Design of concrete-filled steel tubular columns using data-driven methods

By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the composite construction of bridges and high-rise buildings. However, their design equations are more complicated than those of steel and reinforced c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of constructional steel research Ročník 200; s. 107653
Hlavní autori: Degtyarev, Vitaliy V., Thai, Huu-Tai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2023
Predmet:
ISSN:0143-974X, 1873-5983
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the composite construction of bridges and high-rise buildings. However, their design equations are more complicated than those of steel and reinforced concrete (RC) structures, especially for circular columns under eccentric loading. Therefore, the use of emerging data-driven approaches will help structural engineers ease the design process. This paper explores the use of data-driven design methods as alternatives to conventional mechanics-based design models. Five boosting algorithms, including adaptive boosting (AdaBoost), gradient boosting machine (GBR), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and categorical gradient boosting (CatBoost), are employed to develop predictive models for four different types of CFST columns (i.e., circular columns, rectangular columns, circular beam–columns, and rectangular beam–columns). These predictive models are trained using the most up-to-date and comprehensive database collected from over 3,200 test specimens. Reliability analysis is conducted to calibrate the resistance reduction factors for three different design frameworks (i.e., the US, Eurocode, and Australian frameworks) to ensure that the newly developed predictive models meet the target reliability indices required by different design frameworks. A web-based design tool is also developed to promote the practical use of data-driven methods for the design of CFST columns. •ML models for predicting the resistance of CFST columns and beam–columns were created.•The models were based on five boosting algorithms and a 3,208-test database.•The models outperformed the design provisions of AISC 360, EC 4, and AS/NZS 2327.•Resistance factors were determined from reliability analyses for three design frameworks.•A web application based on the ML models was created and deployed to the cloud.
AbstractList By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the composite construction of bridges and high-rise buildings. However, their design equations are more complicated than those of steel and reinforced concrete (RC) structures, especially for circular columns under eccentric loading. Therefore, the use of emerging data-driven approaches will help structural engineers ease the design process. This paper explores the use of data-driven design methods as alternatives to conventional mechanics-based design models. Five boosting algorithms, including adaptive boosting (AdaBoost), gradient boosting machine (GBR), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and categorical gradient boosting (CatBoost), are employed to develop predictive models for four different types of CFST columns (i.e., circular columns, rectangular columns, circular beam–columns, and rectangular beam–columns). These predictive models are trained using the most up-to-date and comprehensive database collected from over 3,200 test specimens. Reliability analysis is conducted to calibrate the resistance reduction factors for three different design frameworks (i.e., the US, Eurocode, and Australian frameworks) to ensure that the newly developed predictive models meet the target reliability indices required by different design frameworks. A web-based design tool is also developed to promote the practical use of data-driven methods for the design of CFST columns. •ML models for predicting the resistance of CFST columns and beam–columns were created.•The models were based on five boosting algorithms and a 3,208-test database.•The models outperformed the design provisions of AISC 360, EC 4, and AS/NZS 2327.•Resistance factors were determined from reliability analyses for three design frameworks.•A web application based on the ML models was created and deployed to the cloud.
ArticleNumber 107653
Author Thai, Huu-Tai
Degtyarev, Vitaliy V.
Author_xml – sequence: 1
  givenname: Vitaliy V.
  orcidid: 0000-0002-8977-5130
  surname: Degtyarev
  fullname: Degtyarev, Vitaliy V.
  email: vitaliy.degtyarev@newmill.com, vitdegtyarev@yahoo.com
  organization: New Millennium Building Systems, LLC, 3700 Forest Dr. Suite 501, Columbia, SC 29204, United States of America
– sequence: 2
  givenname: Huu-Tai
  orcidid: 0000-0002-4461-9548
  surname: Thai
  fullname: Thai, Huu-Tai
  email: tai.thai@unimelb.edu.au
  organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
BookMark eNp9kL1qwzAUhUVJoUnaF-jkF3CqX1uGLiX9CwS6ZOgmZOk6lXGkIsmBvn0d0qlDpgvn8h043wLNfPCA0D3BK4JJ9dCvepPiimJKp6CuBLtCcyJrVopGshmaY8JZ2dT88wYtUuoxxrJhco42z5Dc3hehK0zwJkKGsnPDALZIGWAo8tiOg47TdxgPPhVjcn5fWJ11aaM7gi8OkL-CTbfoutNDgru_u0S715fd-r3cfrxt1k_b0jCMc2k52LbmAFRaZkhrJAUsaM2JIZ0VreStwaYWgmqGJW01l6ICwatmiqYtSyTPtSaGlCJ0yrissws-R-0GRbA6GVG9OhlRJyPqbGRC6T_0O7qDjj-XocczBNOmo4OoknHgDVgXwWRlg7uE_wIdPH0G
CitedBy_id crossref_primary_10_1016_j_engstruct_2025_119652
crossref_primary_10_1016_j_engstruct_2024_117593
crossref_primary_10_1007_s43452_023_00734_3
crossref_primary_10_1016_j_istruc_2025_109759
crossref_primary_10_3390_buildings14103244
crossref_primary_10_1016_j_jcsr_2024_109085
crossref_primary_10_1016_j_tws_2024_112367
crossref_primary_10_1177_14644207231209241
crossref_primary_10_3390_ma17122978
crossref_primary_10_1016_j_compstruct_2023_117320
crossref_primary_10_1016_j_jcsr_2023_108201
crossref_primary_10_1016_j_tws_2023_111051
crossref_primary_10_1016_j_istruc_2024_108186
crossref_primary_10_1016_j_jcsr_2024_109113
crossref_primary_10_1016_j_jcsr_2024_109254
crossref_primary_10_1016_j_jcsr_2024_108486
Cites_doi 10.2749/101686611X13049248220609
10.1016/j.jobe.2022.104316
10.1016/j.strusafe.2014.03.004
10.1016/j.istruc.2020.10.048
10.1016/j.istruc.2022.02.003
10.1214/aos/1013203451
10.1016/j.compstruct.2020.113505
10.1016/j.acme.2014.01.006
10.1016/0167-4730(96)00009-4
10.1016/j.jcsr.2020.106482
10.1016/j.istruc.2021.09.060
10.1016/j.compstruct.2019.111332
10.1016/j.engstruct.2021.112067
10.62913/engj.v18i3.368
10.1680/stbu.2005.158.4.243
10.1016/j.jcsr.2021.106856
10.1016/j.conbuildmat.2020.120950
10.1006/jcss.1997.1504
10.1016/j.jcsr.2019.02.024
10.1016/0167-4730(82)90012-1
10.1016/j.engstruct.2021.112109
10.1016/j.engstruct.2009.05.004
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jcsr.2022.107653
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5983
ExternalDocumentID 10_1016_j_jcsr_2022_107653
S0143974X22005235
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-d4edb74ee28d3c1bc82e052741c1fd5b84bc0c7552a3082ba4856e5469552983
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001026520100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-974X
IngestDate Sat Nov 29 07:22:27 EST 2025
Tue Nov 18 22:22:40 EST 2025
Fri Feb 23 02:38:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural design
Reliability analysis
Resistance reduction factor
CFST columns
Machine learning
Boosting algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d4edb74ee28d3c1bc82e052741c1fd5b84bc0c7552a3082ba4856e5469552983
ORCID 0000-0002-8977-5130
0000-0002-4461-9548
ParticipantIDs crossref_citationtrail_10_1016_j_jcsr_2022_107653
crossref_primary_10_1016_j_jcsr_2022_107653
elsevier_sciencedirect_doi_10_1016_j_jcsr_2022_107653
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Journal of constructional steel research
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lundberg, Galambos (b44) 1996; 18
Ellingwood, Galambos (b53) 1982; 1
(b51) 2002
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b36) 2011; 12
Honfi (b45) 2014; 50
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b22) 2017; 30
(b49) 2010
Liew, Xiong (b38) 2015
(b55) 2017
Degtyarev, Naser (b33) 2021; 34
Lee, Vo, Thai, Lee, Patel (b13) 2021; 238
Melchers, Beck (b26) 2018
Naser, Thai, Thai (b15) 2021; 34
Drucker (b28) 1997; Vol. 97
Hirakawa, Saburi, Kushima, Kojima (b7) 2014; 3
Friedman (b20) 2001; 29
Ahmadi, Naderpour, Kheyroddin (b14) 2014; 14
(b5) 2017
(b50) 2005
Naser, Alavi (b37) 2021; 2021
Hastie, Tibshirani, Friedman (b29) 2009
(b1) 2016
Nguyen, Vu, Vo, Thai (b31) 2021; 266
Nguyen, Truong, Shin (b32) 2021; 235
Matsumoto, Hosozawa, Narihara, Komuro, Kawamoto (b8) 2014; 3
(b2) 2005
Lundberg, Lee (b39) 2017
Peleg, Sudhölter (b40) 2007
(b3) 2004
Degtyarev, Hicks (b35) 2022
Bartlett, MacGregor (b43) 1996; 93
Ellingwood, Galambos, MacGregor, Cornell (b52) 1980
Vu, Truong, Thai (b12) 2021; 259
Thai, Thai, Ngo, Uy, Kang, Hicks (b27) 2021
(b4) 2014
(b54) 2015
Nguyen, Thai, Kim (b30) 2020; 35
Thai, Thai, Uy, Ngo (b25) 2019; 157
(b6) 1997
Thai (b10) 2022; 38
Chen, Guestrin (b21) 2016
Nowak, Collins (b48) 2012
Endo, Yamanaka, Watnabe, Kageyama, Yoshida, Katsumata, Sano (b9) 2011; 21
Degtyarev, Tsavdaridis (b34) 2022; 51
Tran, Thai, Kim (b11) 2019; 228
Thai, Thai, Ngo, Uy, Kang, Hicks (b24) 2021; 177
Zarringol, Thai, Thai, Patel (b17) 2020; 28
Freund, Schapire (b19) 1997; 55
Galambos (b46) 1981; 18
Hou, Zhou (b16) 2022; 51
Zarringol, Thai, Naser (b18) 2021; 185
Dorogush, Ershov, Gulin (b23) 2018
Beck, de Oliveira, De Nardim, ElDebs (b41) 2009; 31
Gulvanessian, Holicky (b47) 2005; 158
Spiegler, Simões da Silva, Vassart, Marques, Popa, Cajot (b42) 2018
Nguyen (10.1016/j.jcsr.2022.107653_b31) 2021; 266
Endo (10.1016/j.jcsr.2022.107653_b9) 2011; 21
Gulvanessian (10.1016/j.jcsr.2022.107653_b47) 2005; 158
(10.1016/j.jcsr.2022.107653_b1) 2016
Spiegler (10.1016/j.jcsr.2022.107653_b42) 2018
Zarringol (10.1016/j.jcsr.2022.107653_b17) 2020; 28
(10.1016/j.jcsr.2022.107653_b50) 2005
(10.1016/j.jcsr.2022.107653_b5) 2017
Thai (10.1016/j.jcsr.2022.107653_b27) 2021
Naser (10.1016/j.jcsr.2022.107653_b37) 2021; 2021
Friedman (10.1016/j.jcsr.2022.107653_b20) 2001; 29
Ahmadi (10.1016/j.jcsr.2022.107653_b14) 2014; 14
Bartlett (10.1016/j.jcsr.2022.107653_b43) 1996; 93
(10.1016/j.jcsr.2022.107653_b54) 2015
(10.1016/j.jcsr.2022.107653_b49) 2010
Peleg (10.1016/j.jcsr.2022.107653_b40) 2007
Dorogush (10.1016/j.jcsr.2022.107653_b23) 2018
Thai (10.1016/j.jcsr.2022.107653_b10) 2022; 38
Lundberg (10.1016/j.jcsr.2022.107653_b44) 1996; 18
Nowak (10.1016/j.jcsr.2022.107653_b48) 2012
Lee (10.1016/j.jcsr.2022.107653_b13) 2021; 238
Freund (10.1016/j.jcsr.2022.107653_b19) 1997; 55
Hastie (10.1016/j.jcsr.2022.107653_b29) 2009
(10.1016/j.jcsr.2022.107653_b51) 2002
(10.1016/j.jcsr.2022.107653_b4) 2014
Ke (10.1016/j.jcsr.2022.107653_b22) 2017; 30
Pedregosa (10.1016/j.jcsr.2022.107653_b36) 2011; 12
Thai (10.1016/j.jcsr.2022.107653_b25) 2019; 157
Drucker (10.1016/j.jcsr.2022.107653_b28) 1997; Vol. 97
Zarringol (10.1016/j.jcsr.2022.107653_b18) 2021; 185
Naser (10.1016/j.jcsr.2022.107653_b15) 2021; 34
Chen (10.1016/j.jcsr.2022.107653_b21) 2016
(10.1016/j.jcsr.2022.107653_b2) 2005
Hirakawa (10.1016/j.jcsr.2022.107653_b7) 2014; 3
Nguyen (10.1016/j.jcsr.2022.107653_b32) 2021; 235
Galambos (10.1016/j.jcsr.2022.107653_b46) 1981; 18
Ellingwood (10.1016/j.jcsr.2022.107653_b52) 1980
Lundberg (10.1016/j.jcsr.2022.107653_b39) 2017
Ellingwood (10.1016/j.jcsr.2022.107653_b53) 1982; 1
Thai (10.1016/j.jcsr.2022.107653_b24) 2021; 177
Tran (10.1016/j.jcsr.2022.107653_b11) 2019; 228
Nguyen (10.1016/j.jcsr.2022.107653_b30) 2020; 35
Degtyarev (10.1016/j.jcsr.2022.107653_b35) 2022
(10.1016/j.jcsr.2022.107653_b3) 2004
Beck (10.1016/j.jcsr.2022.107653_b41) 2009; 31
Matsumoto (10.1016/j.jcsr.2022.107653_b8) 2014; 3
Liew (10.1016/j.jcsr.2022.107653_b38) 2015
Degtyarev (10.1016/j.jcsr.2022.107653_b34) 2022; 51
Degtyarev (10.1016/j.jcsr.2022.107653_b33) 2021; 34
(10.1016/j.jcsr.2022.107653_b6) 1997
Melchers (10.1016/j.jcsr.2022.107653_b26) 2018
Honfi (10.1016/j.jcsr.2022.107653_b45) 2014; 50
Vu (10.1016/j.jcsr.2022.107653_b12) 2021; 259
Hou (10.1016/j.jcsr.2022.107653_b16) 2022; 51
(10.1016/j.jcsr.2022.107653_b55) 2017
References_xml – year: 2010
  ident: b49
  article-title: Minimum Design Loads for Buildings and Other Structures
– year: 2009
  ident: b29
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 14
  start-page: 510
  year: 2014
  end-page: 517
  ident: b14
  article-title: Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load
  publication-title: Arch. Civ. Mech. Eng.
– year: 2015
  ident: b38
  article-title: Design Guide for Concrete Filled Tubular Members with High Strength Materials - an Extension of Eurocode 4 Method To C90/105 Concrete and S550 Steel
– year: 2022
  ident: b35
  article-title: Reliability-based design shear resistance of headed studs in solid slabs predicted by machine learning models
– year: 1980
  ident: b52
  article-title: Development of a Probability Based Load Criterion for American National Standard A58: Building Code Requirements for Minimum Design Loads in Buildings and Other Structures
– volume: 21
  start-page: 508
  year: 2011
  end-page: 513
  ident: b9
  article-title: Advanced technologies applied at the new “Techno Station” building in Tokyo, Japan
  publication-title: Struct. Eng. Int.
– volume: 18
  start-page: 74
  year: 1981
  end-page: 82
  ident: b46
  article-title: Load and resistance factor design
  publication-title: AISC Eng. J.
– volume: 3
  start-page: 35
  year: 2014
  end-page: 48
  ident: b7
  article-title: Performance-based design of 300 m Vertical City “ABENO HARUKAS”
  publication-title: Int. J. High-Rise Build.
– year: 2005
  ident: b2
  article-title: Steel, Concrete and Composite Bridges. Part 5: Code of Practice for Design of Composite Bridges
– volume: 185
  year: 2021
  ident: b18
  article-title: Application of machine learning models for designing CFCFST columns
  publication-title: J. Construct. Steel Res.
– volume: 93
  start-page: 158
  year: 1996
  end-page: 168
  ident: b43
  article-title: Statistical analysis of the compressive strength of concrete in structures
  publication-title: ACI Mater. J.
– year: 2017
  ident: b5
  article-title: Australian/New Zealand Standard. Composite Structures - Composite Steel-Concrete Construction in Buildings
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: b22
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 238
  year: 2021
  ident: b13
  article-title: Strength prediction of concrete-filled steel tubular columns using categorical gradient boosting algorithm
  publication-title: Eng. Struct.
– volume: 28
  start-page: 2203
  year: 2020
  end-page: 2220
  ident: b17
  article-title: Application of ANN to the design of CFST columns
  publication-title: Structures
– volume: 235
  year: 2021
  ident: b32
  article-title: Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs
  publication-title: Eng. Struct.
– year: 2016
  ident: b1
  article-title: Specification for Structural Steel Buildings
– volume: 1
  start-page: 15
  year: 1982
  end-page: 26
  ident: b53
  article-title: Probability-based criteria for structural design
  publication-title: Struct. Saf.
– volume: 2021
  year: 2021
  ident: b37
  article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences
  publication-title: Arch. Struct. Constr.
– year: 2017
  ident: b39
  article-title: A unified approach to interpreting model predictions
– volume: Vol. 97
  start-page: 107
  year: 1997
  end-page: 115
  ident: b28
  article-title: Improving regressors using boosting techniques
  publication-title: ICML
– year: 2018
  ident: b42
  article-title: Standardization of Safety Assessment Procedures Across Brittle to Ductile Failure Modes (SAFEBRICTILE): Final Report
– volume: 31
  start-page: 2299
  year: 2009
  end-page: 2308
  ident: b41
  article-title: Reliability-based evaluation of design code provisions for circular concrete-filled steel columns
  publication-title: Eng. Struct.
– year: 2021
  ident: b27
  article-title: Concrete-filled steel tubular (CFST) columns database with 3,208 tests
– volume: 35
  start-page: 415
  year: 2020
  end-page: 437
  ident: b30
  article-title: Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network
  publication-title: Steel Compos. Struct.
– volume: 266
  year: 2021
  ident: b31
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
– year: 2012
  ident: b48
  article-title: Reliability of Structures
– volume: 158
  start-page: 243
  year: 2005
  end-page: 252
  ident: b47
  article-title: Eurocodes: using reliability analysis to combine action effects
  publication-title: Proc. Inst. Civ. Eng.-Struct. Build.
– year: 1997
  ident: b6
  article-title: Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b20
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b21
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2005
  ident: b50
  article-title: Eurocode: Basis of Structural Design
– volume: 51
  year: 2022
  ident: b16
  article-title: Strength prediction of circular CFST columns through advanced machine learning methods
  publication-title: J. Build. Eng.
– year: 2007
  ident: b40
  article-title: Introduction to the Theory of Cooperative Games
– volume: 34
  start-page: 3391
  year: 2021
  end-page: 3403
  ident: b33
  article-title: Boosting machines for predicting shear strength of CFS channels with staggered web perforations
  publication-title: Structures
– year: 2018
  ident: b26
  article-title: Structural Reliability Analysis and Prediction
– volume: 228
  year: 2019
  ident: b11
  article-title: Application of ANN in predicting ACC of SCFST column
  publication-title: Compos. Struct.
– volume: 50
  start-page: 27
  year: 2014
  end-page: 38
  ident: b45
  article-title: Serviceability floor loads
  publication-title: Struct. Saf.
– volume: 259
  year: 2021
  ident: b12
  article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm
  publication-title: Compos. Struct.
– year: 2002
  ident: b51
  article-title: Structural Design Actions - Part 0: General Principles
– year: 2004
  ident: b3
  article-title: Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1-1: General Rules and Rules for Buildings
– year: 2017
  ident: b55
  article-title: General Principles on Reliability for Structures
– year: 2014
  ident: b4
  article-title: Technical Code for Concrete-Filled Steel Tubular Structures
– volume: 18
  start-page: 169
  year: 1996
  end-page: 177
  ident: b44
  article-title: Load and resistance factor design of composite columns
  publication-title: Struct. Saf.
– volume: 177
  year: 2021
  ident: b24
  article-title: Reliability considerations of modern design codes for CFST columns
  publication-title: J. Construct. Steel Res.
– volume: 38
  start-page: 448
  year: 2022
  end-page: 491
  ident: b10
  article-title: Machine learning for structural engineering: A state-of-the-art review
  publication-title: Structures
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b19
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
– volume: 51
  year: 2022
  ident: b34
  article-title: Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms
  publication-title: J. Build. Eng.
– year: 2018
  ident: b23
  article-title: CatBoost: gradient boosting with categorical features support
– volume: 3
  start-page: 73
  year: 2014
  end-page: 79
  ident: b8
  article-title: Structural design of an ultra high-rise building using concrete filled tubular column with 780 N/mm
  publication-title: Int. J. High-Rise Build.
– volume: 157
  start-page: 161
  year: 2019
  end-page: 181
  ident: b25
  article-title: Concrete-filled steel tubular columns: Test database, design and calibration
  publication-title: J. Construct. Steel Res.
– year: 2015
  ident: b54
  article-title: General Principles on Reliability for Structures
– volume: 34
  year: 2021
  ident: b15
  article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning
  publication-title: J. Build. Eng.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b36
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 508
  issue: 4
  year: 2011
  ident: 10.1016/j.jcsr.2022.107653_b9
  article-title: Advanced technologies applied at the new “Techno Station” building in Tokyo, Japan
  publication-title: Struct. Eng. Int.
  doi: 10.2749/101686611X13049248220609
– volume: 51
  issn: 2352-7102
  year: 2022
  ident: 10.1016/j.jcsr.2022.107653_b34
  article-title: Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104316
– volume: 2021
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b37
  article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences
  publication-title: Arch. Struct. Constr.
– volume: 50
  start-page: 27
  year: 2014
  ident: 10.1016/j.jcsr.2022.107653_b45
  article-title: Serviceability floor loads
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.03.004
– year: 2004
  ident: 10.1016/j.jcsr.2022.107653_b3
– year: 2022
  ident: 10.1016/j.jcsr.2022.107653_b35
– year: 2007
  ident: 10.1016/j.jcsr.2022.107653_b40
– volume: 28
  start-page: 2203
  year: 2020
  ident: 10.1016/j.jcsr.2022.107653_b17
  article-title: Application of ANN to the design of CFST columns
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.10.048
– volume: 38
  start-page: 448
  year: 2022
  ident: 10.1016/j.jcsr.2022.107653_b10
  article-title: Machine learning for structural engineering: A state-of-the-art review
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.02.003
– volume: 3
  start-page: 35
  issue: 1
  year: 2014
  ident: 10.1016/j.jcsr.2022.107653_b7
  article-title: Performance-based design of 300 m Vertical City “ABENO HARUKAS”
  publication-title: Int. J. High-Rise Build.
– year: 2016
  ident: 10.1016/j.jcsr.2022.107653_b1
– year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b27
– year: 2005
  ident: 10.1016/j.jcsr.2022.107653_b2
– start-page: 785
  year: 2016
  ident: 10.1016/j.jcsr.2022.107653_b21
  article-title: XGBoost: A scalable tree boosting system
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.jcsr.2022.107653_b20
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– volume: 259
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b12
  article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113505
– year: 2017
  ident: 10.1016/j.jcsr.2022.107653_b5
– volume: 14
  start-page: 510
  issue: 3
  year: 2014
  ident: 10.1016/j.jcsr.2022.107653_b14
  article-title: Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2014.01.006
– year: 2005
  ident: 10.1016/j.jcsr.2022.107653_b50
– volume: 18
  start-page: 169
  issue: 2–3
  year: 1996
  ident: 10.1016/j.jcsr.2022.107653_b44
  article-title: Load and resistance factor design of composite columns
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(96)00009-4
– year: 2010
  ident: 10.1016/j.jcsr.2022.107653_b49
– year: 2017
  ident: 10.1016/j.jcsr.2022.107653_b39
– volume: 177
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b24
  article-title: Reliability considerations of modern design codes for CFST columns
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2020.106482
– volume: 35
  start-page: 415
  issue: 3
  year: 2020
  ident: 10.1016/j.jcsr.2022.107653_b30
  article-title: Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network
  publication-title: Steel Compos. Struct.
– year: 2018
  ident: 10.1016/j.jcsr.2022.107653_b23
– year: 2012
  ident: 10.1016/j.jcsr.2022.107653_b48
– volume: 34
  start-page: 3391
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b33
  article-title: Boosting machines for predicting shear strength of CFS channels with staggered web perforations
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.09.060
– year: 2014
  ident: 10.1016/j.jcsr.2022.107653_b4
– volume: 34
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b15
  article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning
  publication-title: J. Build. Eng.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jcsr.2022.107653_b36
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 51
  year: 2022
  ident: 10.1016/j.jcsr.2022.107653_b16
  article-title: Strength prediction of circular CFST columns through advanced machine learning methods
  publication-title: J. Build. Eng.
– year: 2018
  ident: 10.1016/j.jcsr.2022.107653_b26
– year: 2015
  ident: 10.1016/j.jcsr.2022.107653_b38
– volume: 228
  year: 2019
  ident: 10.1016/j.jcsr.2022.107653_b11
  article-title: Application of ANN in predicting ACC of SCFST column
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111332
– year: 2002
  ident: 10.1016/j.jcsr.2022.107653_b51
– year: 2017
  ident: 10.1016/j.jcsr.2022.107653_b55
– volume: 235
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b32
  article-title: Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112067
– volume: 93
  start-page: 158
  issue: 2
  year: 1996
  ident: 10.1016/j.jcsr.2022.107653_b43
  article-title: Statistical analysis of the compressive strength of concrete in structures
  publication-title: ACI Mater. J.
– volume: Vol. 97
  start-page: 107
  year: 1997
  ident: 10.1016/j.jcsr.2022.107653_b28
  article-title: Improving regressors using boosting techniques
– volume: 18
  start-page: 74
  issue: 3
  year: 1981
  ident: 10.1016/j.jcsr.2022.107653_b46
  article-title: Load and resistance factor design
  publication-title: AISC Eng. J.
  doi: 10.62913/engj.v18i3.368
– year: 2015
  ident: 10.1016/j.jcsr.2022.107653_b54
– volume: 158
  start-page: 243
  issue: 4
  year: 2005
  ident: 10.1016/j.jcsr.2022.107653_b47
  article-title: Eurocodes: using reliability analysis to combine action effects
  publication-title: Proc. Inst. Civ. Eng.-Struct. Build.
  doi: 10.1680/stbu.2005.158.4.243
– volume: 185
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b18
  article-title: Application of machine learning models for designing CFCFST columns
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2021.106856
– year: 1980
  ident: 10.1016/j.jcsr.2022.107653_b52
– volume: 3
  start-page: 73
  issue: 1
  year: 2014
  ident: 10.1016/j.jcsr.2022.107653_b8
  article-title: Structural design of an ultra high-rise building using concrete filled tubular column with 780 N/mm2 class high-strength steel and Fc150 N/mm2 high-strength concrete
  publication-title: Int. J. High-Rise Build.
– volume: 266
  issn: 0950-0618
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b31
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120950
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.jcsr.2022.107653_b19
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 30
  start-page: 3146
  year: 2017
  ident: 10.1016/j.jcsr.2022.107653_b22
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2009
  ident: 10.1016/j.jcsr.2022.107653_b29
– volume: 157
  start-page: 161
  year: 2019
  ident: 10.1016/j.jcsr.2022.107653_b25
  article-title: Concrete-filled steel tubular columns: Test database, design and calibration
  publication-title: J. Construct. Steel Res.
  doi: 10.1016/j.jcsr.2019.02.024
– year: 1997
  ident: 10.1016/j.jcsr.2022.107653_b6
– volume: 1
  start-page: 15
  issue: 1
  year: 1982
  ident: 10.1016/j.jcsr.2022.107653_b53
  article-title: Probability-based criteria for structural design
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(82)90012-1
– volume: 238
  year: 2021
  ident: 10.1016/j.jcsr.2022.107653_b13
  article-title: Strength prediction of concrete-filled steel tubular columns using categorical gradient boosting algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112109
– volume: 31
  start-page: 2299
  issue: 10
  year: 2009
  ident: 10.1016/j.jcsr.2022.107653_b41
  article-title: Reliability-based evaluation of design code provisions for circular concrete-filled steel columns
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2009.05.004
– year: 2018
  ident: 10.1016/j.jcsr.2022.107653_b42
SSID ssj0008938
Score 2.4345686
Snippet By leveraging the merits of structural steel and concrete materials, concrete-filled steel tubular (CFST) structures have been increasingly used in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107653
SubjectTerms Boosting algorithms
CFST columns
Machine learning
Reliability analysis
Resistance reduction factor
Structural design
Title Design of concrete-filled steel tubular columns using data-driven methods
URI https://dx.doi.org/10.1016/j.jcsr.2022.107653
Volume 200
WOSCitedRecordID wos001026520100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5983
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008938
  issn: 0143-974X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH2S9IUOvRkFr2TZ8jE0CUkPoYcl7M3oWXYJ3mXtDcm_7-ix3mWbhrTQizHCss180ng8fPMNQl9zZZQRzsFGspIUyjgieGlJ5WyuS644LWVoNlFdXorJpP6RmnF2oZ1A1bbi9rZe_FeoYQzA9qWzfwH3cFMYgHMAHY4AOxwfBfxJ4GREungLMWFvifMFfyYDQO111q9UoJ5q75faLluFbIFnihKz9L4vdZXu_hC36vlGdDYUm_ibJs2gIbd8Yn_2d3IJ7-55tL4xyfQuuzra0FBiF-zz1YqM5XQ79UDZTuphqInZEJBiipIR-EuZxC9MdKuiYoTXsWXN2u9GidLffXhMJ8yOZrrzgq2UwlBVRknhHW1sT01j_lk0CEgx_hTt04rX4N72jy9OJ9-HjzKEZSKyWePLpfqpSPXbfdL9McpW3DF-hV4mw-PjCPRr9MS2b9CLLRnJt-giQo7nDu9AjgM6OEGOE-Q4QI63IMcJ8ndofHY6_nZOUosMolme98QU1qiqsJYKw_RIaUEtGALCRD1yhitRKJ3rinMqvS6RkoXfibwoaxgCPN6jvXbe2gOErWF1KWsrtI_4JMw0NHeOSc65hZ-GQzRa26TRST7edzG5btY8wVnj7dh4OzbRjocoG-YsonjKg1fztambFP7FsK6BlfHAvA__OO8jer5Z1J_QHmwd-xk90zf9tFt-SQvoF_l1gTQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+concrete-filled+steel+tubular+columns+using+data-driven+methods&rft.jtitle=Journal+of+constructional+steel+research&rft.au=Degtyarev%2C+Vitaliy+V.&rft.au=Thai%2C+Huu-Tai&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0143-974X&rft.eissn=1873-5983&rft.volume=200&rft_id=info:doi/10.1016%2Fj.jcsr.2022.107653&rft.externalDocID=S0143974X22005235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-974X&client=summon