Enhancing stock market Forecasting: A hybrid model for accurate prediction of S&P 500 and CSI 300 future prices

This paper investigates the challenging domain of stock market prediction, a significant aspect of financial markets. It focuses on developing predictive models to forecast stock prices accurately, vital for mitigating losses and maximizing gains amidst the inherent unpredictability and volatility o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 260; s. 125380
Hlavný autor: Ge, Qing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.01.2025
Predmet:
ISSN:0957-4174
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper investigates the challenging domain of stock market prediction, a significant aspect of financial markets. It focuses on developing predictive models to forecast stock prices accurately, vital for mitigating losses and maximizing gains amidst the inherent unpredictability and volatility of the market. The study comprehensively analyzes various predictive models, including time series analysis and advanced machine learning techniques. It highlights the superiority of ensemble or hybrid models in enhancing prediction reliability. Central to this research is the development of a model incorporating detailed data collection, thorough analysis, and state-of-the-art machine learning methods, achieving notable predictive accuracy. This approach underscores the benefits of data-centric strategies in today’s rapidly evolving business environment and the widespread applicability of predictive analytics. The model outperforms conventional methods by decomposing time series into simpler components and optimizing hyperparameters, thereby enhancing prediction accuracy, as demonstrated by performance testing on the S&P 500 and CSI 300 indices. The RMSE, MAE, and R2 values of the MEME-AO-LSTM model are 27.12, 19.43, and 0.992, respectively, which serve as evidence of this. The model’s generalizability and high performance are demonstrated by its efficacy in a variety of major markets, including the NASDAQ 100, Nikkei 225, FTSE, DAX, SSE, and KOSPI. Additionally, the model’s adaptability under diverse market conditions is demonstrated through its evaluation of its robustness in response to significant events, such as the economic stimulus responses to the COVID-19 pandemic and the geopolitical tensions resulting from the tension and conflict between Russia and Ukraine. Consequently, the proposed methodology has the potential to help investors achieve substantial and advantageous returns.
AbstractList This paper investigates the challenging domain of stock market prediction, a significant aspect of financial markets. It focuses on developing predictive models to forecast stock prices accurately, vital for mitigating losses and maximizing gains amidst the inherent unpredictability and volatility of the market. The study comprehensively analyzes various predictive models, including time series analysis and advanced machine learning techniques. It highlights the superiority of ensemble or hybrid models in enhancing prediction reliability. Central to this research is the development of a model incorporating detailed data collection, thorough analysis, and state-of-the-art machine learning methods, achieving notable predictive accuracy. This approach underscores the benefits of data-centric strategies in today’s rapidly evolving business environment and the widespread applicability of predictive analytics. The model outperforms conventional methods by decomposing time series into simpler components and optimizing hyperparameters, thereby enhancing prediction accuracy, as demonstrated by performance testing on the S&P 500 and CSI 300 indices. The RMSE, MAE, and R2 values of the MEME-AO-LSTM model are 27.12, 19.43, and 0.992, respectively, which serve as evidence of this. The model’s generalizability and high performance are demonstrated by its efficacy in a variety of major markets, including the NASDAQ 100, Nikkei 225, FTSE, DAX, SSE, and KOSPI. Additionally, the model’s adaptability under diverse market conditions is demonstrated through its evaluation of its robustness in response to significant events, such as the economic stimulus responses to the COVID-19 pandemic and the geopolitical tensions resulting from the tension and conflict between Russia and Ukraine. Consequently, the proposed methodology has the potential to help investors achieve substantial and advantageous returns.
ArticleNumber 125380
Author Ge, Qing
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0009-0006-9689-7327
  surname: Ge
  fullname: Ge, Qing
  email: zz1670@ynufe.edu.cn
  organization: International Business School, Yunnan University of Finance and Economics, Kunming, Yunnan, 650221, China
BookMark eNp9kE1PAjEQhnvARED_gKeevIHT_V7jhRBQEhJN0HMzdKdSPramLRr-vd3gyQOnmWTmmcn7DFivtS0xdidgLEAUD9sx-R8cJ5BkY5HkaQU91oc6L0eZKLNrNvB-CyBKgLLP7KzdYKtM-8l9sGrHD-h2FPjcOlLoQxw88gnfnNbONPxgG9pzbR1HpY4OA_EvR41RwdiWW81X9288B-DYNny6WvA09voYjq5bNIr8DbvSuPd0-1eH7GM-e5--jJavz4vpZDlSEQmjpqAqKRSsCYmyep2XkCHVStdYijwpyqpJVVlgoXWlK0oQsMhFVeWAkK6xTocsOd9VznrvSMv4P2Y7SQGy0yS3stMkO03yrClC1T9ImYBdtuDQ7C-jT2eUYqhvQ056ZahVUU4UGWRjzSX8F08Uhvw
CitedBy_id crossref_primary_10_1016_j_frl_2025_108342
crossref_primary_10_12677_hjdm_2025_153018
crossref_primary_10_1007_s42521_025_00149_0
crossref_primary_10_3390_electronics14163293
crossref_primary_10_1007_s10614_025_10947_8
crossref_primary_10_1007_s10614_025_10852_0
crossref_primary_10_1016_j_heliyon_2025_e42393
crossref_primary_10_1016_j_energy_2025_137862
crossref_primary_10_1016_j_eswa_2025_127240
crossref_primary_10_1016_j_eswa_2025_129018
crossref_primary_10_1016_j_eswa_2025_128473
crossref_primary_10_1016_j_finr_2025_100019
crossref_primary_10_3390_math13172762
crossref_primary_10_1177_18724981251315846
Cites_doi 10.1016/j.measurement.2020.108185
10.1016/j.jhydrol.2010.10.001
10.1016/j.heliyon.2023.e20801
10.1098/rspa.2009.0502
10.1016/j.neucom.2024.127524
10.1016/j.najef.2024.102194
10.54060/jmss.v3i1.42
10.1016/j.resglo.2024.100199
10.1007/s10462-020-09838-1
10.3390/pr9091551
10.1016/j.asoc.2023.110356
10.1002/fut.22335
10.1016/j.cie.2021.107250
10.3390/info15030136
10.24014/ijaidm.v7i1.28594
10.1016/j.ecolind.2023.109882
10.14569/IJACSA.2024.01506111
10.1007/s10690-023-09412-z
10.1016/j.eti.2023.103018
10.30812/matrik.v22i2.2287
10.1016/j.heliyon.2023.e15332
10.1016/j.eswa.2023.121424
10.1016/j.frl.2022.102872
10.1016/j.heliyon.2022.e10718
10.1007/s10462-019-09754-z
10.1016/j.ins.2022.05.088
10.1016/j.asoc.2023.110799
10.1016/j.energy.2024.130493
10.1088/1742-6596/1746/1/012014
10.1007/s44196-022-00140-2
10.1016/j.procs.2022.12.115
10.1016/j.eswa.2023.121204
10.3390/app13031429
10.2139/ssrn.4416226
10.1016/j.eswa.2022.117239
10.1002/ijfe.1782
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125380
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125380
S0957417424022474
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-d6e826c0beaee49b5704ae9cf9a7152678d3c76a6ff8f8e2a0a6518850a03ba93
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319733300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:00:47 EST 2025
Sat Nov 29 08:12:04 EST 2025
Sat Mar 08 15:49:03 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords ANN
CNN
Std
SLFN
DL
GRU
MEMD
SVR
MLP
BPNN
TNN
Aquila Optimizer
EEMD
RBF
Multivariate Empirical Mode Decomposition
Financial Markets
CSI 300
EMD
MSE
SZSE
DWT
SLFFN
CWT
EWT
IMF
LSTM
SSE
S&P 500
MAPE
RMSE
SDTP
BiLSTM
VMD
AO
MAE
Stock price
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d6e826c0beaee49b5704ae9cf9a7152678d3c76a6ff8f8e2a0a6518850a03ba93
ORCID 0009-0006-9689-7327
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_125380
crossref_citationtrail_10_1016_j_eswa_2024_125380
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125380
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pangestu, R. A., Vitianingsih, A. V., Kacung, S., Maukar, A. L., & Noertjahyana, A. (2024). Comparative Analysis of Support Vector Regression and Linear Regression Models to Predict Apple Inc. Share Prices.
Andrada-Félix, Fernández-Rodríguez, Sosvilla-Rivero (b0025) 2024; 74
Baek (b0035) 2024; 31
1–23.
Gao, Li, Lu (b0070) 2023; 9
Tiwari, Chatterjee (b0190) 2010; 394
Rehman, Mandic (b0175) 2010; 466
Moreno, Seman, Stefenon, dos Santos Coelho, Mariani (b0145) 2024; 292
Chen, Y., Zhao, P., Zhang, Z., Bai, J., & Guo, Y. (2022). A Stock Price Forecasting Model Integrating Complementary Ensemble Empirical Mode Decomposition and Independent Component Analysis.
(3). https://doi.org/10.3390/info15030136.
Wang, Jia, Abualigah, Liu, Zheng (b0205) 2021; 9
Nti, Adekoya, Weyori (b0150) 2020; 53
Upadhyay, N. K., Singh, V., Singh, S., & Khanna, P. (2023). Enhancing Stock Market Predictability: A Comparative Analysis of RNN And LSTM Models for Retail Investors.
Abualigah, Yousri, Abd Elaziz, Ewees, Al-qaness, Gandomi (b0005) 2021; 157
Hani’ah, M., Abdullah, M. Z., Sabilla, W. I., Akbar, S., & Shafara, D. R. (2023). Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction.
Van Houdt, Mosquera, Nápoles (b0200) 2020; 53
Balcilar, Ozdemir, Ozdemir (b0040) 2021; 26
Kumar (b0105) 2024; 580
Yao, Zhang, Zhao (b0220) 2023; 142
R.G. Ahangar M. Yahyazadehfar H. Pournaghshband The comparison of methods artificial neural network with linear regression using specific variables for prediction stock price in Tehran stock exchange ArXiv Preprint 2010 ArXiv:1003.1457.
,
Zhang, Qin, Zhang, Bao, Zhang, Liu (b0230) 2022; 202
.
Atri, Teka, Kouki (b0030) 2023; 9
Jia, Liuyang, Xu (b0090) 2023; 32
Li, Liu, Wu, Chen (b0110) 2020; 166
Chen, L., Wu, T., Wang, Z., Lin, X., & Cai, Y. (2023). A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction.
Pagliaro, A. (2023).
Oanh (b0155) 2022; 8
Botunac, I., Bosna, J., & Matetić, M. (2024). Optimization of Traditional Stock Market Strategies Using the LSTM Hybrid Approach.
Liu, Sayed, Sivaraman, Alshahrani, Venkatesan, Thajudeen, Al-Bahrani, Hadrawi, Yasin (b0130) 2023; 30
Yiming (b0225) 2024; 15
(December 2022), 109882. https://doi.org/10.1016/j.ecolind.2023.109882.
Wang, Bouri, Ferreira, Shahzad, Ferrer (b0210) 2022; 48
Deng, Huang, Hasan, Bao (b0065) 2022; 607
Tao, Wu, Wang (b0185) 2024; 237
L. Xia X. Liu L. Wang Forecasting Framework Using Hybrid Modeling and Support Vector Regression Journal of Physics: Conference Series Volume 1746, Issue 1, Page 012014 2021 ISSN 1742–6588 1742–6596 10.1088/1742-6596/1746/1/012014.
Ahuja, Kumar, Goyal, Kaur, Sachdeva, Solanki (b0015) 2023; 2023
Jin, Yuan, Long, Li, Lian (b0100) 2022; 42
Mintarya, Halim, Angie, Achmad, Kurniawan (b0140) 2023; 216
Ali, Khan, Alshanbari, El-Bagoury (b0020) 2023; 13
Bhandari, Rimal, Pokhrel, Rimal, Dahal, Khatri (b0045) 2022; 9
Olayungbo, Zhuparova, Al-Faryan, Ojo (b0160) 2024; 8
Jiang, Chen, Jiang, Ni, Su (b0095) 2023; 147
(April 2023), 121204. https://doi.org/10.1016/j.eswa.2023.121204.
Liu, Yang, Su, Cao (b0125) 2024; 15
Song, Chen, Xia, Ding, Xu (b0180) 2022; 260
(1). https://doi.org/10.1007/s44196-022-00140-2.
Ma, D., Yuan, D., Huang, M., & Dong, L. (2024). VGC-GAN: A multi-graph convolution adversarial network for stock price prediction.
Oanh (10.1016/j.eswa.2024.125380_b0155) 2022; 8
Balcilar (10.1016/j.eswa.2024.125380_b0040) 2021; 26
Wang (10.1016/j.eswa.2024.125380_b0205) 2021; 9
Olayungbo (10.1016/j.eswa.2024.125380_b0160) 2024; 8
Tiwari (10.1016/j.eswa.2024.125380_b0190) 2010; 394
Ali (10.1016/j.eswa.2024.125380_b0020) 2023; 13
Mintarya (10.1016/j.eswa.2024.125380_b0140) 2023; 216
10.1016/j.eswa.2024.125380_b0060
Bhandari (10.1016/j.eswa.2024.125380_b0045) 2022; 9
Moreno (10.1016/j.eswa.2024.125380_b0145) 2024; 292
Atri (10.1016/j.eswa.2024.125380_b0030) 2023; 9
Song (10.1016/j.eswa.2024.125380_b0180) 2022; 260
Jin (10.1016/j.eswa.2024.125380_b0100) 2022; 42
Van Houdt (10.1016/j.eswa.2024.125380_b0200) 2020; 53
Liu (10.1016/j.eswa.2024.125380_b0125) 2024; 15
Wang (10.1016/j.eswa.2024.125380_b0210) 2022; 48
10.1016/j.eswa.2024.125380_b0165
Liu (10.1016/j.eswa.2024.125380_b0130) 2023; 30
Nti (10.1016/j.eswa.2024.125380_b0150) 2020; 53
Jia (10.1016/j.eswa.2024.125380_b0090) 2023; 32
Rehman (10.1016/j.eswa.2024.125380_b0175) 2010; 466
Gao (10.1016/j.eswa.2024.125380_b0070) 2023; 9
Deng (10.1016/j.eswa.2024.125380_b0065) 2022; 607
Kumar (10.1016/j.eswa.2024.125380_b0105) 2024; 580
Tao (10.1016/j.eswa.2024.125380_b0185) 2024; 237
10.1016/j.eswa.2024.125380_b0195
10.1016/j.eswa.2024.125380_b0050
10.1016/j.eswa.2024.125380_b0170
Yao (10.1016/j.eswa.2024.125380_b0220) 2023; 142
Andrada-Félix (10.1016/j.eswa.2024.125380_b0025) 2024; 74
10.1016/j.eswa.2024.125380_b0135
Abualigah (10.1016/j.eswa.2024.125380_b0005) 2021; 157
Baek (10.1016/j.eswa.2024.125380_b0035) 2024; 31
10.1016/j.eswa.2024.125380_b0055
10.1016/j.eswa.2024.125380_b0010
10.1016/j.eswa.2024.125380_b0075
Zhang (10.1016/j.eswa.2024.125380_b0230) 2022; 202
Li (10.1016/j.eswa.2024.125380_b0110) 2020; 166
Ahuja (10.1016/j.eswa.2024.125380_b0015) 2023; 2023
Jiang (10.1016/j.eswa.2024.125380_b0095) 2023; 147
Yiming (10.1016/j.eswa.2024.125380_b0225) 2024; 15
10.1016/j.eswa.2024.125380_b0215
References_xml – volume: 2023
  start-page: 1
  year: 2023
  end-page: 5
  ident: b0015
  article-title: Stock Price Prediction By Applying Machine Learning Techniques
  publication-title: International Conference on Emerging Smart Computing and Informatics (ESCI)
– reference: (3). https://doi.org/10.3390/info15030136.
– volume: 74
  year: 2024
  ident: b0025
  article-title: A crisis like no other? Financial market analogies of the COVID-19-cum-Ukraine war crisis
  publication-title: The North American Journal of Economics and Finance
– volume: 32
  start-page: 200
  year: 2023
  ident: b0090
  article-title: Multi-scale Dynamic Hedging of CSI 300 Index Futures Based on EMD-DCC-GARCH
  publication-title: Operations Research and Management Science
– volume: 466
  start-page: 1291
  year: 2010
  end-page: 1302
  ident: b0175
  article-title: Multivariate empirical mode decomposition
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 142
  year: 2023
  ident: b0220
  article-title: Stock index forecasting based on multivariate empirical mode decomposition and temporal convolutional networks
  publication-title: Applied Soft Computing
– volume: 15
  year: 2024
  ident: b0225
  article-title: Review and Analysis of Financial Market Movements: Google Stock Case Study
  publication-title: International Journal of Advanced Computer Science & Applications
– volume: 147
  year: 2023
  ident: b0095
  article-title: A granular sigmoid extreme learning machine and its application in a weather forecast
  publication-title: Applied Soft Computing
– reference: (December 2022), 109882. https://doi.org/10.1016/j.ecolind.2023.109882.
– volume: 8
  year: 2022
  ident: b0155
  article-title: The impact of COVID-19 vaccination on stock market: Is there any difference between developed and developing countries?
  publication-title: Heliyon
– volume: 260
  year: 2022
  ident: b0180
  article-title: Application of a novel signal decomposition prediction model in minute sea level prediction
  publication-title: Ocean Engineering
– reference: (1). https://doi.org/10.1007/s44196-022-00140-2.
– reference: Botunac, I., Bosna, J., & Matetić, M. (2024). Optimization of Traditional Stock Market Strategies Using the LSTM Hybrid Approach.
– volume: 9
  start-page: e15332
  year: 2023
  ident: b0030
  article-title: Does US full vaccination against COVID-19 immunize correspondingly S&P500 index: Evidence from the NARDL approach
  publication-title: Heliyon
– reference: Upadhyay, N. K., Singh, V., Singh, S., & Khanna, P. (2023). Enhancing Stock Market Predictability: A Comparative Analysis of RNN And LSTM Models for Retail Investors.
– volume: 30
  year: 2023
  ident: b0130
  article-title: Novel and robust machine learning model to optimize biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst: Sustainable green energy
  publication-title: Environmental Technology & Innovation
– volume: 9
  year: 2022
  ident: b0045
  article-title: Predicting stock market index using LSTM
  publication-title: Machine Learning with Applications
– volume: 607
  start-page: 297
  year: 2022
  end-page: 321
  ident: b0065
  article-title: Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition
  publication-title: Information Sciences
– volume: 53
  start-page: 5929
  year: 2020
  end-page: 5955
  ident: b0200
  article-title: A review on the long short-term memory model
  publication-title: Artificial Intelligence Review
– volume: 166
  year: 2020
  ident: b0110
  article-title: An optimized VMD method and its applications in bearing fault diagnosis
  publication-title: Measurement
– reference: (April 2023), 121204. https://doi.org/10.1016/j.eswa.2023.121204.
– reference: Pangestu, R. A., Vitianingsih, A. V., Kacung, S., Maukar, A. L., & Noertjahyana, A. (2024). Comparative Analysis of Support Vector Regression and Linear Regression Models to Predict Apple Inc. Share Prices.
– volume: 9
  year: 2021
  ident: b0205
  article-title: An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems
  publication-title: Processes
– reference: . 1–23.
– volume: 237
  year: 2024
  ident: b0185
  article-title: Series decomposition Transformer with period-correlation for stock market index prediction
  publication-title: Expert Systems with Applications
– volume: 48
  year: 2022
  ident: b0210
  article-title: A grey-based correlation with multi-scale analysis: S&P 500 VIX and individual VIXs of large US company stocks
  publication-title: Finance Research Letters
– volume: 9
  year: 2023
  ident: b0070
  article-title: Impact of COVID-19 on investor sentiment in China’s stock markets
  publication-title: Heliyon
– reference: Chen, Y., Zhao, P., Zhang, Z., Bai, J., & Guo, Y. (2022). A Stock Price Forecasting Model Integrating Complementary Ensemble Empirical Mode Decomposition and Independent Component Analysis.
– volume: 216
  start-page: 96
  year: 2023
  end-page: 102
  ident: b0140
  article-title: Machine learning approaches in stock market prediction: A systematic literature review
  publication-title: Procedia Computer Science
– reference: Ma, D., Yuan, D., Huang, M., & Dong, L. (2024). VGC-GAN: A multi-graph convolution adversarial network for stock price prediction.
– reference: R.G. Ahangar M. Yahyazadehfar H. Pournaghshband The comparison of methods artificial neural network with linear regression using specific variables for prediction stock price in Tehran stock exchange ArXiv Preprint 2010 ArXiv:1003.1457.
– volume: 31
  start-page: 205
  year: 2024
  end-page: 220
  ident: b0035
  article-title: A CNN-LSTM Stock Prediction Model Based on Genetic Algorithm Optimization
  publication-title: Asia-Pacific Financial Markets
– reference: ,
– volume: 42
  start-page: 1352
  year: 2022
  end-page: 1368
  ident: b0100
  article-title: Price discovery in the CSI 300 Index derivatives markets
  publication-title: Journal of Futures Markets
– reference: Hani’ah, M., Abdullah, M. Z., Sabilla, W. I., Akbar, S., & Shafara, D. R. (2023). Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction.
– volume: 26
  start-page: 153
  year: 2021
  end-page: 170
  ident: b0040
  article-title: Dynamic return and volatility spillovers among S&P 500, crude oil, and gold
  publication-title: International Journal of Finance & Economics
– volume: 13
  start-page: 1429
  year: 2023
  ident: b0020
  article-title: Prediction of complex stock market data using an improved hybrid emd-lstm model
  publication-title: Applied Sciences
– volume: 580
  year: 2024
  ident: b0105
  article-title: Recurrent context layered radial basis function neural network for the identification of nonlinear dynamical systems
  publication-title: Neurocomputing
– volume: 292
  year: 2024
  ident: b0145
  article-title: Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition
  publication-title: Energy
– volume: 394
  start-page: 458
  year: 2010
  end-page: 470
  ident: b0190
  article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach
  publication-title: Journal of Hydrology
– volume: 202
  year: 2022
  ident: b0230
  article-title: Transformer-based attention network for stock movement prediction
  publication-title: Expert Systems with Applications
– volume: 8
  year: 2024
  ident: b0160
  article-title: Global oil price and stock markets in oil exporting and European countries: Evidence during the Covid-19 and the Russia-Ukraine war
  publication-title: Research in Globalization
– volume: 15
  year: 2024
  ident: b0125
  article-title: A Hybrid Framework for Evaluating Financial Market Price: An Analysis of the Hang Seng Index Case Study
  publication-title: International Journal of Advanced Computer Science & Applications
– reference: Chen, L., Wu, T., Wang, Z., Lin, X., & Cai, Y. (2023). A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction.
– reference: .
– reference: Pagliaro, A. (2023).
– volume: 157
  year: 2021
  ident: b0005
  article-title: Aquila Optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 53
  start-page: 3007
  year: 2020
  end-page: 3057
  ident: b0150
  article-title: A systematic review of fundamental and technical analysis of stock market predictions
  publication-title: Artificial Intelligence Review
– reference: L. Xia X. Liu L. Wang Forecasting Framework Using Hybrid Modeling and Support Vector Regression Journal of Physics: Conference Series Volume 1746, Issue 1, Page 012014 2021 ISSN 1742–6588 1742–6596 10.1088/1742-6596/1746/1/012014.
– volume: 166
  year: 2020
  ident: 10.1016/j.eswa.2024.125380_b0110
  article-title: An optimized VMD method and its applications in bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108185
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0015
  article-title: Stock Price Prediction By Applying Machine Learning Techniques
  publication-title: International Conference on Emerging Smart Computing and Informatics (ESCI)
– volume: 394
  start-page: 458
  issue: 3–4
  year: 2010
  ident: 10.1016/j.eswa.2024.125380_b0190
  article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2010.10.001
– volume: 9
  issue: 10
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0070
  article-title: Impact of COVID-19 on investor sentiment in China’s stock markets
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e20801
– volume: 466
  start-page: 1291
  issue: 2117
  year: 2010
  ident: 10.1016/j.eswa.2024.125380_b0175
  article-title: Multivariate empirical mode decomposition
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2009.0502
– volume: 580
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0105
  article-title: Recurrent context layered radial basis function neural network for the identification of nonlinear dynamical systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127524
– volume: 9
  issue: February
  year: 2022
  ident: 10.1016/j.eswa.2024.125380_b0045
  article-title: Predicting stock market index using LSTM
  publication-title: Machine Learning with Applications
– volume: 74
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0025
  article-title: A crisis like no other? Financial market analogies of the COVID-19-cum-Ukraine war crisis
  publication-title: The North American Journal of Economics and Finance
  doi: 10.1016/j.najef.2024.102194
– ident: 10.1016/j.eswa.2024.125380_b0195
  doi: 10.54060/jmss.v3i1.42
– volume: 8
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0160
  article-title: Global oil price and stock markets in oil exporting and European countries: Evidence during the Covid-19 and the Russia-Ukraine war
  publication-title: Research in Globalization
  doi: 10.1016/j.resglo.2024.100199
– volume: 53
  start-page: 5929
  year: 2020
  ident: 10.1016/j.eswa.2024.125380_b0200
  article-title: A review on the long short-term memory model
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-020-09838-1
– volume: 9
  issue: 9
  year: 2021
  ident: 10.1016/j.eswa.2024.125380_b0205
  article-title: An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems
  publication-title: Processes
  doi: 10.3390/pr9091551
– volume: 142
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0220
  article-title: Stock index forecasting based on multivariate empirical mode decomposition and temporal convolutional networks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110356
– volume: 42
  start-page: 1352
  issue: 7
  year: 2022
  ident: 10.1016/j.eswa.2024.125380_b0100
  article-title: Price discovery in the CSI 300 Index derivatives markets
  publication-title: Journal of Futures Markets
  doi: 10.1002/fut.22335
– volume: 260
  issue: February
  year: 2022
  ident: 10.1016/j.eswa.2024.125380_b0180
  article-title: Application of a novel signal decomposition prediction model in minute sea level prediction
  publication-title: Ocean Engineering
– volume: 157
  year: 2021
  ident: 10.1016/j.eswa.2024.125380_b0005
  article-title: Aquila Optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– ident: 10.1016/j.eswa.2024.125380_b0050
  doi: 10.3390/info15030136
– ident: 10.1016/j.eswa.2024.125380_b0170
  doi: 10.24014/ijaidm.v7i1.28594
– ident: 10.1016/j.eswa.2024.125380_b0055
  doi: 10.1016/j.ecolind.2023.109882
– volume: 15
  issue: 6
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0125
  article-title: A Hybrid Framework for Evaluating Financial Market Price: An Analysis of the Hang Seng Index Case Study
  publication-title: International Journal of Advanced Computer Science & Applications
  doi: 10.14569/IJACSA.2024.01506111
– volume: 31
  start-page: 205
  issue: 2
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0035
  article-title: A CNN-LSTM Stock Prediction Model Based on Genetic Algorithm Optimization
  publication-title: Asia-Pacific Financial Markets
  doi: 10.1007/s10690-023-09412-z
– volume: 30
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0130
  article-title: Novel and robust machine learning model to optimize biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst: Sustainable green energy
  publication-title: Environmental Technology & Innovation
  doi: 10.1016/j.eti.2023.103018
– ident: 10.1016/j.eswa.2024.125380_b0075
  doi: 10.30812/matrik.v22i2.2287
– volume: 9
  start-page: e15332
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0030
  article-title: Does US full vaccination against COVID-19 immunize correspondingly S&P500 index: Evidence from the NARDL approach
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15332
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0185
  article-title: Series decomposition Transformer with period-correlation for stock market index prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121424
– volume: 48
  year: 2022
  ident: 10.1016/j.eswa.2024.125380_b0210
  article-title: A grey-based correlation with multi-scale analysis: S&P 500 VIX and individual VIXs of large US company stocks
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2022.102872
– volume: 8
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2024.125380_b0155
  article-title: The impact of COVID-19 vaccination on stock market: Is there any difference between developed and developing countries?
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e10718
– volume: 32
  start-page: 200
  issue: 9
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0090
  article-title: Multi-scale Dynamic Hedging of CSI 300 Index Futures Based on EMD-DCC-GARCH
  publication-title: Operations Research and Management Science
– ident: 10.1016/j.eswa.2024.125380_b0010
– volume: 53
  start-page: 3007
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2024.125380_b0150
  article-title: A systematic review of fundamental and technical analysis of stock market predictions
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-019-09754-z
– volume: 607
  start-page: 297
  year: 2022
  ident: 10.1016/j.eswa.2024.125380_b0065
  article-title: Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.05.088
– volume: 147
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0095
  article-title: A granular sigmoid extreme learning machine and its application in a weather forecast
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110799
– volume: 292
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0145
  article-title: Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130493
– ident: 10.1016/j.eswa.2024.125380_b0215
  doi: 10.1088/1742-6596/1746/1/012014
– volume: 15
  issue: 4
  year: 2024
  ident: 10.1016/j.eswa.2024.125380_b0225
  article-title: Review and Analysis of Financial Market Movements: Google Stock Case Study
  publication-title: International Journal of Advanced Computer Science & Applications
– ident: 10.1016/j.eswa.2024.125380_b0060
  doi: 10.1007/s44196-022-00140-2
– volume: 216
  start-page: 96
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0140
  article-title: Machine learning approaches in stock market prediction: A systematic literature review
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.12.115
– ident: 10.1016/j.eswa.2024.125380_b0135
  doi: 10.1016/j.eswa.2023.121204
– volume: 13
  start-page: 1429
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2024.125380_b0020
  article-title: Prediction of complex stock market data using an improved hybrid emd-lstm model
  publication-title: Applied Sciences
  doi: 10.3390/app13031429
– ident: 10.1016/j.eswa.2024.125380_b0165
  doi: 10.2139/ssrn.4416226
– volume: 202
  year: 2022
  ident: 10.1016/j.eswa.2024.125380_b0230
  article-title: Transformer-based attention network for stock movement prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117239
– volume: 26
  start-page: 153
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.125380_b0040
  article-title: Dynamic return and volatility spillovers among S&P 500, crude oil, and gold
  publication-title: International Journal of Finance & Economics
  doi: 10.1002/ijfe.1782
SSID ssj0017007
Score 2.5201926
Snippet This paper investigates the challenging domain of stock market prediction, a significant aspect of financial markets. It focuses on developing predictive...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125380
SubjectTerms Aquila Optimizer
CSI 300
Financial Markets
Multivariate Empirical Mode Decomposition
S&P 500
Stock price
Title Enhancing stock market Forecasting: A hybrid model for accurate prediction of S&P 500 and CSI 300 future prices
URI https://dx.doi.org/10.1016/j.eswa.2024.125380
Volume 260
WOSCitedRecordID wos001319733300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LTxsxEICt8jhwgZaHCqXVHBCX1SJn3-4tQqkKB5QqIOW2cry2ANENIuH17xnv2JtAWwSHXlarlXeyymeNx-N5MLanYp1JE-kwTvCSiDgLpeyoUFZCc2NStBhM02wiPzkphkPRd-2tJk07gbyui4cHcf1fUeMzhG1TZ9-BuxWKD_AeoeMVseP1TeB79bmtodG4CVDZBb-bvObA9uBUcuITnLvB-aNN1qJWOBRLqdStLRxh6wZUF8qbkgOcHP0g5bw5ZzgcHAUx3lMtEhxqFc0z976tnTx1FaJ97tzcKXkb8NN4Un_5ldM5HiIb4xdS6mXrQczDpENNdrwyjag7gFOHaD3F1KjpD01NToPLAz25t-WfouRgNvh5WewXy1UbROjj0y5LK6O0MkqSscCWojwVqOSWuke94XF7rJRzyp_3X-6yqCjg7-WX_N1SmbM-Tj-yVbdtgC7h_sQ-6HqdrfmWHOA09AYbt_ShoQ9EH-bof4cuEHto2AOyB88eZuxhbGCw3wckD0gekDwgeSDyQOQ32dmP3unhz9D11AgVDpmGVaZxQ6n4SEutEzFKc55ILZQRMkdTDk2XKlZ5JjNjClPoSHKZ2Zp9KZc8HkkRb7HFelzrzwxwHUVb1mijVYEyIpRQpEk2sgfnFe5CtlnH_3-lcgXnbd-Tq_Lf5LZZ0L5zTeVWXh2deiylMxjJECxxlr3y3s67fuULW5lN_122OL251V_ZsrqbXkxuvrkp9gRnyomU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+stock+market+Forecasting%3A+A+hybrid+model+for+accurate+prediction+of+S%26P+500+and+CSI+300+future+prices&rft.jtitle=Expert+systems+with+applications&rft.au=Ge%2C+Qing&rft.date=2025-01-15&rft.issn=0957-4174&rft.volume=260&rft.spage=125380&rft_id=info:doi/10.1016%2Fj.eswa.2024.125380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon