Numerical algorithms for generating an almost even approximation of the Pareto front in nonlinear multi-objective optimization problems

A multiobjective optimization problem (MOP) returns a set of non-dominated points, the so-called Pareto front. Since this set is usually infinite, it is impossible to generate it completely in practice. Therefore, a discrete approximation of the Pareto front is created. One of the most important fea...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 165; p. 112001
Main Authors: Dolatnezhadsomarin, Azam, Khorram, Esmaile, Yousefikhoshbakht, Majid
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2024
Subjects:
ISSN:1568-4946
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A multiobjective optimization problem (MOP) returns a set of non-dominated points, the so-called Pareto front. Since this set is usually infinite, it is impossible to generate it completely in practice. Therefore, a discrete approximation of the Pareto front is created. One of the most important features of this approximation is a uniform distribution of points on the full Pareto front in order to present a wide variety of solutions to the decision maker who chooses a final solution. While a few algorithms consider this property, two algorithms based on the Pascoletti-Serafini (PS) scalarization approach are proposed. In addition, six well-known test problems with convex and non-convex Pareto fronts are considered to show the effectiveness of the proposed algorithms. Their results are compared with some algorithms including Normal Constraint (NC), Benson type, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), S-Metric Selection Evolutionary Multiobjective Algorithm (SMS-EMOA), Differential Evolution (DE) with Binomial Crossover and MOEA/D-DE. The computational results on CPU time and reasonable distribution of points obtained on the Pareto front show that the presented algorithms perform better than other algorithms on these criteria. In addition, although the proposed algorithms compete closely with some algorithms in terms of CPU time, they have more non-dominated solutions and more appropriate distribution than they do in most problems. [Display omitted] •Two modified Pascoletti-Serafini scalarization approach are proposed.•Six well-known test problems with convex and non-convex Pareto fronts are applied to show effectiveness of the algorithms.•The presented algorithms have acceptable performance with regarding to the other algorithms.
AbstractList A multiobjective optimization problem (MOP) returns a set of non-dominated points, the so-called Pareto front. Since this set is usually infinite, it is impossible to generate it completely in practice. Therefore, a discrete approximation of the Pareto front is created. One of the most important features of this approximation is a uniform distribution of points on the full Pareto front in order to present a wide variety of solutions to the decision maker who chooses a final solution. While a few algorithms consider this property, two algorithms based on the Pascoletti-Serafini (PS) scalarization approach are proposed. In addition, six well-known test problems with convex and non-convex Pareto fronts are considered to show the effectiveness of the proposed algorithms. Their results are compared with some algorithms including Normal Constraint (NC), Benson type, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), S-Metric Selection Evolutionary Multiobjective Algorithm (SMS-EMOA), Differential Evolution (DE) with Binomial Crossover and MOEA/D-DE. The computational results on CPU time and reasonable distribution of points obtained on the Pareto front show that the presented algorithms perform better than other algorithms on these criteria. In addition, although the proposed algorithms compete closely with some algorithms in terms of CPU time, they have more non-dominated solutions and more appropriate distribution than they do in most problems. [Display omitted] •Two modified Pascoletti-Serafini scalarization approach are proposed.•Six well-known test problems with convex and non-convex Pareto fronts are applied to show effectiveness of the algorithms.•The presented algorithms have acceptable performance with regarding to the other algorithms.
ArticleNumber 112001
Author Dolatnezhadsomarin, Azam
Yousefikhoshbakht, Majid
Khorram, Esmaile
Author_xml – sequence: 1
  givenname: Azam
  surname: Dolatnezhadsomarin
  fullname: Dolatnezhadsomarin, Azam
  organization: Department of Mathematics and Computer Science, Amirkabir University of Technology, 424, Hafez Avenue, Tehran 15914, Iran
– sequence: 2
  givenname: Esmaile
  surname: Khorram
  fullname: Khorram, Esmaile
  organization: Department of Mathematics and Computer Science, Amirkabir University of Technology, 424, Hafez Avenue, Tehran 15914, Iran
– sequence: 3
  givenname: Majid
  orcidid: 0000-0003-1965-1594
  surname: Yousefikhoshbakht
  fullname: Yousefikhoshbakht, Majid
  email: khoshbakht@basu.ac.ir
  organization: Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
BookMark eNp9kM1OwzAMgHMYEtvgBTjlBVqS_kfigib-pAk4wDlKU2dL1SZVkk3AC_DaZIwThx0sW7Y-y_4WaGasAYSuKEkpodV1nwpvZZqRrEgpzQihMzSnZdUkBSuqc7Twvo_NimXNHH0_70ZwWooBi2FjnQ7b0WNlHd6AASeCNhssTByO1gcMe4j1NDn7occ4tAZbhcMW8KtwECxWzpqAtcHxqEEbEA6PuyHoxLY9yKD3gO0U9Ki_jnTc1A4w-gt0psTg4fIvL9H7_d3b6jFZvzw8rW7XicwJCUmX5bVogYIqaVnXFWRFV7Yto8CoLAhRsskpq0omRU6qGF1FKGN13rUtoSrLl6g57pXOeu9AcanD7ynBCT1wSvhBIu_5QSI_SORHiRHN_qGTixLc52no5ghBfGqvwXEvNRgJnXbRB--sPoX_AEX5kxs
CitedBy_id crossref_primary_10_3390_s25175524
crossref_primary_10_3390_buildings15071150
crossref_primary_10_1080_00295450_2025_2507976
Cites_doi 10.1016/j.apm.2015.03.022
10.1137/060672029
10.1007/s00158-013-0946-1
10.1023/A:1021179727569
10.1007/s00186-015-0510-4
10.1142/13488
10.1007/s00158-011-0729-5
10.1007/s00158-004-0465-1
10.1080/02331934.2011.587006
10.1109/4235.996017
10.1080/0305215X.2010.497185
10.2514/1.8977
10.1016/j.ejor.2006.08.002
10.1137/08071692X
10.1140/epjs/s11734-021-00206-w
10.1007/s11750-016-0430-3
10.1137/S0036144599352836
10.1109/TEVC.2016.2521175
10.1016/j.cam.2013.11.007
10.1007/s10957-020-01788-6
10.1007/s00158-012-0797-1
10.1109/TSMCB.2004.834438
10.1007/BF01197559
10.1137/080729013
10.2514/2.1071
10.1007/s10957-013-0346-0
10.1007/978-3-540-79159-1
10.1137/S1052623496307510
10.1007/s00158-002-0276-1
10.1007/s10489-017-1019-8
10.1109/TEVC.2014.2378512
10.1016/j.ejor.2018.08.018
10.1007/1-84628-137-7_6
10.1007/s00158-005-0557-6
10.1080/23311916.2018.1502242
10.1002/nav.3800020106
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.112001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2024_112001
S1568494624007750
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-d237abe1ef515776e24d5bb91e91c400fc8319659ca306a30d6019973dbb01f23
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294227700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:33:17 EST 2025
Sat Nov 29 03:06:05 EST 2025
Tue Dec 03 03:45:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pareto optimal solution
Pareto front
Pascoletti-Serafini scalarization approach
Multi-objective optimization problem
Hyperplane
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d237abe1ef515776e24d5bb91e91c400fc8319659ca306a30d6019973dbb01f23
ORCID 0000-0003-1965-1594
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2024_112001
crossref_primary_10_1016_j_asoc_2024_112001
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_112001
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dutta, Kaya (bib26) 2011; 60
Das, Dennis (bib3) 1997; 14
Bandyopadhyay, Pal, Aruna (bib40) 2004; 34
Deb, Pratap, Agarwal, Meyarivan (bib12) 2002
Wang, Zhang, Zhang (bib33) 2016; 20
Khorram, Khaledian, Khaledyan (bib17) 2014; 261
Saini, Sriparna (bib35) 2021; 230
Erfani, Utyuzhnikov, Kolo (bib25) 2013; 48
Wang, Liu, Zhao, Wang, Zhang, Chen, Guan, Liu, Shi, Zi (bib32) 2019
Messac, Mattson (bib11) 2004; 42
Burachik, Kaya, Rizvi (bib27) 2014; 162
Bandyopadhyay, Pal, Aruna (bib38) 2004; 34
Deb, Thiele, Laumanns, Zitzler (bib42) 2005
Ehrgott (bib1) 2005
Siddiqui, Azarm, Gabriel (bib14) 2012; 46
Messac, Ismail-Yahaya, Mattson (bib10) 2003; 25
Motta, Afonso, Lyra (bib20) 2012; 46
Khaledian, Soleimani-damaneh (bib22) 2015; 82
Ghane-Kanafi, Khorram (bib15) 2015; 39
Erfani, Utyuzhnikov (bib24) 2011; 43
Wang, Min (bib34) 2018
Zhang, Tian, Jin (bib29) 2015; 19
Mueller-Gritschneder, Graeb, Schlichtmann (bib19) 2009; 20
Fliege, Drummond, Svaiter (bib28) 2009; 20
Morovati, Pourkarimi (bib39) 2019; 273
Das, Dennis (bib9) 1999; 2
Das, Dennis (bib8) 1998; 8
Mirjalili, Mirjalili, Saremi, Faris, Aljarah (bib31) 2017; 48
Gass, Saaty (bib2) 1955; 2
Kim, Weck (bib6) 2005; 29
Messac, Sundararaj, Tappeta, Renaud (bib5) 2000; 38
Shukla, Deb (bib13) 2007; 181
Messac, Mattson (bib23) 2002; 3
Pan, Shaokai, Kaiwen, Shengkun (bib36) 2021; 188
Eichfelder (bib16) 2009; 19
Nobakhtian, Shafiei (bib18) 2017; 25
Koski (bib4) 1985; 1
Du, Faber, Gunzburger (bib21) 1999; 41
Kim, Weck (bib7) 2006; 31
Gunantara (bib30) 2018; 5
G. Eichfelder, 2008, Adaptive scalarization methods in multiobjective optimization436, Springer, Berlin.
G. Chen, 2023, , Nonlinear Systems, Stability, Dynamics and Control236.
Burachik (10.1016/j.asoc.2024.112001_bib27) 2014; 162
Bandyopadhyay (10.1016/j.asoc.2024.112001_bib38) 2004; 34
10.1016/j.asoc.2024.112001_bib41
Das (10.1016/j.asoc.2024.112001_bib8) 1998; 8
Messac (10.1016/j.asoc.2024.112001_bib23) 2002; 3
Khaledian (10.1016/j.asoc.2024.112001_bib22) 2015; 82
Das (10.1016/j.asoc.2024.112001_bib3) 1997; 14
Eichfelder (10.1016/j.asoc.2024.112001_bib16) 2009; 19
Messac (10.1016/j.asoc.2024.112001_bib11) 2004; 42
Messac (10.1016/j.asoc.2024.112001_bib5) 2000; 38
Du (10.1016/j.asoc.2024.112001_bib21) 1999; 41
Dutta (10.1016/j.asoc.2024.112001_bib26) 2011; 60
10.1016/j.asoc.2024.112001_bib37
Mirjalili (10.1016/j.asoc.2024.112001_bib31) 2017; 48
Zhang (10.1016/j.asoc.2024.112001_bib29) 2015; 19
Bandyopadhyay (10.1016/j.asoc.2024.112001_bib40) 2004; 34
Mueller-Gritschneder (10.1016/j.asoc.2024.112001_bib19) 2009; 20
Deb (10.1016/j.asoc.2024.112001_bib42) 2005
Morovati (10.1016/j.asoc.2024.112001_bib39) 2019; 273
Wang (10.1016/j.asoc.2024.112001_bib33) 2016; 20
Ehrgott (10.1016/j.asoc.2024.112001_bib1) 2005
Ghane-Kanafi (10.1016/j.asoc.2024.112001_bib15) 2015; 39
Gunantara (10.1016/j.asoc.2024.112001_bib30) 2018; 5
Saini (10.1016/j.asoc.2024.112001_bib35) 2021; 230
Koski (10.1016/j.asoc.2024.112001_bib4) 1985; 1
Fliege (10.1016/j.asoc.2024.112001_bib28) 2009; 20
Kim (10.1016/j.asoc.2024.112001_bib6) 2005; 29
Motta (10.1016/j.asoc.2024.112001_bib20) 2012; 46
Erfani (10.1016/j.asoc.2024.112001_bib25) 2013; 48
Gass (10.1016/j.asoc.2024.112001_bib2) 1955; 2
Siddiqui (10.1016/j.asoc.2024.112001_bib14) 2012; 46
Wang (10.1016/j.asoc.2024.112001_bib34) 2018
Deb (10.1016/j.asoc.2024.112001_bib12) 2002; 6
Khorram (10.1016/j.asoc.2024.112001_bib17) 2014; 261
Pan (10.1016/j.asoc.2024.112001_bib36) 2021; 188
Kim (10.1016/j.asoc.2024.112001_bib7) 2006; 31
Messac (10.1016/j.asoc.2024.112001_bib10) 2003; 25
Wang (10.1016/j.asoc.2024.112001_bib32) 2019
Das (10.1016/j.asoc.2024.112001_bib9) 1999; 2
Erfani (10.1016/j.asoc.2024.112001_bib24) 2011; 43
Nobakhtian (10.1016/j.asoc.2024.112001_bib18) 2017; 25
Shukla (10.1016/j.asoc.2024.112001_bib13) 2007; 181
References_xml – volume: 2
  start-page: 39
  year: 1955
  end-page: 45
  ident: bib2
  article-title: The computational algorithm for the parametric objective function
  publication-title: Nav. Res. Logist. Q.
– volume: 261
  start-page: 158
  year: 2014
  end-page: 171
  ident: bib17
  article-title: A numerical method for constructing the Pareto front of multi-objective optimization problems
  publication-title: J. Comput. Appl. Math.
– volume: 29
  start-page: 149
  year: 2005
  end-page: 158
  ident: bib6
  article-title: Adaptive weighted-sum method for bi-objective optimization: Pareto front generation
  publication-title: Struct. Multidiscip. Optim.
– volume: 181
  start-page: 1630
  year: 2007
  end-page: 1652
  ident: bib13
  article-title: On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods
  publication-title: Eur. J. Oper. Res.
– volume: 82
  start-page: 211
  year: 2015
  end-page: 228
  ident: bib22
  article-title: A new approach to approximate the bounded Pareto front
  publication-title: Math. Methods Oper. Res.
– volume: 41
  start-page: 637
  year: 1999
  end-page: 676
  ident: bib21
  article-title: Centroidal Voronoi tessellations: applications and algorithms
  publication-title: SIAM Rev.
– start-page: 182
  year: 2002
  end-page: 197
  ident: bib12
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evolut. Comput., IEEE Trans.
– volume: 20
  start-page: 602
  year: 2009
  end-page: 626
  ident: bib28
  article-title: Newton's method for multiobjective optimization
  publication-title: SIAM J. Optim.
– volume: 46
  start-page: 239
  year: 2012
  end-page: 259
  ident: bib20
  article-title: A modified NBI and NC method for the solution of N-multiobjective optimization problems
  publication-title: Struct. Multidisclinary Optim.
– start-page: 1
  year: 2018
  end-page: 11
  ident: bib34
  article-title: Robust optimization model for uncertain multiobjective linear programs
  publication-title: J. Inequalities Appl.
– volume: 162
  start-page: 428
  year: 2014
  end-page: 446
  ident: bib27
  article-title: A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets
  publication-title: J. Optim. Theory Appl.
– reference: G. Eichfelder, 2008, Adaptive scalarization methods in multiobjective optimization436, Springer, Berlin.
– volume: 20
  start-page: 821
  year: 2016
  end-page: 837
  ident: bib33
  article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: bib8
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 42
  start-page: 2101
  year: 2004
  end-page: 2111
  ident: bib11
  article-title: Normal constraint method with guarantee of even representation of complete Pareto frontier
  publication-title: AIAA J.
– volume: 48
  start-page: 1129
  year: 2013
  end-page: 1141
  ident: bib25
  article-title: A modified directed search domain algorithm for multiobjective engineering and design optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 25
  start-page: 271
  year: 2017
  end-page: 287
  ident: bib18
  article-title: A Benson type algorithm for nonconvex multiobjective programming problems
  publication-title: TOP: Off. J. Span. Soc. Stat. Oper. Res.
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: bib29
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 38
  start-page: 1084
  year: 2000
  end-page: 1091
  ident: bib5
  article-title: Ability of objective functions to generate points on nonconvex Pareto frontiers
  publication-title: AIAA J.
– volume: 188
  start-page: 402
  year: 2021
  end-page: 419
  ident: bib36
  article-title: Trade-off ratio functions for linear and piecewise linear multi-objective optimization problems
  publication-title: J. Optim. Theory Appl.
– volume: 2
  start-page: 411
  year: 1999
  end-page: 413
  ident: bib9
  article-title: An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection
  publication-title: Short. Pap. Proc. Third World Congr. Struct. Multidiscip. Optim.
– volume: 1
  start-page: 333
  year: 1985
  end-page: 337
  ident: bib4
  article-title: Defectiveness of weighting method in multicriterion optimization of structures
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 19
  start-page: 1694
  year: 2009
  end-page: 1718
  ident: bib16
  article-title: An adaptive scalarization method in multiobjective optimization
  publication-title: SIAM J. Optim.
– reference: G. Chen, 2023, , Nonlinear Systems, Stability, Dynamics and Control236.
– volume: 31
  start-page: 105
  year: 2006
  end-page: 116
  ident: bib7
  article-title: Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation
  publication-title: Struct. Multidiscip. Optim.
– volume: 60
  start-page: 1091
  year: 2011
  end-page: 1104
  ident: bib26
  article-title: A new scalarization and numerical method for constructing the weak Pareto front of multi-objective optimization problems
  publication-title: Optimization
– volume: 273
  start-page: 44
  year: 2019
  end-page: 57
  ident: bib39
  article-title: Extension of Zoutendijk method for solving constrained multiobjective optimization problems
  publication-title: Eur. J. Oper. Res.
– volume: 20
  start-page: 915
  year: 2009
  end-page: 934
  ident: bib19
  article-title: A successive approach to compute the bounded Pareto front of practical multiobjective optimization problems
  publication-title: SIAM J. Optim.
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib32
  article-title: Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum
  publication-title: Nat. Photonics
– start-page: 105
  year: 2005
  end-page: 145
  ident: bib42
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolut. Multiobjective Optim. Theor. Adv. Appl.
– volume: 43
  start-page: 467
  year: 2011
  end-page: 484
  ident: bib24
  article-title: Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization
  publication-title: Eng. Optim.
– volume: 48
  start-page: 805
  year: 2017
  end-page: 820
  ident: bib31
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl. Intell.
– volume: 14
  start-page: 63
  year: 1997
  end-page: 69
  ident: bib3
  article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
  publication-title: Struct. Optim.
– volume: 39
  start-page: 7483
  year: 2015
  end-page: 7498
  ident: bib15
  article-title: A new scalarization method for finding the efficient frontier in non-convex multi-objective problems
  publication-title: Appl. Math. Model.
– volume: 25
  start-page: 86
  year: 2003
  end-page: 98
  ident: bib10
  article-title: The normalized normal constraint method for generating the Pareto frontier
  publication-title: Struct. Multidiscip. Optim.
– year: 2005
  ident: bib1
  article-title: Multicriteria Optimization
– volume: 230
  start-page: 2319
  year: 2021
  end-page: 2335
  ident: bib35
  article-title: Multi-objective optimization techniques: a survey of the state-of-the-art and applications: Multi-objective optimization techniques
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 34
  start-page: 2088
  year: 2004
  end-page: 2099
  ident: bib38
  article-title: Multiobjective GAs, quantitative indices, and pattern classification
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern. )
– volume: 3
  start-page: 431
  year: 2002
  end-page: 450
  ident: bib23
  article-title: Generating well-distributed sets of Pareto points for engineering design using physical programming
  publication-title: Optim. Eng.
– volume: 46
  start-page: 839
  year: 2012
  end-page: 852
  ident: bib14
  article-title: On improving normal boundary intersection method for generation of Pareto frontier
  publication-title: Struct. Multidiscip. Optim.
– volume: 34
  start-page: 2088
  year: 2004
  end-page: 2099
  ident: bib40
  article-title: Multiobjective GAs, quantitative indices, and pattern classification‏
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B
– volume: 5
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib30
  article-title: A review of multi-objective optimization: methods and its applications
  publication-title: Cogent Eng.
– volume: 39
  start-page: 7483
  issue: 23
  year: 2015
  ident: 10.1016/j.asoc.2024.112001_bib15
  article-title: A new scalarization method for finding the efficient frontier in non-convex multi-objective problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.03.022
– volume: 19
  start-page: 1694
  issue: 14
  year: 2009
  ident: 10.1016/j.asoc.2024.112001_bib16
  article-title: An adaptive scalarization method in multiobjective optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/060672029
– volume: 48
  start-page: 1129
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2024.112001_bib25
  article-title: A modified directed search domain algorithm for multiobjective engineering and design optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0946-1
– volume: 3
  start-page: 431
  issue: 4
  year: 2002
  ident: 10.1016/j.asoc.2024.112001_bib23
  article-title: Generating well-distributed sets of Pareto points for engineering design using physical programming
  publication-title: Optim. Eng.
  doi: 10.1023/A:1021179727569
– volume: 82
  start-page: 211
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2024.112001_bib22
  article-title: A new approach to approximate the bounded Pareto front
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-015-0510-4
– ident: 10.1016/j.asoc.2024.112001_bib37
  doi: 10.1142/13488
– volume: 46
  start-page: 239
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2024.112001_bib20
  article-title: A modified NBI and NC method for the solution of N-multiobjective optimization problems
  publication-title: Struct. Multidisclinary Optim.
  doi: 10.1007/s00158-011-0729-5
– volume: 29
  start-page: 149
  issue: 2
  year: 2005
  ident: 10.1016/j.asoc.2024.112001_bib6
  article-title: Adaptive weighted-sum method for bi-objective optimization: Pareto front generation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0465-1
– volume: 60
  start-page: 1091
  issue: 8-9
  year: 2011
  ident: 10.1016/j.asoc.2024.112001_bib26
  article-title: A new scalarization and numerical method for constructing the weak Pareto front of multi-objective optimization problems
  publication-title: Optimization
  doi: 10.1080/02331934.2011.587006
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2024.112001_bib12
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evolut. Comput., IEEE Trans.
  doi: 10.1109/4235.996017
– volume: 43
  start-page: 467
  issue: 5
  year: 2011
  ident: 10.1016/j.asoc.2024.112001_bib24
  article-title: Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2010.497185
– volume: 42
  start-page: 2101
  issue: 10
  year: 2004
  ident: 10.1016/j.asoc.2024.112001_bib11
  article-title: Normal constraint method with guarantee of even representation of complete Pareto frontier
  publication-title: AIAA J.
  doi: 10.2514/1.8977
– volume: 181
  start-page: 1630
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2024.112001_bib13
  article-title: On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.002
– volume: 20
  start-page: 602
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2024.112001_bib28
  article-title: Newton's method for multiobjective optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/08071692X
– volume: 230
  start-page: 2319
  issue: 10
  year: 2021
  ident: 10.1016/j.asoc.2024.112001_bib35
  article-title: Multi-objective optimization techniques: a survey of the state-of-the-art and applications: Multi-objective optimization techniques
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-021-00206-w
– volume: 25
  start-page: 271
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2024.112001_bib18
  article-title: A Benson type algorithm for nonconvex multiobjective programming problems
  publication-title: TOP: Off. J. Span. Soc. Stat. Oper. Res.
  doi: 10.1007/s11750-016-0430-3
– volume: 41
  start-page: 637
  issue: 4
  year: 1999
  ident: 10.1016/j.asoc.2024.112001_bib21
  article-title: Centroidal Voronoi tessellations: applications and algorithms
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144599352836
– volume: 20
  start-page: 821
  year: 2016
  ident: 10.1016/j.asoc.2024.112001_bib33
  article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2016.2521175
– volume: 261
  start-page: 158
  year: 2014
  ident: 10.1016/j.asoc.2024.112001_bib17
  article-title: A numerical method for constructing the Pareto front of multi-objective optimization problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.11.007
– volume: 188
  start-page: 402
  year: 2021
  ident: 10.1016/j.asoc.2024.112001_bib36
  article-title: Trade-off ratio functions for linear and piecewise linear multi-objective optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01788-6
– volume: 46
  start-page: 839
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2024.112001_bib14
  article-title: On improving normal boundary intersection method for generation of Pareto frontier
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0797-1
– volume: 34
  start-page: 2088
  issue: 5
  year: 2004
  ident: 10.1016/j.asoc.2024.112001_bib38
  article-title: Multiobjective GAs, quantitative indices, and pattern classification
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern. )
  doi: 10.1109/TSMCB.2004.834438
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2024.112001_bib34
  article-title: Robust optimization model for uncertain multiobjective linear programs
  publication-title: J. Inequalities Appl.
– volume: 14
  start-page: 63
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2024.112001_bib3
  article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
  publication-title: Struct. Optim.
  doi: 10.1007/BF01197559
– volume: 2
  start-page: 411
  year: 1999
  ident: 10.1016/j.asoc.2024.112001_bib9
  article-title: An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection
  publication-title: Short. Pap. Proc. Third World Congr. Struct. Multidiscip. Optim.
– volume: 20
  start-page: 915
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2024.112001_bib19
  article-title: A successive approach to compute the bounded Pareto front of practical multiobjective optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/080729013
– volume: 38
  start-page: 1084
  issue: 6
  year: 2000
  ident: 10.1016/j.asoc.2024.112001_bib5
  article-title: Ability of objective functions to generate points on nonconvex Pareto frontiers
  publication-title: AIAA J.
  doi: 10.2514/2.1071
– volume: 162
  start-page: 428
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2024.112001_bib27
  article-title: A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0346-0
– ident: 10.1016/j.asoc.2024.112001_bib41
  doi: 10.1007/978-3-540-79159-1
– volume: 34
  start-page: 2088
  issue: 5
  year: 2004
  ident: 10.1016/j.asoc.2024.112001_bib40
  article-title: Multiobjective GAs, quantitative indices, and pattern classification‏
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B
  doi: 10.1109/TSMCB.2004.834438
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.asoc.2024.112001_bib8
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 25
  start-page: 86
  issue: 2
  year: 2003
  ident: 10.1016/j.asoc.2024.112001_bib10
  article-title: The normalized normal constraint method for generating the Pareto frontier
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-002-0276-1
– volume: 48
  start-page: 805
  year: 2017
  ident: 10.1016/j.asoc.2024.112001_bib31
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1019-8
– volume: 19
  start-page: 761
  year: 2015
  ident: 10.1016/j.asoc.2024.112001_bib29
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2014.2378512
– volume: 273
  start-page: 44
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2024.112001_bib39
  article-title: Extension of Zoutendijk method for solving constrained multiobjective optimization problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.08.018
– year: 2005
  ident: 10.1016/j.asoc.2024.112001_bib1
– start-page: 105
  year: 2005
  ident: 10.1016/j.asoc.2024.112001_bib42
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolut. Multiobjective Optim. Theor. Adv. Appl.
  doi: 10.1007/1-84628-137-7_6
– volume: 31
  start-page: 105
  issue: 2
  year: 2006
  ident: 10.1016/j.asoc.2024.112001_bib7
  article-title: Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-005-0557-6
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2024.112001_bib32
  article-title: Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum
  publication-title: Nat. Photonics
– volume: 1
  start-page: 333
  issue: 6
  year: 1985
  ident: 10.1016/j.asoc.2024.112001_bib4
  article-title: Defectiveness of weighting method in multicriterion optimization of structures
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2024.112001_bib30
  article-title: A review of multi-objective optimization: methods and its applications
  publication-title: Cogent Eng.
  doi: 10.1080/23311916.2018.1502242
– volume: 2
  start-page: 39
  issue: 1-2
  year: 1955
  ident: 10.1016/j.asoc.2024.112001_bib2
  article-title: The computational algorithm for the parametric objective function
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020106
SSID ssj0016928
Score 2.4455864
Snippet A multiobjective optimization problem (MOP) returns a set of non-dominated points, the so-called Pareto front. Since this set is usually infinite, it is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112001
SubjectTerms Hyperplane
Multi-objective optimization problem
Pareto front
Pareto optimal solution
Pascoletti-Serafini scalarization approach
Title Numerical algorithms for generating an almost even approximation of the Pareto front in nonlinear multi-objective optimization problems
URI https://dx.doi.org/10.1016/j.asoc.2024.112001
Volume 165
WOSCitedRecordID wos001294227700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65SQ-9tOlLSdtEe-jNwuINe4wqV20PVg6p5BtalqXgGIgAR1b-QH9I_2hnmQUTt4maQw9GFrDrlefjm5llHoR8BEdHBDJwDTt1lIMimMGBCA3u8zCxXT8VDJtNBItFuFyyi8nkV58Lc7MOyjLcbtn1fxU1nANhq9TZR4h7mBROwHcQOhxB7HD8J8EvNvgSRoUe_6jA98-w5oJqlqwqKGNWIlwsqqadqgJOWFh8mxeD-ais0QvV_7ZS-Sdl10agxKIavMYgRKOKV0iW0wpop9D5nFPdoaYZW729qdsA53dB7Ju215jKhgbvui3lbcaTpirAd8eqBre8GLRBVtU1InfeFDxfyxFZNTLNr7KqyWJ-len8o5WO09fbGbar8_pGDOyHhsv0vmRP0b43IlkwEU0c8gf_41bEasYB2jM1_Wx3891i23tKcAhN7KPeVpGaI1JzRDjHE3JoBx4D9j88_zpffhteVvmsa-E7rFznZmEY4f5K_m7_jGyayyPyXDsj9BxB9JJMZPmKvOgbfVDN-6_JzwFTdIcpCpiiO0xRXlLEFFWYoncwRauUAqYoYop2mKJ5SQdM0T1M0TGmaI-pN-T75_nlpy-G7uBhCMc0WyOxnYDH0pIpmM1B4EvbTbw4ZpZklgDtkYrQ6UpaCg6uK3wS31SRT04Sx6aV2s5bcgArkceECm75iZU6NlMNGiyHh4EdJ6BvJCglz0lOiNX_r5HQ5e1Vl5V1dL9ET8h0GHONxV0evNvrxRVp8xTNzgjQ98C4d4_6lffk2e6x-EAO2nojT8lTcdPmTX2mofcbpYC42g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+algorithms+for+generating+an+almost+even+approximation+of+the+Pareto+front+in+nonlinear+multi-objective+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Dolatnezhadsomarin%2C+Azam&rft.au=Khorram%2C+Esmaile&rft.au=Yousefikhoshbakht%2C+Majid&rft.date=2024-11-01&rft.issn=1568-4946&rft.volume=165&rft.spage=112001&rft_id=info:doi/10.1016%2Fj.asoc.2024.112001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_112001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon