishnan, Singh (b0040) 2010; 7
Balasubramaniam, Satheesh Kumar, Kavitha, Prasanth, Siva Kumar (b0095) 2022
Sesham Anand, “Archimedes Optimization Algorithm: Heart Disease Prediction”, Multimedia Research, vol.4, no.3, 2021.
Satapathy, Loganathan (b0105) 2023; 82
Log Scaling is taken from
Satapathy, Loganathan (b0110) 2022; 3
Balasubramaniam, Kavitha (b0140) 2014; 13
Yang, Guo, Jin (b0035) 2018; 65
Kora, Abraham, Meenakshi (b0005) 2020; 11
Satapathy, Loganathan, Kondaveeti, Rath (b0125) 2021; 6
.
Balasubramaniam, Kumar (b0100) 2023; 81
Budholiya, Shrivastava, Sharma (b0015) 2022; 34
J. Rodríguez, S. Prieto, L.J.R. López. “A novel heart rate attractor for the prediction of cardiovascular disease”, Informatics in medicine UNLOCKED, vol.15 (2019), pp.100174.
Manur, Pani, Kumar (b0010) 2020; 13
Zheng, Luo (b0065) 2019; 2019
Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (b0030) 2017; 15
Satapathy, Loganathan (b0115) 2021; 25
Sun, Su, Wang (b0070) 2018; 278
Oliver (10.1016/j.bspc.2023.105446_b0020) 2021
10.1016/j.bspc.2023.105446_b0090
Kavitha (10.1016/j.bspc.2023.105446_b0040) 2010; 7
Kavakiotis (10.1016/j.bspc.2023.105446_b0030) 2017; 15
Satapathy (10.1016/j.bspc.2023.105446_b0120) 2021; 69
Balasubramaniam (10.1016/j.bspc.2023.105446_b0100) 2023; 81
10.1016/j.bspc.2023.105446_b0025
Balasubramaniam (10.1016/j.bspc.2023.105446_b0130) 2013; 8
Balasubramaniam (10.1016/j.bspc.2023.105446_b0140) 2014; 13
Kora (10.1016/j.bspc.2023.105446_b0005) 2020; 11
10.1016/j.bspc.2023.105446_b0080
Balasubramaniam (10.1016/j.bspc.2023.105446_b0095) 2022
10.1016/j.bspc.2023.105446_b0085
Perry (10.1016/j.bspc.2023.105446_b0045) 1992; 17
Yang (10.1016/j.bspc.2023.105446_b0035) 2018; 65
Satapathy (10.1016/j.bspc.2023.105446_b0125) 2021; 6
10.1016/j.bspc.2023.105446_b0135
Budholiya (10.1016/j.bspc.2023.105446_b0015) 2022; 34
Zheng (10.1016/j.bspc.2023.105446_b0065) 2019; 2019
10.1016/j.bspc.2023.105446_b0055
10.1016/j.bspc.2023.105446_b0050
Ouhmida (10.1016/j.bspc.2023.105446_b0060) 2021; 17
Satapathy (10.1016/j.bspc.2023.105446_b0115) 2021; 25
Satapathy (10.1016/j.bspc.2023.105446_b0110) 2022; 3
Manur (10.1016/j.bspc.2023.105446_b0010) 2020; 13
10.1016/j.bspc.2023.105446_b0075
Sun (10.1016/j.bspc.2023.105446_b0070) 2018; 278
Satapathy (10.1016/j.bspc.2023.105446_b0105) 2023; 82
References_xml – volume: 69
  year: 2021
  ident: b0120
  article-title: Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal
  publication-title: Biomed. Signal Process. Control
– volume: 6
  start-page: 155
  year: 2021
  end-page: 174
  ident: b0125
  article-title: Performance analysis of machine learning algorithms on automated sleep staging feature sets
  publication-title: CAAI Trans. Intell. Technol.
– volume: 8
  start-page: 15
  year: 2013
  ident: b0130
  article-title: A survey on data retrieval techniques in cloud computing
  publication-title: J. Converg. Inf. Technol.
– volume: 17
  start-page: 111
  year: 2021
  ident: b0060
  article-title: A Novel Approach for Parkinson’s Disease Detection Based on Voice Classification and Features Selection Techniques
  publication-title: Int. J. Online Eng
– volume: 17
  start-page: 40
  year: 1992
  end-page: 52
  ident: b0045
  article-title: Foundations for the study of software architecture
  publication-title: ACM SIGSOFT Software engineering notes
– start-page: 1
  year: 2022
  end-page: 11
  ident: b0095
  article-title: Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection
  publication-title: Comput. Intell. Neurosci.
– volume: 15
  start-page: 104
  year: 2017
  end-page: 116
  ident: b0030
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 278
  start-page: 34
  year: 2018
  end-page: 40
  ident: b0070
  article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method
  publication-title: Neurocomputing
– reference: , vol. 2023, Article ID 2039217, 16 pages, 2023.
– volume: 34
  start-page: 4514
  year: 2022
  end-page: 4523
  ident: b0015
  article-title: An optimized XGBoost based diagnostic system for effective prediction of heart disease
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
– reference: J. Rodríguez, S. Prieto, L.J.R. López. “A novel heart rate attractor for the prediction of cardiovascular disease”, Informatics in medicine UNLOCKED, vol.15 (2019), pp.100174.
– start-page: 1
  year: 2021
  end-page: 9
  ident: b0020
  article-title: “Accurate prediction of heart disease based on bio system using regressive learning based neural network classifier”
  publication-title: J. Amb. Intell. Human. Comput.
– volume: 3
  start-page: 276
  year: 2022
  ident: b0110
  article-title: Multimodal multiclass machine learning model for automated sleep staging based on time series data
  publication-title: SN Computer Science
– reference: ”.
– reference: Log Scaling is taken from, “
– volume: 81
  year: 2023
  ident: b0100
  article-title: Optimal Ensemble learning model for COVID-19 detection using chest X-ray images
  publication-title: Biomed. Signal Process. Control
– reference: Sesham Anand, “Archimedes Optimization Algorithm: Heart Disease Prediction”, Multimedia Research, vol.4, no.3, 2021.
– reference: Heart Disease Data Set taken from, “
– reference: ”, accessed on March 2023.
– volume: 25
  start-page: 15445
  year: 2021
  end-page: 15462
  ident: b0115
  article-title: Prognosis of automated sleep staging based on two-layer ensemble learning stacking model using single-channel EEG signal
  publication-title: Soft. Comput.
– reference: J. Premsmith, H. Ketmaneechairat. “A predictive model for heart disease detection using data mining techniques”, Journal of advances in Information Technology, vol.12, no.1, 2021.
– volume: 7
  start-page: 272
  year: 2010
  ident: b0040
  article-title: Modeling and design of evolutionary neural network for heart disease detection
  publication-title: Int. J. Comput. Sci. Issues (IJCSI)
– volume: 11
  start-page: 15
  year: 2020
  end-page: 28
  ident: b0005
  article-title: Heart disease detection using hybrid of bacterial foraging and particle swarm optimization
  publication-title: Evol. Syst.
– volume: 2019
  year: 2019
  ident: b0065
  article-title: An improved squirrel search algorithm for optimization
  publication-title: Complexity
– reference: S. Balasubramaniam, C. Vijesh Joe, T. A. Sivakumar, A. Prasanth, K. Satheesh Kumar, V. Kavitha, Rajesh Kumar Dhanaraj, “Optimization Enabled Deep Learning-Based DDoS Attack Detection in Cloud Computing”,
– volume: 13
  start-page: 494
  year: 2014
  end-page: 505
  ident: b0140
  article-title: A survey on data encryption tecniques in cloud computing
  publication-title: Asian J. Inf. Technol.
– reference: Gradient descent optimization (GDO) taken from “
– volume: 13
  start-page: 31
  year: 2020
  end-page: 39
  ident: b0010
  article-title: A prediction technique for heart disease based on long Short term memory recurrent neural network
  publication-title: Int. J. Intell. Eng. Syst.
– reference: A. Jain, M. Ahirwar, R. Pandey, “A review on intutive prediction of heart disease using data mining techniques”, International Journal of Computer Sciences and Engineering, 2019.
– volume: 82
  start-page: 8049
  year: 2023
  end-page: 8091
  ident: b0105
  article-title: Automated classification of multi-class sleep stages classification using polysomnography signals: a nine-layer 1D-convolution neural network approach
  publication-title: Multimed. Tools Appl.
– volume: 65
  start-page: 474
  year: 2018
  end-page: 487
  ident: b0035
  article-title: An improved Id3 algorithm for medical data classification
  publication-title: Comput. Electr. Eng.
– volume: 65
  start-page: 474
  year: 2018
  ident: 10.1016/j.bspc.2023.105446_b0035
  article-title: An improved Id3 algorithm for medical data classification
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.08.005
– volume: 11
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105446_b0005
  article-title: Heart disease detection using hybrid of bacterial foraging and particle swarm optimization
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-019-09312-6
– ident: 10.1016/j.bspc.2023.105446_b0135
  doi: 10.1155/2023/2039217
– volume: 34
  start-page: 4514
  issue: 7
  year: 2022
  ident: 10.1016/j.bspc.2023.105446_b0015
  article-title: An optimized XGBoost based diagnostic system for effective prediction of heart disease
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
  doi: 10.1016/j.jksuci.2020.10.013
– ident: 10.1016/j.bspc.2023.105446_b0080
– volume: 81
  year: 2023
  ident: 10.1016/j.bspc.2023.105446_b0100
  article-title: Optimal Ensemble learning model for COVID-19 detection using chest X-ray images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104392
– ident: 10.1016/j.bspc.2023.105446_b0025
  doi: 10.1016/j.imu.2019.100174
– volume: 7
  start-page: 272
  issue: 5
  year: 2010
  ident: 10.1016/j.bspc.2023.105446_b0040
  article-title: Modeling and design of evolutionary neural network for heart disease detection
  publication-title: Int. J. Comput. Sci. Issues (IJCSI)
– volume: 6
  start-page: 155
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2023.105446_b0125
  article-title: Performance analysis of machine learning algorithms on automated sleep staging feature sets
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/cit2.12042
– volume: 8
  start-page: 15
  issue: 16
  year: 2013
  ident: 10.1016/j.bspc.2023.105446_b0130
  article-title: A survey on data retrieval techniques in cloud computing
  publication-title: J. Converg. Inf. Technol.
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105446_b0020
  article-title: “Accurate prediction of heart disease based on bio system using regressive learning based neural network classifier”
  publication-title: J. Amb. Intell. Human. Comput.
– volume: 2019
  year: 2019
  ident: 10.1016/j.bspc.2023.105446_b0065
  article-title: An improved squirrel search algorithm for optimization
  publication-title: Complexity
  doi: 10.1155/2019/6291968
– volume: 278
  start-page: 34
  year: 2018
  ident: 10.1016/j.bspc.2023.105446_b0070
  article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.103
– ident: 10.1016/j.bspc.2023.105446_b0090
– ident: 10.1016/j.bspc.2023.105446_b0075
– volume: 25
  start-page: 15445
  issue: 24
  year: 2021
  ident: 10.1016/j.bspc.2023.105446_b0115
  article-title: Prognosis of automated sleep staging based on two-layer ensemble learning stacking model using single-channel EEG signal
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-021-06218-x
– volume: 3
  start-page: 276
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2023.105446_b0110
  article-title: Multimodal multiclass machine learning model for automated sleep staging based on time series data
  publication-title: SN Computer Science
  doi: 10.1007/s42979-022-01156-3
– volume: 13
  start-page: 494
  issue: 9
  year: 2014
  ident: 10.1016/j.bspc.2023.105446_b0140
  article-title: A survey on data encryption tecniques in cloud computing
  publication-title: Asian J. Inf. Technol.
– volume: 13
  start-page: 31
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.105446_b0010
  article-title: A prediction technique for heart disease based on long Short term memory recurrent neural network
  publication-title: Int. J. Intell. Eng. Syst.
– ident: 10.1016/j.bspc.2023.105446_b0050
  doi: 10.12720/jait.12.1.14-20
– volume: 17
  start-page: 111
  year: 2021
  ident: 10.1016/j.bspc.2023.105446_b0060
  article-title: A Novel Approach for Parkinson’s Disease Detection Based on Voice Classification and Features Selection Techniques
  publication-title: Int. J. Online Eng
  doi: 10.3991/ijoe.v17i10.24499
– ident: 10.1016/j.bspc.2023.105446_b0085
  doi: 10.46253/j.mr.v4i3.a4
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105446_b0095
  article-title: Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/2819378
– volume: 17
  start-page: 40
  issue: 4
  year: 1992
  ident: 10.1016/j.bspc.2023.105446_b0045
  article-title: Foundations for the study of software architecture
  publication-title: ACM SIGSOFT Software engineering notes
  doi: 10.1145/141874.141884
– ident: 10.1016/j.bspc.2023.105446_b0055
  doi: 10.26438/ijcse/v7i7.109113
– volume: 69
  year: 2021
  ident: 10.1016/j.bspc.2023.105446_b0120
  article-title: Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102898
– volume: 15
  start-page: 104
  year: 2017
  ident: 10.1016/j.bspc.2023.105446_b0030
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2016.12.005
– volume: 82
  start-page: 8049
  issue: 6
  year: 2023
  ident: 10.1016/j.bspc.2023.105446_b0105
  article-title: Automated classification of multi-class sleep stages classification using polysomnography signals: a nine-layer 1D-convolution neural network approach
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13195-2
SSID ssj0048714
Score 2.4168487
Snippet •Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) based detection of heart disease done.•Here, an input data is obtained from particular...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105446
SubjectTerms Deep Maxout Network (DMN)
Gradient descent optimization (GDO)
Log scaling
ReliefF
Squirrel search algorithm (SSA)
Title ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease
URI https://dx.doi.org/10.1016/j.bspc.2023.105446
Volume 87
WOSCitedRecordID wos001076954500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LattAFB1cp4t2Ufqk6YtZdCcUrJdntDQl6TOmkBS8ExppFMs4spDl4G3_Kx-Xe-chK24JbaEbYYRmJHSONWfunHuHkPc5l1jXrXBTlkduyHjmpmNfuIHvBV7EMh5IhfQ3Np3y2Sz-Phhc21yYqyWrKr7dxvV_hRrOAdiYOvsXcHedwgn4DaDDEWCH4x8BjyZjWZw4OD7lTiFV5U5nrfa7sd7jj41yerXOGRqBG7l0TPRjsrxYNWU7v3SkSqpCm7KsndN0i_7lqfaMK2tiLlvToZabTXtrsceuE6vsfp16WV6g8q11ZoLNjTRW-V1AFdT8BmbwWJZDc3W3J1i5kKr8krwV3T0FbsxLaLHCJSjtJZ6XVZXmmyYtuwgSKl1s3nnKv_YDHn64F_DoMnF2tif8cLMQCyvrDZOPZO-cN-L9r70e3n8ZOHQMY3Ek1jUWtvQD3AA5DPeqdKtx_wz7xVvB7G3EWTy6Rw58FsV8SA4mn49nX6wSgLmgqi3fPZtJ2tL-wv07_V4Y9cTO-WPyyMxS6ESz6wkZyOopedirXfmM_DQ8o4pn1PCMdjyjgC61PKOWZ1TzjHY8o4ZnFHlGNc-o4RkFntGOZ3RVUMUzanj2nPw4OT7_8Mk1-3m4Gbyp1s1ZnIGAlWKc4Wp27LE0EFk0LrKxZJlfgNINQrhI8tyXDLRvkXtFJIQvitwHHIMXZFitKvmS0FSkaQhfmViAgJZCCI_LSOQeTg8YjEOHxLMvM8lMsXvcc2WZWFfjIkEAEgQg0QAcEqdrU-tSL3deHVmMEiNWtQhNgFJ3tHv1j-1ekwe7P8MbMmybjXxL7mdXbblu3hnm3QC-_L9l
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReliefF+based+feature+selection+and+Gradient+Squirrel+search+Algorithm+enabled+Deep+Maxout+Network+for+detection+of+heart+disease&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Balasubramaniam%2C+S&rft.au=Vijesh+Joe%2C+C&rft.au=Manthiramoorthy%2C+Chinnadurai&rft.au=Satheesh+Kumar%2C+K&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=87&rft_id=info:doi/10.1016%2Fj.bspc.2023.105446&rft.externalDocID=S1746809423008790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon