Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation

[Display omitted] •A novel genetic algorithm based on spatial fuzzy C-mean (sFCM) method has been proposed to make compact and well separated clusters.•Fuzzy separation and global compactness are considered the two objective functions to be optimized simultaneously.•The self organizing map (SOM) is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 32; s. 300 - 310
Hlavní autori: Khan, Ahmad, Jaffar, Muhammad Arfan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.07.2015
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •A novel genetic algorithm based on spatial fuzzy C-mean (sFCM) method has been proposed to make compact and well separated clusters.•Fuzzy separation and global compactness are considered the two objective functions to be optimized simultaneously.•The self organizing map (SOM) is used to automatically determine the optimal number of clusters in order to set the length of chromosome.•A progressive technique is used to handle the initialization problem. The algorithm considers some small parts of an image as separate segments which leads to over-segmentation.•A novel merging technique is proposed to address the over-segmentation problem. The grouping of pixels based on some similarity criteria is called image segmentation. In this paper the problem of color image segmentation is considered as a clustering problem and a fixed length genetic algorithm (GA) is used to handle it. The effectiveness of GA depends on the objective function (fitness function) and the initialization of the population. A new objective function is proposed to evaluate the quality of the segmentation and the fitness of a chromosome. In fixed length genetic algorithm the chromosomes have same length, which is normally set by the user. Here, a self organizing map (SOM) is used to determine the number of segments in order to set the length of a chromosome automatically. An opposition based strategy is adopted for the initialization of the population in order to diversify the search process. In some cases the proposed method makes the small regions of an image as separate segments, which leads to noisy segmentation. A simple ad hoc mechanism is devised to refine the noisy segmentation. The qualitative and quantitative results show that the proposed method performs better than the state-of-the-art methods.
AbstractList [Display omitted] •A novel genetic algorithm based on spatial fuzzy C-mean (sFCM) method has been proposed to make compact and well separated clusters.•Fuzzy separation and global compactness are considered the two objective functions to be optimized simultaneously.•The self organizing map (SOM) is used to automatically determine the optimal number of clusters in order to set the length of chromosome.•A progressive technique is used to handle the initialization problem. The algorithm considers some small parts of an image as separate segments which leads to over-segmentation.•A novel merging technique is proposed to address the over-segmentation problem. The grouping of pixels based on some similarity criteria is called image segmentation. In this paper the problem of color image segmentation is considered as a clustering problem and a fixed length genetic algorithm (GA) is used to handle it. The effectiveness of GA depends on the objective function (fitness function) and the initialization of the population. A new objective function is proposed to evaluate the quality of the segmentation and the fitness of a chromosome. In fixed length genetic algorithm the chromosomes have same length, which is normally set by the user. Here, a self organizing map (SOM) is used to determine the number of segments in order to set the length of a chromosome automatically. An opposition based strategy is adopted for the initialization of the population in order to diversify the search process. In some cases the proposed method makes the small regions of an image as separate segments, which leads to noisy segmentation. A simple ad hoc mechanism is devised to refine the noisy segmentation. The qualitative and quantitative results show that the proposed method performs better than the state-of-the-art methods.
Author Khan, Ahmad
Jaffar, Muhammad Arfan
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Khan
  fullname: Khan, Ahmad
  email: ahmadkhan@ciit.net.pk
  organization: National University of Computer and Emerging Sciences, H-11/4 Islamabad, Pakistan
– sequence: 2
  givenname: Muhammad Arfan
  surname: Jaffar
  fullname: Jaffar, Muhammad Arfan
  email: arfanj.affar@ccis.imamu.edu.sa
  organization: National University of Computer and Emerging Sciences, H-11/4 Islamabad, Pakistan
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP2BXD9uRoZsS-oJAN-1ayNLYUbClIKmF5OurkK66CAwzA5cz3LkLNHPeAUL3lJSU0OZhV6rodckIrUvCS8LaKzSnYsWKthF0lve6EUXVVs0NWsS4IxlqmZij8RUcJKuxGgcfbNpOWDmDI4w99mFQzh6tG_Ck9rhTEQzuv4_HA94eumANti7BONoBXMITpK3Pug9Y-zF3O6kB8qVhyrJK1rtbdN2rMcLd31yir5fnz_Vbsfl4fV8_bQrNCUmF4Vpo4L3uBNV1y5qO9nSlataYujWdAN5wyHrNTEWBiZUmufquETU3qur4ErHzXR18jAF6uQ_ZTThISuQpL7mTp7zkKS9JuMx5ZUj8g7Q9205B2fEy-nhGIT_1YyHIqC04DcYG0Ekaby_hv1YXi8s
CitedBy_id crossref_primary_10_1007_s11760_019_01419_2
crossref_primary_10_1007_s11042_019_08094_y
crossref_primary_10_1016_j_media_2019_101629
crossref_primary_10_1016_j_compag_2019_05_051
crossref_primary_10_1016_j_swevo_2017_09_010
crossref_primary_10_3233_JIFS_212633
crossref_primary_10_1007_s11042_021_10510_1
crossref_primary_10_1109_TEVC_2022_3220747
crossref_primary_10_1007_s00521_020_05341_4
crossref_primary_10_1016_j_neucom_2018_01_091
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_3390_rs14051117
crossref_primary_10_1007_s10044_018_0729_9
crossref_primary_10_1371_journal_pone_0160556
crossref_primary_10_3390_en10111862
crossref_primary_10_1088_1742_6596_1345_5_052083
crossref_primary_10_1007_s00521_016_2714_9
crossref_primary_10_1016_j_swevo_2020_100792
crossref_primary_10_1007_s11042_019_08278_6
crossref_primary_10_1016_j_asoc_2019_02_009
crossref_primary_10_1016_j_compag_2017_08_025
crossref_primary_10_1093_mnras_stv2600
crossref_primary_10_1002_dac_4265
crossref_primary_10_1080_0952813X_2015_1132263
crossref_primary_10_1007_s11042_018_6005_6
Cites_doi 10.1109/TPAMI.2004.110
10.1109/TIP.2008.2001047
10.1002/sam.10080
10.1109/TPAMI.2004.1262177
10.1016/j.cviu.2007.07.005
10.1145/1015706.1015720
10.1007/s11042-012-1003-6
10.1016/1049-9660(91)90028-N
10.1007/978-3-540-45167-9_14
10.1109/83.661186
10.1111/j.2517-6161.1986.tb01412.x
10.1109/TIP.2011.2146190
10.1023/B:VISI.0000022288.19776.77
10.1109/34.868688
10.1006/gmip.1998.0480
10.1007/BF00133570
10.1109/34.87344
10.1109/42.996338
10.1016/j.compmedimag.2005.10.001
10.1109/TEVC.2007.894200
10.1080/01969727308546047
10.1109/TIP.2010.2066982
10.1145/1015706.1015719
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2015.03.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 310
ExternalDocumentID 10_1016_j_asoc_2015_03_029
S1568494615001878
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-d3c8ce3fcb81c5926b1f17a526d59db8e363ee3f52d41e287c07c0fb6853da4b3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354187000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:28:06 EST 2025
Sat Nov 29 03:05:25 EST 2025
Fri Feb 23 02:27:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Genetic algorithm (GA)
Centroid
Fuzzy
Segmentation
Self organizing map (SOM)
Segment
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d3c8ce3fcb81c5926b1f17a526d59db8e363ee3f52d41e287c07c0fb6853da4b3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_asoc_2015_03_029
crossref_citationtrail_10_1016_j_asoc_2015_03_029
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_03_029
PublicationCentury 2000
PublicationDate July 2015
2015-07-00
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rahnamayan, Tizhoosh, Salama (bib0115) 2008; 12
Shi, Malik (bib0155) 2000; 22
Cohen (bib0025) 1991; 53
Ilea, Whelan (bib0100) 2008; 17
Loo, Tan (bib0015) 2004
Martin, Fowlkes, Tal, Malik (bib0105) 2001
Bezdek (bib0120) 1973; 3
Nock, Nielsen (bib0130) 2004; 26
Beucher, Meyer (bib0065) 1993; 34
Ahmed, Yamany, Nevin Mohamed, Moriarty (bib0080) 2002; 21
Ben Salah, Mitiche, Ayed (bib0140) 2011; 20
Vazquez, Weijer, Baldrich (bib0010) 2008
Li, Huang, Ding, Gatenby, Metaxas, Gore (bib0145) 2011; 20
Unnikrishnan, Hebert (bib0165) 2005
Besag (bib0040) 1986; 48
Chuang, Tzeng, Chen, Chen (bib0125) 2006; 30
Chuanga (bib0085) 2006; 30
Duda, Hart, Stork (bib0075) 2001
Khan, Jaffar, Shao (bib0110) 2014
Meila (bib0160) 2003; 2777
Chenyang, Prince (bib0030) 1998; 7
Kov, Jolly (bib0045) 2001; 1
Li, Sun, Tang, Shum (bib0060) 2004; 23
Yang, Wright, Sastry, Ma (bib0135) 2008
Felzenszwalb, Huttenlocher (bib0150) 2004; 59
Lucchese, Mitra (bib0005) 2001; 67
Kass, Witkin, Terzopoulos (bib0020) 1988; 1
Mortensen, Barrett (bib0035) 1998; 60
Kolmogorov, Zabih (bib0050) 2004; 26
Vincent, Soille (bib0070) 1999; 13
Rother, Kolmogorov, Blake (bib0055) 2004; 23
Vendramin, Campello, Hruschka (bib0095) 2010; 3
Khan, Jaffar, Choi (bib0090) 2013; 64
Unnikrishnan (10.1016/j.asoc.2015.03.029_bib0165) 2005
Martin (10.1016/j.asoc.2015.03.029_bib0105) 2001
Rother (10.1016/j.asoc.2015.03.029_bib0055) 2004; 23
Ilea (10.1016/j.asoc.2015.03.029_bib0100) 2008; 17
Ahmed (10.1016/j.asoc.2015.03.029_bib0080) 2002; 21
Li (10.1016/j.asoc.2015.03.029_bib0145) 2011; 20
Kass (10.1016/j.asoc.2015.03.029_bib0020) 1988; 1
Chenyang (10.1016/j.asoc.2015.03.029_bib0030) 1998; 7
Li (10.1016/j.asoc.2015.03.029_bib0060) 2004; 23
Lucchese (10.1016/j.asoc.2015.03.029_bib0005) 2001; 67
Duda (10.1016/j.asoc.2015.03.029_bib0075) 2001
Vazquez (10.1016/j.asoc.2015.03.029_bib0010) 2008
Khan (10.1016/j.asoc.2015.03.029_bib0090) 2013; 64
Khan (10.1016/j.asoc.2015.03.029_bib0110) 2014
Ben Salah (10.1016/j.asoc.2015.03.029_bib0140) 2011; 20
Yang (10.1016/j.asoc.2015.03.029_bib0135) 2008
Mortensen (10.1016/j.asoc.2015.03.029_bib0035) 1998; 60
Loo (10.1016/j.asoc.2015.03.029_bib0015) 2004
Vincent (10.1016/j.asoc.2015.03.029_bib0070) 1999; 13
Beucher (10.1016/j.asoc.2015.03.029_bib0065) 1993; 34
Nock (10.1016/j.asoc.2015.03.029_bib0130) 2004; 26
Kov (10.1016/j.asoc.2015.03.029_bib0045) 2001; 1
Cohen (10.1016/j.asoc.2015.03.029_bib0025) 1991; 53
Besag (10.1016/j.asoc.2015.03.029_bib0040) 1986; 48
Chuang (10.1016/j.asoc.2015.03.029_bib0125) 2006; 30
Kolmogorov (10.1016/j.asoc.2015.03.029_bib0050) 2004; 26
Chuanga (10.1016/j.asoc.2015.03.029_bib0085) 2006; 30
Shi (10.1016/j.asoc.2015.03.029_bib0155) 2000; 22
Felzenszwalb (10.1016/j.asoc.2015.03.029_bib0150) 2004; 59
Rahnamayan (10.1016/j.asoc.2015.03.029_bib0115) 2008; 12
Vendramin (10.1016/j.asoc.2015.03.029_bib0095) 2010; 3
Bezdek (10.1016/j.asoc.2015.03.029_bib0120) 1973; 3
Meila (10.1016/j.asoc.2015.03.029_bib0160) 2003; 2777
References_xml – year: 2001
  ident: bib0075
  article-title: Pattern Classification
– volume: 23
  start-page: 303
  year: 2004
  end-page: 308
  ident: bib0060
  article-title: Lazy snapping
  publication-title: ACM Trans. Graph.
– volume: 3
  start-page: 209
  year: 2010
  end-page: 235
  ident: bib0095
  article-title: Relative clustering validity criteria: a comparative overview
  publication-title: Stat. Anal. Data Min.
– volume: 53
  start-page: 211
  year: 1991
  end-page: 218
  ident: bib0025
  article-title: On active contour models and balloons
  publication-title: CVGIP: Image Understand.
– volume: 13
  start-page: 583
  year: 1999
  end-page: 598
  ident: bib0070
  article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1233
  year: 2014
  end-page: 1243
  ident: bib0110
  article-title: A modified adaptive differential evolution algorithm for color image segmentation
  publication-title: Knowl. Inform. Syst.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: bib0080
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 1
  start-page: 105
  year: 2001
  end-page: 112
  ident: bib0045
  article-title: Interactive graph cuts for optimal boundary region segmentation of objects in N-D images
  publication-title: IEEE Int. Conf. Comp. Vis.
– volume: 30
  start-page: 9
  year: 2006
  end-page: 15
  ident: bib0085
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comp. Med. Imaging Graph.
– volume: 2777
  start-page: 173
  year: 2003
  end-page: 187
  ident: bib0160
  article-title: Comparing clusterings by the variation of information
  publication-title: Lect. Note Comp. Sci.
– volume: 34
  start-page: 433
  year: 1993
  end-page: 481
  ident: bib0065
  article-title: The morphological approach to segmentation: the watershed transformation
  publication-title: Math. Morphol. Image Process.
– start-page: 416
  year: 2001
  end-page: 423
  ident: bib0105
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
  publication-title: IEEE International Conference on Computer Vision, vol. 2
– volume: 7
  start-page: 3
  year: 1998
  ident: bib0030
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Trans. Image Process.
– volume: 12
  start-page: 64
  year: 2008
  end-page: 79
  ident: bib0115
  article-title: Opposition-based differential evolution
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2008
  end-page: 14
  ident: bib0010
  article-title: Image segmentation in the presence of shadows and highlights using a ridge based histogram analysis
  publication-title: Proc. ECCV08, vol. 5305
– volume: 26
  start-page: 147
  year: 2004
  end-page: 159
  ident: bib0050
  article-title: What energy functions can be minimized via graph cuts ?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 64
  start-page: 331
  year: 2013
  end-page: 344
  ident: bib0090
  article-title: Som and fuzzy based color image segmentation
  publication-title: Multimedia Tools Appl.
– volume: 67
  start-page: 207
  year: 2001
  end-page: 221
  ident: bib0005
  article-title: Color image segmentation: a state of the art survey
  publication-title: Proc. Indian Natl. Sci. Acad. Image Process. Vis. Pattern Recogn.
– volume: 23
  start-page: 309
  year: 2004
  end-page: 314
  ident: bib0055
  article-title: Grabcut interactive foreground extraction using iterated graphcuts
  publication-title: ACM Trans. Graph.
– volume: 60
  start-page: 5
  year: 1998
  ident: bib0035
  article-title: Interactive segmentation with intelligent scissors
  publication-title: Graph. Models Image Process.
– volume: 17
  start-page: 1926
  year: 2008
  end-page: 1939
  ident: bib0100
  article-title: Ctex – an adaptive unsupervised segmentation algorithm based on color-texture coherence
  publication-title: IEEE Trans. Image Process.
– volume: 59
  start-page: 167
  year: 2004
  end-page: 181
  ident: bib0150
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
– volume: 20
  start-page: 545
  year: 2011
  end-page: 557
  ident: bib0140
  article-title: Multiregion image segmentation by parametric kernel graph cuts
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 2007
  year: 2011
  end-page: 2016
  ident: bib0145
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans. Image Process.
– start-page: 212
  year: 2008
  end-page: 225
  ident: bib0135
  article-title: Unsupervised segmentation of natural images via lossy data compression
  publication-title: Comp. Vis. Image Understand.
– volume: 26
  start-page: 1452
  year: 2004
  end-page: 1458
  ident: bib0130
  article-title: Statistical region merging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 30
  start-page: 9
  year: 2006
  end-page: 15
  ident: bib0125
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comp. Med. Imaging Graph.
– volume: 3
  start-page: 58
  year: 1973
  end-page: 73
  ident: bib0120
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0155
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 394
  year: 2005
  end-page: 401
  ident: bib0165
  article-title: Measures of similarity
  publication-title: Proceedings of the IEEE Workshop on Computer Vision Applications, vol. 1
– start-page: 264
  year: 2004
  end-page: 275
  ident: bib0015
  article-title: Adaptive region growing color segmentation for text using irregular pyramid
  publication-title: International Workshop on Document Analysis Systems, vol. 3163
– volume: 48
  start-page: 259
  year: 1986
  end-page: 302
  ident: bib0040
  article-title: On the statistical analysis of dirty pictures
  publication-title: J. Roy. Stat. Soc. B
– volume: 1
  start-page: 321
  year: 1988
  end-page: 331
  ident: bib0020
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vis.
– start-page: 264
  year: 2004
  ident: 10.1016/j.asoc.2015.03.029_bib0015
  article-title: Adaptive region growing color segmentation for text using irregular pyramid
– volume: 26
  start-page: 1452
  issue: 11
  year: 2004
  ident: 10.1016/j.asoc.2015.03.029_bib0130
  article-title: Statistical region merging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.110
– volume: 17
  start-page: 1926
  issue: 10
  year: 2008
  ident: 10.1016/j.asoc.2015.03.029_bib0100
  article-title: Ctex – an adaptive unsupervised segmentation algorithm based on color-texture coherence
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2001047
– volume: 3
  start-page: 209
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2015.03.029_bib0095
  article-title: Relative clustering validity criteria: a comparative overview
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.10080
– volume: 26
  start-page: 147
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2015.03.029_bib0050
  article-title: What energy functions can be minimized via graph cuts ?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1262177
– volume: 67
  start-page: 207
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2015.03.029_bib0005
  article-title: Color image segmentation: a state of the art survey
  publication-title: Proc. Indian Natl. Sci. Acad. Image Process. Vis. Pattern Recogn.
– year: 2001
  ident: 10.1016/j.asoc.2015.03.029_bib0075
– start-page: 1233
  year: 2014
  ident: 10.1016/j.asoc.2015.03.029_bib0110
  article-title: A modified adaptive differential evolution algorithm for color image segmentation
  publication-title: Knowl. Inform. Syst.
– start-page: 212
  year: 2008
  ident: 10.1016/j.asoc.2015.03.029_bib0135
  article-title: Unsupervised segmentation of natural images via lossy data compression
  publication-title: Comp. Vis. Image Understand.
  doi: 10.1016/j.cviu.2007.07.005
– volume: 23
  start-page: 309
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2015.03.029_bib0055
  article-title: Grabcut interactive foreground extraction using iterated graphcuts
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015720
– volume: 64
  start-page: 331
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2015.03.029_bib0090
  article-title: Som and fuzzy based color image segmentation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-012-1003-6
– volume: 53
  start-page: 211
  issue: 2
  year: 1991
  ident: 10.1016/j.asoc.2015.03.029_bib0025
  article-title: On active contour models and balloons
  publication-title: CVGIP: Image Understand.
  doi: 10.1016/1049-9660(91)90028-N
– start-page: 1
  year: 2008
  ident: 10.1016/j.asoc.2015.03.029_bib0010
  article-title: Image segmentation in the presence of shadows and highlights using a ridge based histogram analysis
– volume: 1
  start-page: 105
  year: 2001
  ident: 10.1016/j.asoc.2015.03.029_bib0045
  article-title: Interactive graph cuts for optimal boundary region segmentation of objects in N-D images
  publication-title: IEEE Int. Conf. Comp. Vis.
– start-page: 416
  year: 2001
  ident: 10.1016/j.asoc.2015.03.029_bib0105
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
– volume: 2777
  start-page: 173
  year: 2003
  ident: 10.1016/j.asoc.2015.03.029_bib0160
  article-title: Comparing clusterings by the variation of information
  publication-title: Lect. Note Comp. Sci.
  doi: 10.1007/978-3-540-45167-9_14
– start-page: 394
  year: 2005
  ident: 10.1016/j.asoc.2015.03.029_bib0165
  article-title: Measures of similarity
– volume: 7
  start-page: 3
  year: 1998
  ident: 10.1016/j.asoc.2015.03.029_bib0030
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661186
– volume: 48
  start-page: 259
  year: 1986
  ident: 10.1016/j.asoc.2015.03.029_bib0040
  article-title: On the statistical analysis of dirty pictures
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– volume: 20
  start-page: 2007
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2015.03.029_bib0145
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2146190
– volume: 59
  start-page: 167
  issue: 02
  year: 2004
  ident: 10.1016/j.asoc.2015.03.029_bib0150
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.asoc.2015.03.029_bib0155
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 60
  start-page: 5
  year: 1998
  ident: 10.1016/j.asoc.2015.03.029_bib0035
  article-title: Interactive segmentation with intelligent scissors
  publication-title: Graph. Models Image Process.
  doi: 10.1006/gmip.1998.0480
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  ident: 10.1016/j.asoc.2015.03.029_bib0020
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00133570
– volume: 13
  start-page: 583
  issue: 6
  year: 1999
  ident: 10.1016/j.asoc.2015.03.029_bib0070
  article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.87344
– volume: 34
  start-page: 433
  year: 1993
  ident: 10.1016/j.asoc.2015.03.029_bib0065
  article-title: The morphological approach to segmentation: the watershed transformation
  publication-title: Math. Morphol. Image Process.
– volume: 21
  start-page: 193
  issue: March (3)
  year: 2002
  ident: 10.1016/j.asoc.2015.03.029_bib0080
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 30
  start-page: 9
  year: 2006
  ident: 10.1016/j.asoc.2015.03.029_bib0085
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comp. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2005.10.001
– volume: 12
  start-page: 64
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2015.03.029_bib0115
  article-title: Opposition-based differential evolution
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.894200
– volume: 30
  start-page: 9
  year: 2006
  ident: 10.1016/j.asoc.2015.03.029_bib0125
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comp. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2005.10.001
– volume: 3
  start-page: 58
  issue: 3
  year: 1973
  ident: 10.1016/j.asoc.2015.03.029_bib0120
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546047
– volume: 20
  start-page: 545
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2015.03.029_bib0140
  article-title: Multiregion image segmentation by parametric kernel graph cuts
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2066982
– volume: 23
  start-page: 303
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2015.03.029_bib0060
  article-title: Lazy snapping
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015719
SSID ssj0016928
Score 2.2491448
Snippet [Display omitted] •A novel genetic algorithm based on spatial fuzzy C-mean (sFCM) method has been proposed to make compact and well separated clusters.•Fuzzy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 300
SubjectTerms Centroid
Fuzzy
Genetic algorithm (GA)
Segment
Segmentation
Self organizing map (SOM)
Title Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation
URI https://dx.doi.org/10.1016/j.asoc.2015.03.029
Volume 32
WOSCitedRecordID wos000354187000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA9654MvfovnF3nwrUTapk2Tx0VOVPAQPGHfStok1zu2vWXblbv96518tFc9OVQQlrKkTRtmfp1MppP5IfRGZZJSRhkpciMJWL-KSBpXhAojKgYzPJXckU0UR0d8uRRfwueC3tEJFF3HLy7E-r-qGtpA2Xbr7F-oe7opNMB_UDocQe1w_CPF20LSrgrr6uQcVv6N58Do9coECqedjQ60ch3ZGUxFZrvbXUbNpd265apH-AqdQyCXdnmItrT1JjptbYJPr0_asGGpm7u2oz_bg2F3merbYZwWrUFvfKR10bRSTWk70hif4P1528gWzkSLjQl4DaGIJJ_SVkN87NoeGW9SGSeZCIFG7dt4kRLBPFnLaIdDnNMbUhrHszmZ-tTXa-beRx7O3kpAsk3Ty13B2hBC-bmM9lc7DjsM8IAtESG_jfbTIhdgCfcXHw-Xn6ZvT0w4Rt5p3GGrlc8K_PVJv3dnZi7K8QN0L6wt8MJj4iG6pbtH6P7I24GDGX-MVgEieIIIBohgCxF8BREMEMEOIthBBHuI4BlEsIcIBohgBxHsIILnEHmCvr0_PH73gQTWDVKD0AeiaM1rTU1d8aTORcqqxCSFzFOmcqEqruHV1nA-T1WWaFhw1zH8TMXA8VMyq-hTtNedd_oZwkIVKjOJymLDMiVtqUqW1EnBJbV6qA5QMgqvrENJesuMsirH3MOz0gq8tAIvY1qCwA9QNPVZ-4IsN16djzopg0vpXcUSIHRDv-f_2O8Funv1YrxEe8Nmq1-hO_X34bTfvA5I-wE9uJ6m
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+algorithm+and+self+organizing+map+based+fuzzy+hybrid+intelligent+method+for+color+image+segmentation&rft.jtitle=Applied+soft+computing&rft.au=Khan%2C+Ahmad&rft.au=Jaffar%2C+Muhammad+Arfan&rft.date=2015-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=32&rft.spage=300&rft.epage=310&rft_id=info:doi/10.1016%2Fj.asoc.2015.03.029&rft.externalDocID=S1568494615001878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon