Integrating causal representations with domain adaptation for fault diagnosis

In practical fault diagnosis, obtaining sufficient samples is often challenging. Transfer learning can help by using data from related domains, but significant distribution differences often exist due to different working conditions. To address this issue, cross-domain fault diagnosis (CDFD) has att...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 260; p. 110999
Main Authors: Jiang, Ming, Zhou, Kuang, Gao, Jiahui, Zhang, Fode
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2025
Subjects:
ISSN:0951-8320
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In practical fault diagnosis, obtaining sufficient samples is often challenging. Transfer learning can help by using data from related domains, but significant distribution differences often exist due to different working conditions. To address this issue, cross-domain fault diagnosis (CDFD) has attracted increasing attention. However, most CDFD methods rely on statistical dependencies, which restricts their ability to uncover intrinsic mechanisms and affects both performance and reliability. In this paper, a Cross-domain Fault Diagnosis model based on Causal Representation learning (CFDCR) is proposed. This method employs causal representation learning with a graph autoencoder to learn invariant representations across domains, thereby improving the robustness of the prediction model. It further employs domain adversarial networks to align feature distributions, thus mitigating conditional distribution disparities between source domain data and target fault data, ultimately enhancing model performance. Experimental results on various bearing fault datasets demonstrate that the proposed cross-domain fault diagnosis model can effectively utilize related source domain data to guide fault classification tasks in the target domain and achieve more robust fault predictions. •We propose a new cross-domain fault diagnosis approach based on causal representation learning.•It can extract invariant features across domains while reducing the influence of irrelevant ones.•Experimental results on various datasets demonstrate the effectiveness of the proposed method.
AbstractList In practical fault diagnosis, obtaining sufficient samples is often challenging. Transfer learning can help by using data from related domains, but significant distribution differences often exist due to different working conditions. To address this issue, cross-domain fault diagnosis (CDFD) has attracted increasing attention. However, most CDFD methods rely on statistical dependencies, which restricts their ability to uncover intrinsic mechanisms and affects both performance and reliability. In this paper, a Cross-domain Fault Diagnosis model based on Causal Representation learning (CFDCR) is proposed. This method employs causal representation learning with a graph autoencoder to learn invariant representations across domains, thereby improving the robustness of the prediction model. It further employs domain adversarial networks to align feature distributions, thus mitigating conditional distribution disparities between source domain data and target fault data, ultimately enhancing model performance. Experimental results on various bearing fault datasets demonstrate that the proposed cross-domain fault diagnosis model can effectively utilize related source domain data to guide fault classification tasks in the target domain and achieve more robust fault predictions. •We propose a new cross-domain fault diagnosis approach based on causal representation learning.•It can extract invariant features across domains while reducing the influence of irrelevant ones.•Experimental results on various datasets demonstrate the effectiveness of the proposed method.
ArticleNumber 110999
Author Jiang, Ming
Zhang, Fode
Gao, Jiahui
Zhou, Kuang
Author_xml – sequence: 1
  givenname: Ming
  surname: Jiang
  fullname: Jiang, Ming
  email: xming@mail.nwpu.edu.cn
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi, China
– sequence: 2
  givenname: Kuang
  orcidid: 0000-0002-7278-3652
  surname: Zhou
  fullname: Zhou, Kuang
  email: kzhoumath@nwpu.edu.cn
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi, China
– sequence: 3
  givenname: Jiahui
  surname: Gao
  fullname: Gao, Jiahui
  email: gaojiahui_0425@mail.nwpu.edu.cn
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi, China
– sequence: 4
  givenname: Fode
  orcidid: 0000-0002-4733-9752
  surname: Zhang
  fullname: Zhang, Fode
  email: fredzh@swufe.edu.cn
