Design of concrete-filled steel tubular columns using data-driven methods
By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the composite construction of bridges and high-rise buildings. However, their design equations are more complicated than those of steel and reinforced c...
Uložené v:
| Vydané v: | Journal of constructional steel research Ročník 200; s. 107653 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2023
|
| Predmet: | |
| ISSN: | 0143-974X, 1873-5983 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the composite construction of bridges and high-rise buildings. However, their design equations are more complicated than those of steel and reinforced concrete (RC) structures, especially for circular columns under eccentric loading. Therefore, the use of emerging data-driven approaches will help structural engineers ease the design process. This paper explores the use of data-driven design methods as alternatives to conventional mechanics-based design models. Five boosting algorithms, including adaptive boosting (AdaBoost), gradient boosting machine (GBR), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and categorical gradient boosting (CatBoost), are employed to develop predictive models for four different types of CFST columns (i.e., circular columns, rectangular columns, circular beam–columns, and rectangular beam–columns). These predictive models are trained using the most up-to-date and comprehensive database collected from over 3,200 test specimens. Reliability analysis is conducted to calibrate the resistance reduction factors for three different design frameworks (i.e., the US, Eurocode, and Australian frameworks) to ensure that the newly developed predictive models meet the target reliability indices required by different design frameworks. A web-based design tool is also developed to promote the practical use of data-driven methods for the design of CFST columns.
•ML models for predicting the resistance of CFST columns and beam–columns were created.•The models were based on five boosting algorithms and a 3,208-test database.•The models outperformed the design provisions of AISC 360, EC 4, and AS/NZS 2327.•Resistance factors were determined from reliability analyses for three design frameworks.•A web application based on the ML models was created and deployed to the cloud. |
|---|---|
| AbstractList | By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the composite construction of bridges and high-rise buildings. However, their design equations are more complicated than those of steel and reinforced concrete (RC) structures, especially for circular columns under eccentric loading. Therefore, the use of emerging data-driven approaches will help structural engineers ease the design process. This paper explores the use of data-driven design methods as alternatives to conventional mechanics-based design models. Five boosting algorithms, including adaptive boosting (AdaBoost), gradient boosting machine (GBR), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and categorical gradient boosting (CatBoost), are employed to develop predictive models for four different types of CFST columns (i.e., circular columns, rectangular columns, circular beam–columns, and rectangular beam–columns). These predictive models are trained using the most up-to-date and comprehensive database collected from over 3,200 test specimens. Reliability analysis is conducted to calibrate the resistance reduction factors for three different design frameworks (i.e., the US, Eurocode, and Australian frameworks) to ensure that the newly developed predictive models meet the target reliability indices required by different design frameworks. A web-based design tool is also developed to promote the practical use of data-driven methods for the design of CFST columns.
•ML models for predicting the resistance of CFST columns and beam–columns were created.•The models were based on five boosting algorithms and a 3,208-test database.•The models outperformed the design provisions of AISC 360, EC 4, and AS/NZS 2327.•Resistance factors were determined from reliability analyses for three design frameworks.•A web application based on the ML models was created and deployed to the cloud. |
| ArticleNumber | 107653 |
| Author | Thai, Huu-Tai Degtyarev, Vitaliy V. |
| Author_xml | – sequence: 1 givenname: Vitaliy V. orcidid: 0000-0002-8977-5130 surname: Degtyarev fullname: Degtyarev, Vitaliy V. email: vitaliy.degtyarev@newmill.com, vitdegtyarev@yahoo.com organization: New Millennium Building Systems, LLC, 3700 Forest Dr. Suite 501, Columbia, SC 29204, United States of America – sequence: 2 givenname: Huu-Tai orcidid: 0000-0002-4461-9548 surname: Thai fullname: Thai, Huu-Tai email: tai.thai@unimelb.edu.au organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia |
| BookMark | eNp9kL1qwzAUhUVJoUnaF-jkF3CqX1uGLiX9CwS6ZOgmZOk6lXGkIsmBvn0d0qlDpgvn8h043wLNfPCA0D3BK4JJ9dCvepPiimJKp6CuBLtCcyJrVopGshmaY8JZ2dT88wYtUuoxxrJhco42z5Dc3hehK0zwJkKGsnPDALZIGWAo8tiOg47TdxgPPhVjcn5fWJ11aaM7gi8OkL-CTbfoutNDgru_u0S715fd-r3cfrxt1k_b0jCMc2k52LbmAFRaZkhrJAUsaM2JIZ0VreStwaYWgmqGJW01l6ICwatmiqYtSyTPtSaGlCJ0yrissws-R-0GRbA6GVG9OhlRJyPqbGRC6T_0O7qDjj-XocczBNOmo4OoknHgDVgXwWRlg7uE_wIdPH0G |
| CitedBy_id | crossref_primary_10_1016_j_engstruct_2025_119652 crossref_primary_10_1016_j_engstruct_2024_117593 crossref_primary_10_1007_s43452_023_00734_3 crossref_primary_10_1016_j_istruc_2025_109759 crossref_primary_10_3390_buildings14103244 crossref_primary_10_1016_j_jcsr_2024_109085 crossref_primary_10_1016_j_tws_2024_112367 crossref_primary_10_1177_14644207231209241 crossref_primary_10_3390_ma17122978 crossref_primary_10_1016_j_compstruct_2023_117320 crossref_primary_10_1016_j_jcsr_2023_108201 crossref_primary_10_1016_j_tws_2023_111051 crossref_primary_10_1016_j_istruc_2024_108186 crossref_primary_10_1016_j_jcsr_2024_109113 crossref_primary_10_1016_j_jcsr_2024_109254 crossref_primary_10_1016_j_jcsr_2024_108486 |
| Cites_doi | 10.2749/101686611X13049248220609 10.1016/j.jobe.2022.104316 10.1016/j.strusafe.2014.03.004 10.1016/j.istruc.2020.10.048 10.1016/j.istruc.2022.02.003 10.1214/aos/1013203451 10.1016/j.compstruct.2020.113505 10.1016/j.acme.2014.01.006 10.1016/0167-4730(96)00009-4 10.1016/j.jcsr.2020.106482 10.1016/j.istruc.2021.09.060 10.1016/j.compstruct.2019.111332 10.1016/j.engstruct.2021.112067 10.62913/engj.v18i3.368 10.1680/stbu.2005.158.4.243 10.1016/j.jcsr.2021.106856 10.1016/j.conbuildmat.2020.120950 10.1006/jcss.1997.1504 10.1016/j.jcsr.2019.02.024 10.1016/0167-4730(82)90012-1 10.1016/j.engstruct.2021.112109 10.1016/j.engstruct.2009.05.004 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jcsr.2022.107653 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5983 |
| ExternalDocumentID | 10_1016_j_jcsr_2022_107653 S0143974X22005235 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSM SST SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-d4edb74ee28d3c1bc82e052741c1fd5b84bc0c7552a3082ba4856e5469552983 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001026520100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-974X |
| IngestDate | Sat Nov 29 07:22:27 EST 2025 Tue Nov 18 22:22:40 EST 2025 Fri Feb 23 02:38:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structural design Reliability analysis Resistance reduction factor CFST columns Machine learning Boosting algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-d4edb74ee28d3c1bc82e052741c1fd5b84bc0c7552a3082ba4856e5469552983 |
| ORCID | 0000-0002-8977-5130 0000-0002-4461-9548 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jcsr_2022_107653 crossref_primary_10_1016_j_jcsr_2022_107653 elsevier_sciencedirect_doi_10_1016_j_jcsr_2022_107653 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of constructional steel research |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lundberg, Galambos (b44) 1996; 18 Ellingwood, Galambos (b53) 1982; 1 (b51) 2002 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b36) 2011; 12 Honfi (b45) 2014; 50 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b22) 2017; 30 (b49) 2010 Liew, Xiong (b38) 2015 (b55) 2017 Degtyarev, Naser (b33) 2021; 34 Lee, Vo, Thai, Lee, Patel (b13) 2021; 238 Melchers, Beck (b26) 2018 Naser, Thai, Thai (b15) 2021; 34 Drucker (b28) 1997; Vol. 97 Hirakawa, Saburi, Kushima, Kojima (b7) 2014; 3 Friedman (b20) 2001; 29 Ahmadi, Naderpour, Kheyroddin (b14) 2014; 14 (b5) 2017 (b50) 2005 Naser, Alavi (b37) 2021; 2021 Hastie, Tibshirani, Friedman (b29) 2009 (b1) 2016 Nguyen, Vu, Vo, Thai (b31) 2021; 266 Nguyen, Truong, Shin (b32) 2021; 235 Matsumoto, Hosozawa, Narihara, Komuro, Kawamoto (b8) 2014; 3 (b2) 2005 Lundberg, Lee (b39) 2017 Peleg, Sudhölter (b40) 2007 (b3) 2004 Degtyarev, Hicks (b35) 2022 Bartlett, MacGregor (b43) 1996; 93 Ellingwood, Galambos, MacGregor, Cornell (b52) 1980 Vu, Truong, Thai (b12) 2021; 259 Thai, Thai, Ngo, Uy, Kang, Hicks (b27) 2021 (b4) 2014 (b54) 2015 Nguyen, Thai, Kim (b30) 2020; 35 Thai, Thai, Uy, Ngo (b25) 2019; 157 (b6) 1997 Thai (b10) 2022; 38 Chen, Guestrin (b21) 2016 Nowak, Collins (b48) 2012 Endo, Yamanaka, Watnabe, Kageyama, Yoshida, Katsumata, Sano (b9) 2011; 21 Degtyarev, Tsavdaridis (b34) 2022; 51 Tran, Thai, Kim (b11) 2019; 228 Thai, Thai, Ngo, Uy, Kang, Hicks (b24) 2021; 177 Zarringol, Thai, Thai, Patel (b17) 2020; 28 Freund, Schapire (b19) 1997; 55 Galambos (b46) 1981; 18 Hou, Zhou (b16) 2022; 51 Zarringol, Thai, Naser (b18) 2021; 185 Dorogush, Ershov, Gulin (b23) 2018 Beck, de Oliveira, De Nardim, ElDebs (b41) 2009; 31 Gulvanessian, Holicky (b47) 2005; 158 Spiegler, Simões da Silva, Vassart, Marques, Popa, Cajot (b42) 2018 Nguyen (10.1016/j.jcsr.2022.107653_b31) 2021; 266 Endo (10.1016/j.jcsr.2022.107653_b9) 2011; 21 Gulvanessian (10.1016/j.jcsr.2022.107653_b47) 2005; 158 (10.1016/j.jcsr.2022.107653_b1) 2016 Spiegler (10.1016/j.jcsr.2022.107653_b42) 2018 Zarringol (10.1016/j.jcsr.2022.107653_b17) 2020; 28 (10.1016/j.jcsr.2022.107653_b50) 2005 (10.1016/j.jcsr.2022.107653_b5) 2017 Thai (10.1016/j.jcsr.2022.107653_b27) 2021 Naser (10.1016/j.jcsr.2022.107653_b37) 2021; 2021 Friedman (10.1016/j.jcsr.2022.107653_b20) 2001; 29 Ahmadi (10.1016/j.jcsr.2022.107653_b14) 2014; 14 Bartlett (10.1016/j.jcsr.2022.107653_b43) 1996; 93 (10.1016/j.jcsr.2022.107653_b54) 2015 (10.1016/j.jcsr.2022.107653_b49) 2010 Peleg (10.1016/j.jcsr.2022.107653_b40) 2007 Dorogush (10.1016/j.jcsr.2022.107653_b23) 2018 Thai (10.1016/j.jcsr.2022.107653_b10) 2022; 38 Lundberg (10.1016/j.jcsr.2022.107653_b44) 1996; 18 Nowak (10.1016/j.jcsr.2022.107653_b48) 2012 Lee (10.1016/j.jcsr.2022.107653_b13) 2021; 238 Freund (10.1016/j.jcsr.2022.107653_b19) 1997; 55 Hastie (10.1016/j.jcsr.2022.107653_b29) 2009 (10.1016/j.jcsr.2022.107653_b51) 2002 (10.1016/j.jcsr.2022.107653_b4) 2014 Ke (10.1016/j.jcsr.2022.107653_b22) 2017; 30 Pedregosa (10.1016/j.jcsr.2022.107653_b36) 2011; 12 Thai (10.1016/j.jcsr.2022.107653_b25) 2019; 157 Drucker (10.1016/j.jcsr.2022.107653_b28) 1997; Vol. 97 Zarringol (10.1016/j.jcsr.2022.107653_b18) 2021; 185 Naser (10.1016/j.jcsr.2022.107653_b15) 2021; 34 Chen (10.1016/j.jcsr.2022.107653_b21) 2016 (10.1016/j.jcsr.2022.107653_b2) 2005 Hirakawa (10.1016/j.jcsr.2022.107653_b7) 2014; 3 Nguyen (10.1016/j.jcsr.2022.107653_b32) 2021; 235 Galambos (10.1016/j.jcsr.2022.107653_b46) 1981; 18 Ellingwood (10.1016/j.jcsr.2022.107653_b52) 1980 Lundberg (10.1016/j.jcsr.2022.107653_b39) 2017 Ellingwood (10.1016/j.jcsr.2022.107653_b53) 1982; 1 Thai (10.1016/j.jcsr.2022.107653_b24) 2021; 177 Tran (10.1016/j.jcsr.2022.107653_b11) 2019; 228 Nguyen (10.1016/j.jcsr.2022.107653_b30) 2020; 35 Degtyarev (10.1016/j.jcsr.2022.107653_b35) 2022 (10.1016/j.jcsr.2022.107653_b3) 2004 Beck (10.1016/j.jcsr.2022.107653_b41) 2009; 31 Matsumoto (10.1016/j.jcsr.2022.107653_b8) 2014; 3 Liew (10.1016/j.jcsr.2022.107653_b38) 2015 Degtyarev (10.1016/j.jcsr.2022.107653_b34) 2022; 51 Degtyarev (10.1016/j.jcsr.2022.107653_b33) 2021; 34 (10.1016/j.jcsr.2022.107653_b6) 1997 Melchers (10.1016/j.jcsr.2022.107653_b26) 2018 Honfi (10.1016/j.jcsr.2022.107653_b45) 2014; 50 Vu (10.1016/j.jcsr.2022.107653_b12) 2021; 259 Hou (10.1016/j.jcsr.2022.107653_b16) 2022; 51 (10.1016/j.jcsr.2022.107653_b55) 2017 |
| References_xml | – year: 2010 ident: b49 article-title: Minimum Design Loads for Buildings and Other Structures – year: 2009 ident: b29 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 14 start-page: 510 year: 2014 end-page: 517 ident: b14 article-title: Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load publication-title: Arch. Civ. Mech. Eng. – year: 2015 ident: b38 article-title: Design Guide for Concrete Filled Tubular Members with High Strength Materials - an Extension of Eurocode 4 Method To C90/105 Concrete and S550 Steel – year: 2022 ident: b35 article-title: Reliability-based design shear resistance of headed studs in solid slabs predicted by machine learning models – year: 1980 ident: b52 article-title: Development of a Probability Based Load Criterion for American National Standard A58: Building Code Requirements for Minimum Design Loads in Buildings and Other Structures – volume: 21 start-page: 508 year: 2011 end-page: 513 ident: b9 article-title: Advanced technologies applied at the new “Techno Station” building in Tokyo, Japan publication-title: Struct. Eng. Int. – volume: 18 start-page: 74 year: 1981 end-page: 82 ident: b46 article-title: Load and resistance factor design publication-title: AISC Eng. J. – volume: 3 start-page: 35 year: 2014 end-page: 48 ident: b7 article-title: Performance-based design of 300 m Vertical City “ABENO HARUKAS” publication-title: Int. J. High-Rise Build. – year: 2005 ident: b2 article-title: Steel, Concrete and Composite Bridges. Part 5: Code of Practice for Design of Composite Bridges – volume: 185 year: 2021 ident: b18 article-title: Application of machine learning models for designing CFCFST columns publication-title: J. Construct. Steel Res. – volume: 93 start-page: 158 year: 1996 end-page: 168 ident: b43 article-title: Statistical analysis of the compressive strength of concrete in structures publication-title: ACI Mater. J. – year: 2017 ident: b5 article-title: Australian/New Zealand Standard. Composite Structures - Composite Steel-Concrete Construction in Buildings – volume: 30 start-page: 3146 year: 2017 end-page: 3154 ident: b22 article-title: LightGBM: A highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – volume: 238 year: 2021 ident: b13 article-title: Strength prediction of concrete-filled steel tubular columns using categorical gradient boosting algorithm publication-title: Eng. Struct. – volume: 28 start-page: 2203 year: 2020 end-page: 2220 ident: b17 article-title: Application of ANN to the design of CFST columns publication-title: Structures – volume: 235 year: 2021 ident: b32 article-title: Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs publication-title: Eng. Struct. – year: 2016 ident: b1 article-title: Specification for Structural Steel Buildings – volume: 1 start-page: 15 year: 1982 end-page: 26 ident: b53 article-title: Probability-based criteria for structural design publication-title: Struct. Saf. – volume: 2021 year: 2021 ident: b37 article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences publication-title: Arch. Struct. Constr. – year: 2017 ident: b39 article-title: A unified approach to interpreting model predictions – volume: Vol. 97 start-page: 107 year: 1997 end-page: 115 ident: b28 article-title: Improving regressors using boosting techniques publication-title: ICML – year: 2018 ident: b42 article-title: Standardization of Safety Assessment Procedures Across Brittle to Ductile Failure Modes (SAFEBRICTILE): Final Report – volume: 31 start-page: 2299 year: 2009 end-page: 2308 ident: b41 article-title: Reliability-based evaluation of design code provisions for circular concrete-filled steel columns publication-title: Eng. Struct. – year: 2021 ident: b27 article-title: Concrete-filled steel tubular (CFST) columns database with 3,208 tests – volume: 35 start-page: 415 year: 2020 end-page: 437 ident: b30 article-title: Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network publication-title: Steel Compos. Struct. – volume: 266 year: 2021 ident: b31 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. – year: 2012 ident: b48 article-title: Reliability of Structures – volume: 158 start-page: 243 year: 2005 end-page: 252 ident: b47 article-title: Eurocodes: using reliability analysis to combine action effects publication-title: Proc. Inst. Civ. Eng.-Struct. Build. – year: 1997 ident: b6 article-title: Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b20 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. – start-page: 785 year: 2016 end-page: 794 ident: b21 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2005 ident: b50 article-title: Eurocode: Basis of Structural Design – volume: 51 year: 2022 ident: b16 article-title: Strength prediction of circular CFST columns through advanced machine learning methods publication-title: J. Build. Eng. – year: 2007 ident: b40 article-title: Introduction to the Theory of Cooperative Games – volume: 34 start-page: 3391 year: 2021 end-page: 3403 ident: b33 article-title: Boosting machines for predicting shear strength of CFS channels with staggered web perforations publication-title: Structures – year: 2018 ident: b26 article-title: Structural Reliability Analysis and Prediction – volume: 228 year: 2019 ident: b11 article-title: Application of ANN in predicting ACC of SCFST column publication-title: Compos. Struct. – volume: 50 start-page: 27 year: 2014 end-page: 38 ident: b45 article-title: Serviceability floor loads publication-title: Struct. Saf. – volume: 259 year: 2021 ident: b12 article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm publication-title: Compos. Struct. – year: 2002 ident: b51 article-title: Structural Design Actions - Part 0: General Principles – year: 2004 ident: b3 article-title: Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1-1: General Rules and Rules for Buildings – year: 2017 ident: b55 article-title: General Principles on Reliability for Structures – year: 2014 ident: b4 article-title: Technical Code for Concrete-Filled Steel Tubular Structures – volume: 18 start-page: 169 year: 1996 end-page: 177 ident: b44 article-title: Load and resistance factor design of composite columns publication-title: Struct. Saf. – volume: 177 year: 2021 ident: b24 article-title: Reliability considerations of modern design codes for CFST columns publication-title: J. Construct. Steel Res. – volume: 38 start-page: 448 year: 2022 end-page: 491 ident: b10 article-title: Machine learning for structural engineering: A state-of-the-art review publication-title: Structures – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: b19 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. System Sci. – volume: 51 year: 2022 ident: b34 article-title: Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms publication-title: J. Build. Eng. – year: 2018 ident: b23 article-title: CatBoost: gradient boosting with categorical features support – volume: 3 start-page: 73 year: 2014 end-page: 79 ident: b8 article-title: Structural design of an ultra high-rise building using concrete filled tubular column with 780 N/mm publication-title: Int. J. High-Rise Build. – volume: 157 start-page: 161 year: 2019 end-page: 181 ident: b25 article-title: Concrete-filled steel tubular columns: Test database, design and calibration publication-title: J. Construct. Steel Res. – year: 2015 ident: b54 article-title: General Principles on Reliability for Structures – volume: 34 year: 2021 ident: b15 article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning publication-title: J. Build. Eng. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b36 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 508 issue: 4 year: 2011 ident: 10.1016/j.jcsr.2022.107653_b9 article-title: Advanced technologies applied at the new “Techno Station” building in Tokyo, Japan publication-title: Struct. Eng. Int. doi: 10.2749/101686611X13049248220609 – volume: 51 issn: 2352-7102 year: 2022 ident: 10.1016/j.jcsr.2022.107653_b34 article-title: Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104316 – volume: 2021 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b37 article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences publication-title: Arch. Struct. Constr. – volume: 50 start-page: 27 year: 2014 ident: 10.1016/j.jcsr.2022.107653_b45 article-title: Serviceability floor loads publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.03.004 – year: 2004 ident: 10.1016/j.jcsr.2022.107653_b3 – year: 2022 ident: 10.1016/j.jcsr.2022.107653_b35 – year: 2007 ident: 10.1016/j.jcsr.2022.107653_b40 – volume: 28 start-page: 2203 year: 2020 ident: 10.1016/j.jcsr.2022.107653_b17 article-title: Application of ANN to the design of CFST columns publication-title: Structures doi: 10.1016/j.istruc.2020.10.048 – volume: 38 start-page: 448 year: 2022 ident: 10.1016/j.jcsr.2022.107653_b10 article-title: Machine learning for structural engineering: A state-of-the-art review publication-title: Structures doi: 10.1016/j.istruc.2022.02.003 – volume: 3 start-page: 35 issue: 1 year: 2014 ident: 10.1016/j.jcsr.2022.107653_b7 article-title: Performance-based design of 300 m Vertical City “ABENO HARUKAS” publication-title: Int. J. High-Rise Build. – year: 2016 ident: 10.1016/j.jcsr.2022.107653_b1 – year: 2021 ident: 10.1016/j.jcsr.2022.107653_b27 – year: 2005 ident: 10.1016/j.jcsr.2022.107653_b2 – start-page: 785 year: 2016 ident: 10.1016/j.jcsr.2022.107653_b21 article-title: XGBoost: A scalable tree boosting system – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.jcsr.2022.107653_b20 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – volume: 259 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b12 article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113505 – year: 2017 ident: 10.1016/j.jcsr.2022.107653_b5 – volume: 14 start-page: 510 issue: 3 year: 2014 ident: 10.1016/j.jcsr.2022.107653_b14 article-title: Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load publication-title: Arch. Civ. Mech. Eng. doi: 10.1016/j.acme.2014.01.006 – year: 2005 ident: 10.1016/j.jcsr.2022.107653_b50 – volume: 18 start-page: 169 issue: 2–3 year: 1996 ident: 10.1016/j.jcsr.2022.107653_b44 article-title: Load and resistance factor design of composite columns publication-title: Struct. Saf. doi: 10.1016/0167-4730(96)00009-4 – year: 2010 ident: 10.1016/j.jcsr.2022.107653_b49 – year: 2017 ident: 10.1016/j.jcsr.2022.107653_b39 – volume: 177 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b24 article-title: Reliability considerations of modern design codes for CFST columns publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2020.106482 – volume: 35 start-page: 415 issue: 3 year: 2020 ident: 10.1016/j.jcsr.2022.107653_b30 article-title: Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network publication-title: Steel Compos. Struct. – year: 2018 ident: 10.1016/j.jcsr.2022.107653_b23 – year: 2012 ident: 10.1016/j.jcsr.2022.107653_b48 – volume: 34 start-page: 3391 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b33 article-title: Boosting machines for predicting shear strength of CFS channels with staggered web perforations publication-title: Structures doi: 10.1016/j.istruc.2021.09.060 – year: 2014 ident: 10.1016/j.jcsr.2022.107653_b4 – volume: 34 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b15 article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning publication-title: J. Build. Eng. – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jcsr.2022.107653_b36 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 51 year: 2022 ident: 10.1016/j.jcsr.2022.107653_b16 article-title: Strength prediction of circular CFST columns through advanced machine learning methods publication-title: J. Build. Eng. – year: 2018 ident: 10.1016/j.jcsr.2022.107653_b26 – year: 2015 ident: 10.1016/j.jcsr.2022.107653_b38 – volume: 228 year: 2019 ident: 10.1016/j.jcsr.2022.107653_b11 article-title: Application of ANN in predicting ACC of SCFST column publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111332 – year: 2002 ident: 10.1016/j.jcsr.2022.107653_b51 – year: 2017 ident: 10.1016/j.jcsr.2022.107653_b55 – volume: 235 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b32 article-title: Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112067 – volume: 93 start-page: 158 issue: 2 year: 1996 ident: 10.1016/j.jcsr.2022.107653_b43 article-title: Statistical analysis of the compressive strength of concrete in structures publication-title: ACI Mater. J. – volume: Vol. 97 start-page: 107 year: 1997 ident: 10.1016/j.jcsr.2022.107653_b28 article-title: Improving regressors using boosting techniques – volume: 18 start-page: 74 issue: 3 year: 1981 ident: 10.1016/j.jcsr.2022.107653_b46 article-title: Load and resistance factor design publication-title: AISC Eng. J. doi: 10.62913/engj.v18i3.368 – year: 2015 ident: 10.1016/j.jcsr.2022.107653_b54 – volume: 158 start-page: 243 issue: 4 year: 2005 ident: 10.1016/j.jcsr.2022.107653_b47 article-title: Eurocodes: using reliability analysis to combine action effects publication-title: Proc. Inst. Civ. Eng.-Struct. Build. doi: 10.1680/stbu.2005.158.4.243 – volume: 185 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b18 article-title: Application of machine learning models for designing CFCFST columns publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2021.106856 – year: 1980 ident: 10.1016/j.jcsr.2022.107653_b52 – volume: 3 start-page: 73 issue: 1 year: 2014 ident: 10.1016/j.jcsr.2022.107653_b8 article-title: Structural design of an ultra high-rise building using concrete filled tubular column with 780 N/mm2 class high-strength steel and Fc150 N/mm2 high-strength concrete publication-title: Int. J. High-Rise Build. – volume: 266 issn: 0950-0618 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b31 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120950 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.jcsr.2022.107653_b19 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. System Sci. doi: 10.1006/jcss.1997.1504 – volume: 30 start-page: 3146 year: 2017 ident: 10.1016/j.jcsr.2022.107653_b22 article-title: LightGBM: A highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – year: 2009 ident: 10.1016/j.jcsr.2022.107653_b29 – volume: 157 start-page: 161 year: 2019 ident: 10.1016/j.jcsr.2022.107653_b25 article-title: Concrete-filled steel tubular columns: Test database, design and calibration publication-title: J. Construct. Steel Res. doi: 10.1016/j.jcsr.2019.02.024 – year: 1997 ident: 10.1016/j.jcsr.2022.107653_b6 – volume: 1 start-page: 15 issue: 1 year: 1982 ident: 10.1016/j.jcsr.2022.107653_b53 article-title: Probability-based criteria for structural design publication-title: Struct. Saf. doi: 10.1016/0167-4730(82)90012-1 – volume: 238 year: 2021 ident: 10.1016/j.jcsr.2022.107653_b13 article-title: Strength prediction of concrete-filled steel tubular columns using categorical gradient boosting algorithm publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112109 – volume: 31 start-page: 2299 issue: 10 year: 2009 ident: 10.1016/j.jcsr.2022.107653_b41 article-title: Reliability-based evaluation of design code provisions for circular concrete-filled steel columns publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2009.05.004 – year: 2018 ident: 10.1016/j.jcsr.2022.107653_b42 |
| SSID | ssj0008938 |
| Score | 2.4345686 |
| Snippet | By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107653 |
| SubjectTerms | Boosting algorithms CFST columns Machine learning Reliability analysis Resistance reduction factor Structural design |
| Title | Design of concrete-filled steel tubular columns using data-driven methods |
| URI | https://dx.doi.org/10.1016/j.jcsr.2022.107653 |
| Volume | 200 |
| WOSCitedRecordID | wos001026520100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008938 issn: 0143-974X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH2S9IUOvRkFr2TZ8jE0CUkPoYcl7M3oWXYJ3mXtDcm_7-ix3mWbhrTQizHCss180ng8fPMNQl9zZZQRzsFGspIUyjgieGlJ5WyuS644LWVoNlFdXorJpP6RmnF2oZ1A1bbi9rZe_FeoYQzA9qWzfwH3cFMYgHMAHY4AOxwfBfxJ4GREungLMWFvifMFfyYDQO111q9UoJ5q75faLluFbIFnihKz9L4vdZXu_hC36vlGdDYUm_ibJs2gIbd8Yn_2d3IJ7-55tL4xyfQuuzra0FBiF-zz1YqM5XQ79UDZTuphqInZEJBiipIR-EuZxC9MdKuiYoTXsWXN2u9GidLffXhMJ8yOZrrzgq2UwlBVRknhHW1sT01j_lk0CEgx_hTt04rX4N72jy9OJ9-HjzKEZSKyWePLpfqpSPXbfdL9McpW3DF-hV4mw-PjCPRr9MS2b9CLLRnJt-giQo7nDu9AjgM6OEGOE-Q4QI63IMcJ8ndofHY6_nZOUosMolme98QU1qiqsJYKw_RIaUEtGALCRD1yhitRKJ3rinMqvS6RkoXfibwoaxgCPN6jvXbe2gOErWF1KWsrtI_4JMw0NHeOSc65hZ-GQzRa26TRST7edzG5btY8wVnj7dh4OzbRjocoG-YsonjKg1fztambFP7FsK6BlfHAvA__OO8jer5Z1J_QHmwd-xk90zf9tFt-SQvoF_l1gTQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+concrete-filled+steel+tubular+columns+using+data-driven+methods&rft.jtitle=Journal+of+constructional+steel+research&rft.au=Degtyarev%2C+Vitaliy+V.&rft.au=Thai%2C+Huu-Tai&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0143-974X&rft.eissn=1873-5983&rft.volume=200&rft_id=info:doi/10.1016%2Fj.jcsr.2022.107653&rft.externalDocID=S0143974X22005235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-974X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-974X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-974X&client=summon |