  organization: Center of Statistical Research, School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, PR China
BookMark eNp9kMtOwzAQRb0oEi3wA6z8Awm20ziOxAZVPCoVsYG1NbXHxVXqVLYL4u9JFFYsuhrpjs7VzFmQWegDEnLLWckZl3f7MmJKpWCiLjlnbdvOyJy1NS9UJdglWaS0Z4wt27qZk9d1yLiLkH3YUQOnBB2NeBwaMOQh7UOi3z5_UtsfwAcKFo5TTl0fqYNTl6n1sAt98umaXDjoEt78zSvy8fT4vnopNm_P69XDpjAVY7mwYtlIUyvnqkZK5QCkaRSYrVEots4iN5xJM26VgAahUbYB4MJsJUpWVVdETb0m9ilFdNr46aocwXeaMz2q0Hs9qtCjCj2pGFDxDz1Gf4D4cx66nyAcnvryGHUyHoNB6yOarG3vz-G_d3h_Dw
CitedBy_id crossref_primary_10_1109_JIOT_2025_3582307
crossref_primary_10_1016_j_ress_2025_111171
crossref_primary_10_1016_j_ress_2025_111528
Cites_doi 10.1016/j.ress.2022.108358
10.1016/j.isatra.2020.08.010
10.1109/JPROC.2021.3058954
10.1016/j.ress.2021.108281
10.1016/j.ress.2024.110381
10.1109/CVPR52688.2022.01657
10.1016/j.ress.2023.109863
10.1016/j.ress.2024.110439
10.1038/s41598-022-27031-y
10.1016/j.ymssp.2023.110228
10.1007/s10462-022-10351-w
10.1145/3581783.3611725
10.1109/TNNLS.2021.3135036
10.1016/j.ress.2024.110297
10.1109/TR.2021.3087698
10.1016/j.engappai.2021.104177
10.1145/3485447.3512251
10.1016/j.ymssp.2015.04.021
10.1109/JIOT.2024.3360432
10.1016/j.ress.2023.109788
10.3390/s130608013
10.1109/TSMC.2017.2754287
10.1109/TIE.2023.3260356
10.1007/978-3-030-01267-0_38
10.1016/j.ijar.2016.09.009
10.1016/j.ress.2022.108890
10.1016/j.knosys.2022.109846
10.1145/3335676
10.1016/j.ress.2023.109720
10.1145/3527154
10.1109/CVPR52688.2022.00704
10.1109/TII.2020.2980923
10.1145/3409382
10.1109/CVPR.2018.00288
10.1016/j.cie.2023.109796
10.3390/e23081075
10.1109/TIM.2021.3127641
10.1016/j.ress.2022.109036
10.1109/TNNLS.2018.2828982
10.1109/ICCV48922.2021.01108
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2025.110999
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ress_2025_110999
S0951832025002005
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9DU
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c300t-d2476c58ff37668faa6c78acbc8e2bfde1c106cf37682a7ea78d7aa12cb6e6033
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001448402200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Sat Nov 29 06:59:15 EST 2025
Tue Nov 18 19:44:10 EST 2025
Sat Nov 29 17:08:58 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Causal representations
Invariant representations
Transfer learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d2476c58ff37668faa6c78acbc8e2bfde1c106cf37682a7ea78d7aa12cb6e6033
ORCID 0000-0002-4733-9752
0000-0002-7278-3652
ParticipantIDs crossref_citationtrail_10_1016_j_ress_2025_110999
crossref_primary_10_1016_j_ress_2025_110999
elsevier_sciencedirect_doi_10_1016_j_ress_2025_110999
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jia, Li, Wang, Sun, Deng (b27) 2023; 192
Yu, Liu, Li, Chen (b45) 2018; 29
Li, Liu, Wang, Yin (b9) 2020; 17
Li, Wang, Zi, Zhang, Wan (b28) 2023; 34
Li, Wang, Zi, Zhang, Wan (b25) 2021; 34
Su, Shi, Zhou, Bai, Wang (b2) 2024; 244
Kitson, Constantinou, Guo, Liu, Chobtham (b40) 2023; 56
Yu, Gao, Yin, Ji (b41) 2021
Xiong, Qian, Cen, Li, Liu, Tang (b6) 2023; 13
Fu, Wu, Zhang, Yan (b60) 2019
Zhao, Zio, Shen (b29) 2024
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette (b20) 2016; 17
Sun, Saenko (b55) 2016
Li, Ping, Wang, Chen, Cao (b49) 2013; 13
Liu, Xu, Wang (b8) 2022; 220
Cao Z, Long M, Wang J, Jordan MI. Partial transfer learning with selective adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 2724–32.
Wang W, Lin X, Feng F, He X, Lin M, Chua T-S. Causal representation learning for out-of-distribution recommendation. In: Proceedings of the ACM web conference 2022. 2022, p. 3562–71.
Wu, Xu, Luo, Shao (b3) 2024
Wang, Taal, Fink (b17) 2021; 71
Yan, Wang, Hou, Peng (b56) 2021; 71
Yu, Chen, Gao, Yu (b42) 2019
Zhang X, Wong Y, Wu X, Lu J, Kankanhalli M, Li X, et al. Learning causal representation for training cross-domain pose estimator via generative interventions. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 11270–80.
Luo, Huang, Wang, Luo, Zhou (b30) 2022; 256
Bao, Shi, Wang, Zhang, Zhang (b51) 2021; 23
Morioka, Hyvarinen (b32) 2023
Schölkopf, Locatello, Bauer, Ke, Kalchbrenner, Goyal (b26) 2021; 109
Yu, Guo, Liu, Li, Wang, Ling (b46) 2020; 53
Zhao, Zhang, Yu, Sun, Wang, Yan (b58) 2021; 70
Ding, Jia, Zhuang, Cao, Zhao, Lee (b12) 2023; 230
Zheng, Aragam, Ravikumar, Xing (b43) 2018; 31
Ma, Wei, Zhang, Kong, Du (b52) 2024; 252
Shao, Zhou, Lin, Liu (b10) 2024
Chen, Luo, Huang, Jiang, Kaynak (b11) 2023
Chen L, Chen H, Wei Z, Jin X, Tan X, Jin Y, et al. Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 7181–90.
Liu Y, Cadei R, Schweizer J, Bahmani S, Alahi A. Towards robust and adaptive motion forecasting: A causal representation perspective. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 17081–92.
Kalainathan, Goudet, Guyon, Lopez-Paz, Sebag (b38) 2022; 23
Liang, Tian, Wang, Yuan (b1) 2024; 242
Guo, Yu, Liu, Cao, Li (b36) 2022
Vowels, Camgoz, Bowden (b35) 2022; 55
Liu, Jiang, Wu, Yi, Wang (b14) 2023; 231
Wang S, Chen Y, He Z, Yang X, Wang M, You Q, et al. Disentangled representation learning with causality for unsupervised domain adaptation. In: Proceedings of the 31st ACM international conference on multimedia. 2023, p. 2918–26.
Smith, Randall (b47) 2015; 64
Zhou, Ming, Gabrys (b44) 2023
Cao, Shen, Duan, Liu, Guo (b4) 2024; 189
Chen, Yang, Xue, Huang, Ferrero, Wang (b13) 2023
Van der Maaten, Hinton (b57) 2008; 9
Ling, Yu, Wang, Liu, Ding, Wu (b37) 2019; 10
Gao, Ji (b39) 2017; 80
Yang, Yu, Cao, Liu, Wang, Li (b22) 2023; 35
Ni, Li, Chen, Zhao, Lai (b7) 2023
Zhang, Zhao, Zhang, Liu, Sun, Li (b18) 2021; 70
Li Y, Tian X, Gong M, Liu Y, Liu T, Zhang K, et al. Deep domain generalization via conditional invariant adversarial networks. In: Proceedings of the European conference on computer vision. ECCV, 2018, p. 624–39.
Long, Cao, Wang, Jordan (b53) 2018; 31
Zhao, Shen (b16) 2022; 221
Guo, Shang, Ren, Zhao, Ding, Wang (b24) 2024; 251
Zhao, Xie, Ye (b5) 2021; 100
Zhao, Li, Wu, Sun, Wang, Yan (b50) 2020; 107
Chaleshtori, Aghaie (b48) 2024; 242
Pearl (b34) 1988
Wen, Gao, Li (b15) 2017; 49
Li (10.1016/j.ress.2025.110999_b28) 2023; 34
Zheng (10.1016/j.ress.2025.110999_b43) 2018; 31
10.1016/j.ress.2025.110999_b54
Zhang (10.1016/j.ress.2025.110999_b18) 2021; 70
Kitson (10.1016/j.ress.2025.110999_b40) 2023; 56
Zhao (10.1016/j.ress.2025.110999_b58) 2021; 70
Smith (10.1016/j.ress.2025.110999_b47) 2015; 64
Liang (10.1016/j.ress.2025.110999_b1) 2024; 242
Liu (10.1016/j.ress.2025.110999_b14) 2023; 231
Luo (10.1016/j.ress.2025.110999_b30) 2022; 256
10.1016/j.ress.2025.110999_b23
10.1016/j.ress.2025.110999_b21
Morioka (10.1016/j.ress.2025.110999_b32) 2023
Cao (10.1016/j.ress.2025.110999_b4) 2024; 189
Ma (10.1016/j.ress.2025.110999_b52) 2024; 252
Wen (10.1016/j.ress.2025.110999_b15) 2017; 49
Ni (10.1016/j.ress.2025.110999_b7) 2023
Zhao (10.1016/j.ress.2025.110999_b5) 2021; 100
Jia (10.1016/j.ress.2025.110999_b27) 2023; 192
Yu (10.1016/j.ress.2025.110999_b45) 2018; 29
Zhao (10.1016/j.ress.2025.110999_b16) 2022; 221
Wu (10.1016/j.ress.2025.110999_b3) 2024
Li (10.1016/j.ress.2025.110999_b25) 2021; 34
10.1016/j.ress.2025.110999_b59
Zhou (10.1016/j.ress.2025.110999_b44) 2023
Chen (10.1016/j.ress.2025.110999_b13) 2023
10.1016/j.ress.2025.110999_b19
Ding (10.1016/j.ress.2025.110999_b12) 2023; 230
Zhao (10.1016/j.ress.2025.110999_b50) 2020; 107
Ganin (10.1016/j.ress.2025.110999_b20) 2016; 17
10.1016/j.ress.2025.110999_b33
Yang (10.1016/j.ress.2025.110999_b22) 2023; 35
10.1016/j.ress.2025.110999_b31
Li (10.1016/j.ress.2025.110999_b9) 2020; 17
Pearl (10.1016/j.ress.2025.110999_b34) 1988
Kalainathan (10.1016/j.ress.2025.110999_b38) 2022; 23
Guo (10.1016/j.ress.2025.110999_b24) 2024; 251
Fu (10.1016/j.ress.2025.110999_b60) 2019
Bao (10.1016/j.ress.2025.110999_b51) 2021; 23
Guo (10.1016/j.ress.2025.110999_b36) 2022
Yu (10.1016/j.ress.2025.110999_b42) 2019
Yu (10.1016/j.ress.2025.110999_b46) 2020; 53
Zhao (10.1016/j.ress.2025.110999_b29) 2024
Wang (10.1016/j.ress.2025.110999_b17) 2021; 71
Shao (10.1016/j.ress.2025.110999_b10) 2024
Chen (10.1016/j.ress.2025.110999_b11) 2023
Chaleshtori (10.1016/j.ress.2025.110999_b48) 2024; 242
Gao (10.1016/j.ress.2025.110999_b39) 2017; 80
Vowels (10.1016/j.ress.2025.110999_b35) 2022; 55
Sun (10.1016/j.ress.2025.110999_b55) 2016
Yu (10.1016/j.ress.2025.110999_b41) 2021
Li (10.1016/j.ress.2025.110999_b49) 2013; 13
Van der Maaten (10.1016/j.ress.2025.110999_b57) 2008; 9
Schölkopf (10.1016/j.ress.2025.110999_b26) 2021; 109
Su (10.1016/j.ress.2025.110999_b2) 2024; 244
Long (10.1016/j.ress.2025.110999_b53) 2018; 31
Liu (10.1016/j.ress.2025.110999_b8) 2022; 220
Xiong (10.1016/j.ress.2025.110999_b6) 2023; 13
Ling (10.1016/j.ress.2025.110999_b37) 2019; 10
Yan (10.1016/j.ress.2025.110999_b56) 2021; 71
References_xml – volume: 242
  year: 2024
  ident: b48
  article-title: A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis
  publication-title: Reliab Eng Syst Saf
– volume: 231
  year: 2023
  ident: b14
  article-title: Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching
  publication-title: Reliab Eng Syst Saf
– volume: 49
  start-page: 136
  year: 2017
  end-page: 144
  ident: b15
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man Cybern Syst
– reference: Li Y, Tian X, Gong M, Liu Y, Liu T, Zhang K, et al. Deep domain generalization via conditional invariant adversarial networks. In: Proceedings of the European conference on computer vision. ECCV, 2018, p. 624–39.
– volume: 31
  year: 2018
  ident: b53
  article-title: Conditional adversarial domain adaptation
  publication-title: Adv Neural Inf Process Syst
– volume: 244
  year: 2024
  ident: b2
  article-title: Knowledge-informed deep networks for robust fault diagnosis of rolling bearings
  publication-title: Reliab Eng Syst Saf
– volume: 10
  start-page: 1
  year: 2019
  end-page: 25
  ident: b37
  article-title: BAMB: A balanced Markov blanket discovery approach to feature selection
  publication-title: ACM Trans Intell Syst Technol
– volume: 109
  start-page: 612
  year: 2021
  end-page: 634
  ident: b26
  article-title: Toward causal representation learning
  publication-title: Proc IEEE
– volume: 55
  start-page: 1
  year: 2022
  end-page: 36
  ident: b35
  article-title: D’ya like dags? a survey on structure learning and causal discovery
  publication-title: ACM Comput Surv
– volume: 71
  start-page: 1
  year: 2021
  end-page: 12
  ident: b17
  article-title: Integrating expert knowledge with domain adaptation for unsupervised fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 220
  year: 2022
  ident: b8
  article-title: Fault information mining with causal network for railway transportation system
  publication-title: Reliab Eng Syst Saf
– volume: 34
  start-page: 6250
  year: 2021
  end-page: 6262
  ident: b25
  article-title: Causal disentanglement: A generalized bearing fault diagnostic framework in continuous degradation mode
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 29
  start-page: 6333
  year: 2018
  end-page: 6347
  ident: b45
  article-title: Mining Markov blankets without causal sufficiency
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 100
  year: 2021
  ident: b5
  article-title: A new dynamic radius SVDD for fault detection of aircraft engine
  publication-title: Eng Appl Artif Intell
– volume: 23
  start-page: 1
  year: 2022
  end-page: 62
  ident: b38
  article-title: Structural agnostic modeling: Adversarial learning of causal graphs
  publication-title: J Mach Learn Res
– start-page: 7154
  year: 2019
  end-page: 7163
  ident: b42
  article-title: DAG-GNN: DAG structure learning with graph neural networks
  publication-title: International conference on machine learning
– volume: 53
  start-page: 1
  year: 2020
  end-page: 36
  ident: b46
  article-title: Causality-based feature selection: Methods and evaluations
  publication-title: ACM Comput Surv
– volume: 230
  year: 2023
  ident: b12
  article-title: Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions
  publication-title: Reliab Eng Syst Saf
– reference: Liu Y, Cadei R, Schweizer J, Bahmani S, Alahi A. Towards robust and adaptive motion forecasting: A causal representation perspective. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 17081–92.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 35
  ident: b20
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 56
  start-page: 8721
  year: 2023
  end-page: 8814
  ident: b40
  article-title: A survey of Bayesian network structure learning
  publication-title: Artif Intell Rev
– volume: 71
  start-page: 1464
  year: 2021
  end-page: 1476
  ident: b56
  article-title: Generic framework for integration of first prediction time detection with machine degradation modelling from frequency domain
  publication-title: IEEE Trans Reliab
– volume: 23
  start-page: 1075
  year: 2021
  ident: b51
  article-title: A non-contact fault diagnosis method for bearings and gears based on generalized matrix norm sparse filtering
  publication-title: Entropy
– year: 2022
  ident: b36
  article-title: Causal feature selection with dual correction
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 3399
  year: 2023
  end-page: 3426
  ident: b32
  article-title: Connectivity-contrastive learning: Combining causal discovery and representation learning for multimodal data
  publication-title: International conference on artificial intelligence and statistics
– volume: 70
  start-page: 1
  year: 2021
  end-page: 15
  ident: b18
  article-title: Conditional adversarial domain generalization with a single discriminator for bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– reference: Chen L, Chen H, Wei Z, Jin X, Tan X, Jin Y, et al. Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 7181–90.
– volume: 242
  year: 2024
  ident: b1
  article-title: Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network
  publication-title: Reliab Eng Syst Saf
– reference: Cao Z, Long M, Wang J, Jordan MI. Partial transfer learning with selective adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 2724–32.
– volume: 35
  start-page: 2750
  year: 2023
  end-page: 2764
  ident: b22
  article-title: Learning causal representations for robust domain adaptation
  publication-title: IEEE Trans Knowl Data Eng
– volume: 256
  year: 2022
  ident: b30
  article-title: Transfer learning based on improved stacked autoencoder for bearing fault diagnosis
  publication-title: Knowl-Based Syst
– volume: 17
  start-page: 199
  year: 2020
  end-page: 208
  ident: b9
  article-title: Multiscale symbolic Lempel–Ziv: An effective feature extraction approach for fault diagnosis of railway vehicle systems
  publication-title: IEEE Trans Ind Inform
– volume: 34
  start-page: 6250
  year: 2023
  end-page: 6262
  ident: b28
  article-title: Causal disentanglement: A generalized bearing fault diagnostic framework in continuous degradation mode
  publication-title: IEEE Trans Neural Netw Learn Syst
– reference: Wang S, Chen Y, He Z, Yang X, Wang M, You Q, et al. Disentangled representation learning with causality for unsupervised domain adaptation. In: Proceedings of the 31st ACM international conference on multimedia. 2023, p. 2918–26.
– volume: 13
  start-page: 8013
  year: 2013
  end-page: 8041
  ident: b49
  article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis
  publication-title: Sensors
– year: 2023
  ident: b7
  article-title: A mechanism and data hybrid-driven method for main circuit ground fault diagnosis in electrical traction system
  publication-title: IEEE Trans Ind Electron
– year: 1988
  ident: b34
  article-title: Probabilistic reasoning in intelligent systems: networks of plausible inference
– volume: 107
  start-page: 224
  year: 2020
  end-page: 255
  ident: b50
  article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
  publication-title: ISA Trans
– volume: 80
  start-page: 277
  year: 2017
  end-page: 293
  ident: b39
  article-title: Efficient score-based Markov blanket discovery
  publication-title: Internat J Approx Reason
– year: 2024
  ident: b10
  article-title: Few-shot cross-domain fault diagnosis of bearing driven by task-supervised ANIL
  publication-title: IEEE Internet Things J
– volume: 13
  start-page: 4567
  year: 2023
  ident: b6
  article-title: A fault diagnosis method for building electrical systems based on the combination of variational modal decomposition and new mutual dimensionless
  publication-title: Sci Rep
– year: 2024
  ident: b29
  article-title: Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study
  publication-title: Reliab Eng Syst Saf
– volume: 252
  year: 2024
  ident: b52
  article-title: Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions
  publication-title: Reliab Eng Syst Saf
– volume: 70
  start-page: 1
  year: 2021
  end-page: 28
  ident: b58
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study
  publication-title: IEEE Trans Instrum Meas
– start-page: 3777
  year: 2023
  end-page: 3782
  ident: b44
  article-title: GeAE: GAE-embedded autoencoder based causal representation for robust domain adaptation
  publication-title: 2023 IEEE international conference on systems, man, and cybernetics
– start-page: 443
  year: 2016
  end-page: 450
  ident: b55
  article-title: Deep CORAL: Correlation alignment for deep domain adaptation
  publication-title: Computer vision–ECCV 2016 workshops: amsterdam, the netherlands, October 8–10 and 15–16, 2016, proceedings, part III 14
– volume: 64
  start-page: 100
  year: 2015
  end-page: 131
  ident: b47
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mech Syst Signal Process
– year: 2024
  ident: b3
  article-title: A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples
  publication-title: Reliab Eng Syst Saf
– year: 2023
  ident: b11
  article-title: Transfer learning-motivated intelligent fault diagnosis designs: A survey, insights, and perspectives
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 192
  year: 2023
  ident: b27
  article-title: Deep causal factorization network: A novel domain generalization method for cross-machine bearing fault diagnosis
  publication-title: Mech Syst Signal Process
– volume: 189
  year: 2024
  ident: b4
  article-title: Quality-integrated diagnostic platform for aerospace complex product assembly processes
  publication-title: Comput Ind Eng
– volume: 221
  year: 2022
  ident: b16
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab Eng Syst Saf
– volume: 31
  year: 2018
  ident: b43
  article-title: DAGs with NO TEARS: Continuous optimization for structure learning
  publication-title: Adv Neural Inf Process Syst
– start-page: 2506
  year: 2019
  end-page: 2510
  ident: b60
  article-title: Improved open set domain adaptation with backpropagation
  publication-title: 2019 IEEE international conference on image processing
– year: 2023
  ident: b13
  article-title: Deep transfer learning for bearing fault diagnosis: A systematic review since 2016
  publication-title: IEEE Trans Instrum Meas
– reference: Zhang X, Wong Y, Wu X, Lu J, Kankanhalli M, Li X, et al. Learning causal representation for training cross-domain pose estimator via generative interventions. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 11270–80.
– reference: Wang W, Lin X, Feng F, He X, Lin M, Chua T-S. Causal representation learning for out-of-distribution recommendation. In: Proceedings of the ACM web conference 2022. 2022, p. 3562–71.
– start-page: 12156
  year: 2021
  end-page: 12166
  ident: b41
  article-title: DAGs with no curl: An efficient DAG structure learning approach
  publication-title: International conference on machine learning
– volume: 251
  year: 2024
  ident: b24
  article-title: CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domains
  publication-title: Reliab Eng Syst Saf
– volume: 9
  year: 2008
  ident: b57
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 221
  year: 2022
  ident: 10.1016/j.ress.2025.110999_b16
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108358
– volume: 107
  start-page: 224
  year: 2020
  ident: 10.1016/j.ress.2025.110999_b50
  article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2020.08.010
– volume: 31
  year: 2018
  ident: 10.1016/j.ress.2025.110999_b43
  article-title: DAGs with NO TEARS: Continuous optimization for structure learning
  publication-title: Adv Neural Inf Process Syst
– volume: 109
  start-page: 612
  issue: 5
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b26
  article-title: Toward causal representation learning
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2021.3058954
– volume: 220
  year: 2022
  ident: 10.1016/j.ress.2025.110999_b8
  article-title: Fault information mining with causal network for railway transportation system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108281
– year: 2023
  ident: 10.1016/j.ress.2025.110999_b13
  article-title: Deep transfer learning for bearing fault diagnosis: A systematic review since 2016
  publication-title: IEEE Trans Instrum Meas
– volume: 251
  year: 2024
  ident: 10.1016/j.ress.2025.110999_b24
  article-title: CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domains
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110381
– ident: 10.1016/j.ress.2025.110999_b21
  doi: 10.1109/CVPR52688.2022.01657
– volume: 244
  year: 2024
  ident: 10.1016/j.ress.2025.110999_b2
  article-title: Knowledge-informed deep networks for robust fault diagnosis of rolling bearings
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109863
– volume: 252
  year: 2024
  ident: 10.1016/j.ress.2025.110999_b52
  article-title: Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110439
– volume: 13
  start-page: 4567
  issue: 1
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b6
  article-title: A fault diagnosis method for building electrical systems based on the combination of variational modal decomposition and new mutual dimensionless
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-27031-y
– year: 2023
  ident: 10.1016/j.ress.2025.110999_b11
  article-title: Transfer learning-motivated intelligent fault diagnosis designs: A survey, insights, and perspectives
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 192
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b27
  article-title: Deep causal factorization network: A novel domain generalization method for cross-machine bearing fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110228
– volume: 56
  start-page: 8721
  issue: 8
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b40
  article-title: A survey of Bayesian network structure learning
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10351-w
– volume: 71
  start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b17
  article-title: Integrating expert knowledge with domain adaptation for unsupervised fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– ident: 10.1016/j.ress.2025.110999_b23
  doi: 10.1145/3581783.3611725
– volume: 35
  start-page: 2750
  issue: 3
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b22
  article-title: Learning causal representations for robust domain adaptation
  publication-title: IEEE Trans Knowl Data Eng
– volume: 34
  start-page: 6250
  issue: 9
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b28
  article-title: Causal disentanglement: A generalized bearing fault diagnostic framework in continuous degradation mode
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3135036
– start-page: 3777
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b44
  article-title: GeAE: GAE-embedded autoencoder based causal representation for robust domain adaptation
– year: 2024
  ident: 10.1016/j.ress.2025.110999_b3
  article-title: A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110297
– volume: 71
  start-page: 1464
  issue: 4
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b56
  article-title: Generic framework for integration of first prediction time detection with machine degradation modelling from frequency domain
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2021.3087698
– volume: 100
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b5
  article-title: A new dynamic radius SVDD for fault detection of aircraft engine
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104177
– ident: 10.1016/j.ress.2025.110999_b33
  doi: 10.1145/3485447.3512251
– volume: 64
  start-page: 100
  year: 2015
  ident: 10.1016/j.ress.2025.110999_b47
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.04.021
– year: 2024
  ident: 10.1016/j.ress.2025.110999_b10
  article-title: Few-shot cross-domain fault diagnosis of bearing driven by task-supervised ANIL
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2024.3360432
– volume: 242
  year: 2024
  ident: 10.1016/j.ress.2025.110999_b1
  article-title: Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109788
– volume: 17
  start-page: 1
  issue: 59
  year: 2016
  ident: 10.1016/j.ress.2025.110999_b20
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 13
  start-page: 8013
  issue: 6
  year: 2013
  ident: 10.1016/j.ress.2025.110999_b49
  article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis
  publication-title: Sensors
  doi: 10.3390/s130608013
– volume: 49
  start-page: 136
  issue: 1
  year: 2017
  ident: 10.1016/j.ress.2025.110999_b15
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2754287
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b58
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study
  publication-title: IEEE Trans Instrum Meas
– year: 2023
  ident: 10.1016/j.ress.2025.110999_b7
  article-title: A mechanism and data hybrid-driven method for main circuit ground fault diagnosis in electrical traction system
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2023.3260356
– ident: 10.1016/j.ress.2025.110999_b19
  doi: 10.1007/978-3-030-01267-0_38
– volume: 80
  start-page: 277
  year: 2017
  ident: 10.1016/j.ress.2025.110999_b39
  article-title: Efficient score-based Markov blanket discovery
  publication-title: Internat J Approx Reason
  doi: 10.1016/j.ijar.2016.09.009
– volume: 230
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b12
  article-title: Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108890
– volume: 256
  year: 2022
  ident: 10.1016/j.ress.2025.110999_b30
  article-title: Transfer learning based on improved stacked autoencoder for bearing fault diagnosis
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109846
– volume: 10
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.ress.2025.110999_b37
  article-title: BAMB: A balanced Markov blanket discovery approach to feature selection
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3335676
– volume: 242
  year: 2024
  ident: 10.1016/j.ress.2025.110999_b48
  article-title: A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109720
– volume: 23
  start-page: 1
  issue: 219
  year: 2022
  ident: 10.1016/j.ress.2025.110999_b38
  article-title: Structural agnostic modeling: Adversarial learning of causal graphs
  publication-title: J Mach Learn Res
– start-page: 7154
  year: 2019
  ident: 10.1016/j.ress.2025.110999_b42
  article-title: DAG-GNN: DAG structure learning with graph neural networks
– volume: 34
  start-page: 6250
  issue: 9
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b25
  article-title: Causal disentanglement: A generalized bearing fault diagnostic framework in continuous degradation mode
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3135036
– volume: 55
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.ress.2025.110999_b35
  article-title: D’ya like dags? a survey on structure learning and causal discovery
  publication-title: ACM Comput Surv
  doi: 10.1145/3527154
– ident: 10.1016/j.ress.2025.110999_b54
  doi: 10.1109/CVPR52688.2022.00704
– start-page: 3399
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b32
  article-title: Connectivity-contrastive learning: Combining causal discovery and representation learning for multimodal data
– start-page: 2506
  year: 2019
  ident: 10.1016/j.ress.2025.110999_b60
  article-title: Improved open set domain adaptation with backpropagation
– year: 1988
  ident: 10.1016/j.ress.2025.110999_b34
– year: 2022
  ident: 10.1016/j.ress.2025.110999_b36
  article-title: Causal feature selection with dual correction
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.ress.2025.110999_b57
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 2024
  ident: 10.1016/j.ress.2025.110999_b29
  article-title: Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study
  publication-title: Reliab Eng Syst Saf
– start-page: 12156
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b41
  article-title: DAGs with no curl: An efficient DAG structure learning approach
– volume: 31
  year: 2018
  ident: 10.1016/j.ress.2025.110999_b53
  article-title: Conditional adversarial domain adaptation
  publication-title: Adv Neural Inf Process Syst
– volume: 17
  start-page: 199
  issue: 1
  year: 2020
  ident: 10.1016/j.ress.2025.110999_b9
  article-title: Multiscale symbolic Lempel–Ziv: An effective feature extraction approach for fault diagnosis of railway vehicle systems
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2020.2980923
– volume: 53
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.ress.2025.110999_b46
  article-title: Causality-based feature selection: Methods and evaluations
  publication-title: ACM Comput Surv
  doi: 10.1145/3409382
– ident: 10.1016/j.ress.2025.110999_b59
  doi: 10.1109/CVPR.2018.00288
– volume: 189
  year: 2024
  ident: 10.1016/j.ress.2025.110999_b4
  article-title: Quality-integrated diagnostic platform for aerospace complex product assembly processes
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2023.109796
– volume: 23
  start-page: 1075
  issue: 8
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b51
  article-title: A non-contact fault diagnosis method for bearings and gears based on generalized matrix norm sparse filtering
  publication-title: Entropy
  doi: 10.3390/e23081075
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2025.110999_b18
  article-title: Conditional adversarial domain generalization with a single discriminator for bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3127641
– volume: 231
  year: 2023
  ident: 10.1016/j.ress.2025.110999_b14
  article-title: Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.109036
– volume: 29
  start-page: 6333
  issue: 12
  year: 2018
  ident: 10.1016/j.ress.2025.110999_b45
  article-title: Mining Markov blankets without causal sufficiency
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2828982
– ident: 10.1016/j.ress.2025.110999_b31
  doi: 10.1109/ICCV48922.2021.01108
– start-page: 443
  year: 2016
  ident: 10.1016/j.ress.2025.110999_b55
  article-title: Deep CORAL: Correlation alignment for deep domain adaptation
SSID ssj0004957
Score 2.488222
Snippet In practical fault diagnosis, obtaining sufficient samples is often challenging. Transfer learning can help by using data from related domains, but significant...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110999
SubjectTerms Causal representations
Fault diagnosis
Invariant representations
Transfer learning
Title Integrating causal representations with domain adaptation for fault diagnosis
URI https://dx.doi.org/10.1016/j.ress.2025.110999
Volume 260
WOSCitedRecordID wos001448402200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpof2UNIXSR9Bh94WL5a9luRjKEmbQEIPKezNzEoydUi9S7wu6b_v6OFHN01oDr0II9tjofmQRuOZbwj5qDUeG9g8i7LUxNEc95BIcplFWqD1keZMl1K7YhPi_FwuFvnX8LugceUERF3Lm5t8_V9VjX2obJs6-wB190KxA69R6dii2rH9J8WfBAIIl00LbeOY-9dDllEdEtr06gdU9RQ0rEcRhyW0VxvrkbUBeFUztl1t9LJn9f41NQONoQOPJ4SeNlAGXhEXlVMFZ_RZtz86D_WqdatLC0PnZ_A_gCr43la3fNnHK23G3okk62PjBjcjaj9N4vGKm_gSAmHNtJynvkjSreXcexYuZ9bzMLPiZ8PDf3Jnb-1pfaRhF8R2WVgZhZVReBmPyU4i8LQ1ITuHJ0eL0yGbNvf8sN3IQ6qVjwrcHsnfzZmRiXKxS56HswU99Jh4QR6Z-iV5NmKcfEXORuigHh10Cx3UooN6dNABHRTRQR06aI-O1-Tb8dHFpy9RqKgRqTSON5FO5oKrTJYl7itclgBcCQlqqaRJlqU2TLGYK3tXJiAMCKkFAEvUkhsep-kbMqlXtdkjFKdHKLwjsHsOTEnGNM-FkZnRXKZin7BuYgoV6OZt1ZOr4m6V7JNp_87ak63c-3TWzXcRzEVvBhYIn3vee_ugr7wjTwdcvyeTzXVrPpAn6uemaq4PAnZ-A8fWjU0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+causal+representations+with+domain+adaptation+for+fault+diagnosis&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Jiang%2C+Ming&rft.au=Zhou%2C+Kuang&rft.au=Gao%2C+Jiahui&rft.au=Zhang%2C+Fode&rft.date=2025-08-01&rft.issn=0951-8320&rft.volume=260&rft.spage=110999&rft_id=info:doi/10.1016%2Fj.ress.2025.110999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2025_110999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon