Short-term photovoltaic power prediction on modal reconstruction: A novel hybrid model approach

[Display omitted] •A novel hybrid forecasting model for short-term PV power based on modal reconstruction is proposed.•An enhanced GWO algorithm is proposed.•The MAPE values of the proposed model are smaller than 3% under various weather conditions.•The proposed hybrid model accurately predicts the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sustainable energy technologies and assessments Ročník 45; s. 101048
Hlavní autoři: Liu, Zhi-Feng, Luo, Shi-Fan, Tseng, Ming-Lang, Liu, Han-Min, Li, Lingling, Hashan Md Mashud, Abu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2021
Témata:
ISSN:2213-1388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •A novel hybrid forecasting model for short-term PV power based on modal reconstruction is proposed.•An enhanced GWO algorithm is proposed.•The MAPE values of the proposed model are smaller than 3% under various weather conditions.•The proposed hybrid model accurately predicts the short-term PV power.•The proposed model improves the ability of power grid to absorb PV power. The contribution is to propose a novel hybrid model based on modal reconstruction to predict short-term photovoltaic (PV) power. PV power generation large-scale grid connection causes the impact on the power system due to the instability and intermittence, and PV curtailment measures are taken to reduce the impact from voltage fluctuation. Accurate forecast is necessary to make a reasonable generation plan. A novel hybrid forecasting model is proposed, and an enhanced gray wolf optimization algorithm is proposed to improve the convergence ability and to solve the influence of extreme learning machine random parameters. The proposed algorithm has stronger convergence stability and higher convergence accuracy compared with the existing algorithms. The ensemble empirical mode decomposition algorithm is used to decompose the PV power under different weather conditions. The complexity of each component is calculated by the sample entropy, and the components are reconstructed to reduce the computational cost of forecasting models. The results revealed that mean absolute percentage error and root mean square error of the proposed model are smaller than 3% and 0.36 under various weather conditions. Meanwhile, the determination coefficient of the proposed model is more than 98%.
AbstractList [Display omitted] •A novel hybrid forecasting model for short-term PV power based on modal reconstruction is proposed.•An enhanced GWO algorithm is proposed.•The MAPE values of the proposed model are smaller than 3% under various weather conditions.•The proposed hybrid model accurately predicts the short-term PV power.•The proposed model improves the ability of power grid to absorb PV power. The contribution is to propose a novel hybrid model based on modal reconstruction to predict short-term photovoltaic (PV) power. PV power generation large-scale grid connection causes the impact on the power system due to the instability and intermittence, and PV curtailment measures are taken to reduce the impact from voltage fluctuation. Accurate forecast is necessary to make a reasonable generation plan. A novel hybrid forecasting model is proposed, and an enhanced gray wolf optimization algorithm is proposed to improve the convergence ability and to solve the influence of extreme learning machine random parameters. The proposed algorithm has stronger convergence stability and higher convergence accuracy compared with the existing algorithms. The ensemble empirical mode decomposition algorithm is used to decompose the PV power under different weather conditions. The complexity of each component is calculated by the sample entropy, and the components are reconstructed to reduce the computational cost of forecasting models. The results revealed that mean absolute percentage error and root mean square error of the proposed model are smaller than 3% and 0.36 under various weather conditions. Meanwhile, the determination coefficient of the proposed model is more than 98%.
ArticleNumber 101048
Author Liu, Han-Min
Hashan Md Mashud, Abu
Liu, Zhi-Feng
Tseng, Ming-Lang
Luo, Shi-Fan
Li, Lingling
Author_xml – sequence: 1
  givenname: Zhi-Feng
  surname: Liu
  fullname: Liu, Zhi-Feng
  email: tjliuzhifeng@126.com
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
– sequence: 2
  givenname: Shi-Fan
  surname: Luo
  fullname: Luo, Shi-Fan
  email: luo.shif@northeastern.edu
  organization: College of Engineering, Northeastern University, Boston 02115, USA
– sequence: 3
  givenname: Ming-Lang
  surname: Tseng
  fullname: Tseng, Ming-Lang
  email: tsengminglang@asia.edu.tw, tsengminglang@gmail.com
  organization: Institute of Innovation and Circular Economy, Asia University, Taiwan
– sequence: 4
  givenname: Han-Min
  surname: Liu
  fullname: Liu, Han-Min
  email: liu199920002001@163.com
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
– sequence: 5
  givenname: Lingling
  surname: Li
  fullname: Li, Lingling
  email: lilinglinglaoshi@126.com
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
– sequence: 6
  givenname: Abu
  surname: Hashan Md Mashud
  fullname: Hashan Md Mashud, Abu
  email: mashud@hstu.ac.bd
  organization: Department of Mathematics, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
BookMark eNp9kMFOwzAMQHMYEmPsBzjlBzqStGszxGWagCFN4gCcIydx1UxdUyVhaH9PyzhxmGTJsuVn2e-GTDrfISF3nC044-X9fhExwUIwwccGK-SETIXgecZzKa_JPMY9Y4znJS84mxL13viQsoThQPvGJ3_0bQJnaO-_MdA-oHUmOd_RIQ7eQksDGt_FFL5--w90TTt_xJY2Jx2cHYeGAvo-eDDNLbmqoY04_8sz8vn89LHZZru3l9fNepeZnLGUWW6llYXWvBSAyxxB5FisbAEVAlsVYCstJOiKWzSlLFdLXtWVrgXUldFW5jMiz3tN8DEGrJVxCcYDUwDXKs7U6Eft1ehHjX7U2c-Ain9oH9wBwuky9HiGcHjq6DCoaBx2ZtA1-EnKencJ_wF5e4Wv
CitedBy_id crossref_primary_10_1016_j_microrel_2021_114267
crossref_primary_10_1177_01445987211054224
crossref_primary_10_1088_1742_6596_2427_1_012006
crossref_primary_10_1038_s41597_025_04985_y
crossref_primary_10_1111_exsy_13209
crossref_primary_10_1155_2021_9931521
crossref_primary_10_1007_s44163_025_00327_4
crossref_primary_10_1049_rpg2_12829
crossref_primary_10_1177_01445987211021505
crossref_primary_10_1007_s00500_025_10694_w
crossref_primary_10_3390_en15239146
crossref_primary_10_1007_s00500_022_07688_3
crossref_primary_10_1109_ACCESS_2025_3580328
crossref_primary_10_1142_S0218126624502207
crossref_primary_10_1155_2021_6638436
crossref_primary_10_1080_15567036_2022_2143945
crossref_primary_10_3389_fenrg_2023_1267275
crossref_primary_10_1007_s42461_023_00747_9
crossref_primary_10_1016_j_eswa_2022_116944
crossref_primary_10_1371_journal_pone_0261709
crossref_primary_10_3389_fenrg_2022_811745
crossref_primary_10_1007_s00500_021_05961_5
Cites_doi 10.1109/MSP.2013.2267931
10.1142/S1793536909000047
10.1016/j.advengsoft.2016.01.008
10.1016/j.knosys.2015.07.006
10.1016/j.rser.2013.07.058
10.1016/j.neucom.2005.12.126
10.1016/j.renene.2017.11.011
10.1016/j.renene.2013.11.067
10.1016/j.renene.2019.02.087
10.1016/j.jclepro.2019.04.331
10.1155/2017/2030489
10.1016/j.enconman.2014.05.090
10.1016/j.compstruc.2016.03.001
10.1007/978-3-319-11857-4_10
10.1007/s00704-015-1469-z
10.1016/j.neucom.2019.09.110
10.1007/s00521-017-3225-z
10.1016/j.jclepro.2020.123948
10.1016/j.energy.2020.118098
10.1016/j.energy.2020.117894
10.1016/j.asoc.2020.106651
10.1016/j.enconman.2018.10.015
10.1016/j.renene.2019.02.077
10.3390/su11020512
10.1016/j.advengsoft.2017.01.004
10.1109/TIE.2017.2714127
10.1007/s12293-020-00313-6
10.1109/TSTE.2015.2482120
10.1016/j.eswa.2015.10.039
10.1016/j.jclepro.2017.08.081
10.1109/TSMCB.2011.2168604
10.1016/j.energy.2019.116669
10.1007/s00521-014-1806-7
10.1016/j.apenergy.2019.01.193
10.1016/j.solener.2013.10.002
10.1016/j.jclepro.2018.07.311
10.1016/j.apenergy.2018.12.050
10.1016/j.energy.2014.01.048
10.1016/j.neunet.2014.10.001
10.1016/j.asoc.2020.106389
10.1109/TBME.2012.2225427
10.1109/EPEC48502.2020.9320072
10.1080/15325008.2018.1433733
10.3390/en13081879
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.seta.2021.101048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_seta_2021_101048
S2213138821000588
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-d1d8d84bb162ae53ea23e49d4a7ea094ad7b28ab71dec6869517f7bf2af7cbd83
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711872000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-1388
IngestDate Wed Nov 05 20:52:53 EST 2025
Tue Nov 18 22:52:12 EST 2025
Fri Feb 23 02:43:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photovoltaic power forecasting
Gray wolf optimization algorithm
Ensemble empirical mode decomposition
Extreme learning machine
Modal reconstruction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d1d8d84bb162ae53ea23e49d4a7ea094ad7b28ab71dec6869517f7bf2af7cbd83
ParticipantIDs crossref_citationtrail_10_1016_j_seta_2021_101048
crossref_primary_10_1016_j_seta_2021_101048
elsevier_sciencedirect_doi_10_1016_j_seta_2021_101048
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Sustainable energy technologies and assessments
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Behera, Nayak (b0035) 2020; 23
Liu, Li, Tseng, Lim (b0150) 2020; 248
Meng XB, Liu Y, Gao XZ, Zhang HZ. A new bio-inspired algorithm: chicken swarm optimization. In: Tan Y, Shi Y, Coello CAC (Eds.), Advances in Swarm Intelligence 2014; 8794: 86-94.
Babaqi, Takriff, Othman, Kamarudin (b0030) 2020; 206
Wu, Chen, Rahman (b0270) 2014; 2014
Semero, Zheng, Zhang (b0220) 2018; 46
Benmouiza, Cheknane (b0040) 2016; 124
Sheng, Xiao, Cheng, Ni, Wang (b0235) 2018; 65
Chen, Lin, Lai, Cheng, Chen, Wu (b0055) 2020; 9
Pang, He, Jiao, Cai (b0200) 2020; 192
Wang, Wu, Wang (b0265) 2016
Voyant, Paoli, Muselli, Nivet (b0285) 2013; 28
Fu, Li, Lin, Zhang (b0080) 2019; 11
Mirjalili (b0170) 2015; 89
Mohanty, Subudhi, Ray (b0185) 2016; 7
Abdel-Nasser, Mahmoud (b0005) 2019; 31
de Lima Seiffert, Balbo (b0070) 2020
Saremi, Mirjalili, Lewis (b0085) 2017; 105
Wang YM, Wu L, Wan, SX. Challenges in Applying the Empirical Mode Decomposition Based Hybrid Algorithm for Forecasting Renewable Wind/Solar in Practical Cases. In: Power & Energy Society General Meeting 2016; IEEE.
Hossain, Mekhilef, Danesh, Olatomiwa, Shamshirband (b0105) 2017; 167
Li, Su, Shu (b0140) 2014; 66
Saremi, Mirjalili, Mirjalili (b0210) 2015; 26
Aprillia, Yang, Huang (b0020) 2020; 13
Chen, Chen, Chen, Lo (b0060) 2019; 36
VanDeventer W, Jamei E, Thirunavukkarasu GS, Seyedmahmoudian M, Soon TK, Horan B, . . . Stojcevski A. Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy 2019; 140: 367-379.
Mandic, Rehman, Wu, Huang (b0160) 2013; 30
Singh, Singh (b0230) 2017; 2017
Lu, Gao, Li, Hu, Yan, Gong (b0155) 2020; 12
Huang, Huang, Song, You (b0115) 2015; 61
Adefarati T, Bansal RC. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl Energy 2019; 236: 1089-1114.
Eseye, Zhang, Zheng (b0075) 2018; 118
Yu, Choi, Kim, Liu (b0295) 2020; 13
Lin, Peng, Lai, Cheng, Chen, Wu (b0145) 2018; 177
Li, Wen, Tseng, Wang (b0130) 2019; 228
Huang, Zhu, Siew (b0125) 2006; 70
Bouzerdoum, Mellit, Pavan (b0045) 2013; 98
Li, Zhao, Tseng, Tan (b0135) 2020; 242
Mirjalili, Lewis (b0175) 2016; 95
Wang, Sun, Zhou, Mahfoud, Hou (b0255) 2020; 13
Taghavifar, Mardani (b0245) 2014; 68
Askarzadeh (b0025) 2016; 169
Child, Kemfert, Bogdanov, Breyer (b0050) 2019; 139
Pan, Li, Gao, Huang, You, Gu, Qin (b0195) 2020; 277
Niu, Wang, Sun, Wu, Xu (b0190) 2020; 93
Yang, Mourshed, Liu, Xu, Feng (b0290) 2020; 397
Hu, Cao, Wang, Li, Lv (b0110) 2018; 200
Mirjalili, Saremi, Mirjalili, Coelho (b0180) 2016; 47
Eseye, Zhang, Zheng (b0090) 2018; 118
Zhou, Zhou, Gong, Jiang (b0305) 2020; 204
Almonacid, Perez-Higueras, Fernandez, Hontoria (b0015) 2014; 85
Purushothaman R, Rajagopalan SP, Dhandapani G. Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering 2020; Applied Soft Computing, 96.
Sweeney, McLoone, Ward (b0240) 2013; 60
Safari N, Price G, Chung CY. Analysis of Empirical Mode Decomposition-based Load and Renewable Time Series Forecasting. arXiv preprint arXiv:2011.11410 (2020).
Huang, Zhou, Ding, Zhang (b0120) 2012; 42
Wu, Huang (b0275) 2009; 1
Dal Molin Ribeiro, Mariani, Coelho (b0065) 2020
Han, Qiao, Yan, Liu, Li, Wang (b0100) 2019; 239
Mirjalili (10.1016/j.seta.2021.101048_b0170) 2015; 89
Huang (10.1016/j.seta.2021.101048_b0115) 2015; 61
Niu (10.1016/j.seta.2021.101048_b0190) 2020; 93
Zhou (10.1016/j.seta.2021.101048_b0305) 2020; 204
Almonacid (10.1016/j.seta.2021.101048_b0015) 2014; 85
Pang (10.1016/j.seta.2021.101048_b0200) 2020; 192
10.1016/j.seta.2021.101048_b0215
Hu (10.1016/j.seta.2021.101048_b0110) 2018; 200
10.1016/j.seta.2021.101048_b0010
Babaqi (10.1016/j.seta.2021.101048_b0030) 2020; 206
Fu (10.1016/j.seta.2021.101048_b0080) 2019; 11
Saremi (10.1016/j.seta.2021.101048_b0085) 2017; 105
Eseye (10.1016/j.seta.2021.101048_b0090) 2018; 118
Han (10.1016/j.seta.2021.101048_b0100) 2019; 239
de Lima Seiffert (10.1016/j.seta.2021.101048_b0070) 2020
Mirjalili (10.1016/j.seta.2021.101048_b0175) 2016; 95
Saremi (10.1016/j.seta.2021.101048_b0210) 2015; 26
10.1016/j.seta.2021.101048_b0260
Wang (10.1016/j.seta.2021.101048_b0265) 2016
Sheng (10.1016/j.seta.2021.101048_b0235) 2018; 65
Sweeney (10.1016/j.seta.2021.101048_b0240) 2013; 60
Li (10.1016/j.seta.2021.101048_b0130) 2019; 228
Lu (10.1016/j.seta.2021.101048_b0155) 2020; 12
Eseye (10.1016/j.seta.2021.101048_b0075) 2018; 118
Liu (10.1016/j.seta.2021.101048_b0150) 2020; 248
Chen (10.1016/j.seta.2021.101048_b0060) 2019; 36
Yang (10.1016/j.seta.2021.101048_b0290) 2020; 397
Pan (10.1016/j.seta.2021.101048_b0195) 2020; 277
Semero (10.1016/j.seta.2021.101048_b0220) 2018; 46
Chen (10.1016/j.seta.2021.101048_b0055) 2020; 9
Mandic (10.1016/j.seta.2021.101048_b0160) 2013; 30
Wu (10.1016/j.seta.2021.101048_b0270) 2014; 2014
Yu (10.1016/j.seta.2021.101048_b0295) 2020; 13
Benmouiza (10.1016/j.seta.2021.101048_b0040) 2016; 124
Hossain (10.1016/j.seta.2021.101048_b0105) 2017; 167
Behera (10.1016/j.seta.2021.101048_b0035) 2020; 23
Bouzerdoum (10.1016/j.seta.2021.101048_b0045) 2013; 98
Dal Molin Ribeiro (10.1016/j.seta.2021.101048_b0065) 2020
Huang (10.1016/j.seta.2021.101048_b0125) 2006; 70
Huang (10.1016/j.seta.2021.101048_b0120) 2012; 42
10.1016/j.seta.2021.101048_b0205
Singh (10.1016/j.seta.2021.101048_b0230) 2017; 2017
10.1016/j.seta.2021.101048_b0280
Askarzadeh (10.1016/j.seta.2021.101048_b0025) 2016; 169
Taghavifar (10.1016/j.seta.2021.101048_b0245) 2014; 68
10.1016/j.seta.2021.101048_b0165
Aprillia (10.1016/j.seta.2021.101048_b0020) 2020; 13
Child (10.1016/j.seta.2021.101048_b0050) 2019; 139
Li (10.1016/j.seta.2021.101048_b0135) 2020; 242
Lin (10.1016/j.seta.2021.101048_b0145) 2018; 177
Wu (10.1016/j.seta.2021.101048_b0275) 2009; 1
Wang (10.1016/j.seta.2021.101048_b0255) 2020; 13
Voyant (10.1016/j.seta.2021.101048_b0285) 2013; 28
Li (10.1016/j.seta.2021.101048_b0140) 2014; 66
Abdel-Nasser (10.1016/j.seta.2021.101048_b0005) 2019; 31
Mohanty (10.1016/j.seta.2021.101048_b0185) 2016; 7
Mirjalili (10.1016/j.seta.2021.101048_b0180) 2016; 47
References_xml – volume: 68
  start-page: 651
  year: 2014
  end-page: 657
  ident: b0245
  publication-title: Energy
– volume: 66
  start-page: 78
  year: 2014
  end-page: 89
  ident: b0140
  publication-title: Renewable Energy
– volume: 13
  start-page: 20
  year: 2020
  ident: b0020
  publication-title: Energies
– reference: Wang YM, Wu L, Wan, SX. Challenges in Applying the Empirical Mode Decomposition Based Hybrid Algorithm for Forecasting Renewable Wind/Solar in Practical Cases. In: Power & Energy Society General Meeting 2016; IEEE.
– volume: 139
  start-page: 80
  year: 2019
  end-page: 101
  ident: b0050
  publication-title: Renewable Energy
– volume: 177
  start-page: 704
  year: 2018
  end-page: 717
  ident: b0145
  publication-title: Energy Convers Manage
– reference: Meng XB, Liu Y, Gao XZ, Zhang HZ. A new bio-inspired algorithm: chicken swarm optimization. In: Tan Y, Shi Y, Coello CAC (Eds.), Advances in Swarm Intelligence 2014; 8794: 86-94.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0275
  publication-title: Adv Adaptive Data Analysis
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b0170
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl-Based Syst
– volume: 13
  year: 2020
  ident: b0295
  publication-title: Energies
– volume: 118
  start-page: 357
  year: 2018
  end-page: 367
  ident: b0075
  publication-title: Renewable Energy
– volume: 13
  start-page: 17
  year: 2020
  ident: b0255
  publication-title: Energies
– volume: 124
  start-page: 945
  year: 2016
  end-page: 958
  ident: b0040
  publication-title: Theor Appl Climatol
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0085
  publication-title: Adv Eng Softw
– volume: 93
  start-page: 14
  year: 2020
  ident: b0190
  publication-title: Appl Soft Comput
– volume: 31
  start-page: 2727
  year: 2019
  end-page: 2740
  ident: b0005
  publication-title: Neural Comput Appl
– volume: 23
  start-page: 156
  year: 2020
  end-page: 167
  ident: b0035
  publication-title: Eng Sci Technol- Int J-Jestech
– volume: 7
  start-page: 181
  year: 2016
  end-page: 188
  ident: b0185
  publication-title: IEEE Trans Sustainable Energy
– volume: 85
  start-page: 389
  year: 2014
  end-page: 398
  ident: b0015
  publication-title: Energy Convers Manage
– volume: 98
  start-page: 226
  year: 2013
  end-page: 235
  ident: b0045
  publication-title: Sol Energy
– volume: 36
  start-page: 451
  year: 2019
  end-page: 460
  ident: b0060
  publication-title: J Ind Prod Eng
– volume: 239
  start-page: 181
  year: 2019
  end-page: 191
  ident: b0100
  publication-title: Appl Energy
– volume: 61
  start-page: 32
  year: 2015
  end-page: 48
  ident: b0115
  article-title: Trends in extreme learning machines: A review
  publication-title: Neural Networks
– volume: 46
  start-page: 95
  year: 2018
  end-page: 103
  ident: b0220
  publication-title: Electr Power Compon Syst
– reference: Adefarati T, Bansal RC. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl Energy 2019; 236: 1089-1114.
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: b0120
  publication-title: IEEE Trans Syst Man Cybernet Part B-Cybernet
– reference: Purushothaman R, Rajagopalan SP, Dhandapani G. Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering 2020; Applied Soft Computing, 96.
– volume: 397
  start-page: 415
  year: 2020
  end-page: 421
  ident: b0290
  publication-title: Neurocomputing
– volume: 248
  start-page: 14
  year: 2020
  ident: b0150
  publication-title: J Cleaner Prod
– volume: 65
  start-page: 300
  year: 2018
  end-page: 308
  ident: b0235
  publication-title: IEEE Trans Ind Electron
– volume: 12
  start-page: 371
  year: 2020
  end-page: 398
  ident: b0155
  publication-title: Memetic Comput
– reference: VanDeventer W, Jamei E, Thirunavukkarasu GS, Seyedmahmoudian M, Soon TK, Horan B, . . . Stojcevski A. Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy 2019; 140: 367-379.
– start-page: 116
  year: 2020
  ident: b0070
  publication-title: NDT E Int
– volume: 26
  start-page: 1257
  year: 2015
  end-page: 1263
  ident: b0210
  publication-title: Neural Comput Appl
– start-page: 111
  year: 2020
  ident: b0065
  publication-title: J Biomed Inform
– volume: 192
  start-page: 11
  year: 2020
  ident: b0200
  publication-title: Energy
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0125
  publication-title: Neurocomputing
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0025
  publication-title: Comput Struct
– volume: 167
  start-page: 395
  year: 2017
  end-page: 405
  ident: b0105
  publication-title: J Cleaner Prod
– reference: Safari N, Price G, Chung CY. Analysis of Empirical Mode Decomposition-based Load and Renewable Time Series Forecasting. arXiv preprint arXiv:2011.11410 (2020).
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0175
  article-title: The Whale Optimization Algorithm
  publication-title: Adv Eng Softw
– volume: 28
  start-page: 44
  year: 2013
  end-page: 52
  ident: b0285
  publication-title: Renew Sustain Energy Rev
– volume: 118
  start-page: 357
  year: 2018
  end-page: 367
  ident: b0090
  publication-title: Renewable Energy
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 15
  ident: b0230
  publication-title: J Appl Math
– year: 2016
  ident: b0265
  publication-title: 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b0180
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Syst Appl
– volume: 200
  start-page: 731
  year: 2018
  end-page: 745
  ident: b0110
  publication-title: J Cleaner Prod
– volume: 2014
  start-page: 9
  year: 2014
  ident: b0270
  publication-title: Int J Photoenergy
– volume: 11
  start-page: 15
  year: 2019
  ident: b0080
  publication-title: Sustainability
– volume: 60
  start-page: 97
  year: 2013
  end-page: 105
  ident: b0240
  publication-title: IEEE Trans Biomed Eng
– volume: 9
  start-page: 19
  year: 2020
  ident: b0055
  publication-title: Electronics
– volume: 228
  start-page: 359
  year: 2019
  end-page: 375
  ident: b0130
  publication-title: J Cleaner Prod
– volume: 277
  year: 2020
  ident: b0195
  publication-title: J Cleaner Prod
– volume: 242
  start-page: 12
  year: 2020
  ident: b0135
  publication-title: J Cleaner Prod
– volume: 206
  start-page: 12
  year: 2020
  ident: b0030
  publication-title: Energy
– volume: 30
  start-page: 74
  year: 2013
  end-page: 86
  ident: b0160
  publication-title: IEEE Signal Process Mag
– volume: 204
  start-page: 10
  year: 2020
  ident: b0305
  publication-title: Energy
– volume: 30
  start-page: 74
  year: 2013
  ident: 10.1016/j.seta.2021.101048_b0160
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2013.2267931
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.seta.2021.101048_b0275
  publication-title: Adv Adaptive Data Analysis
  doi: 10.1142/S1793536909000047
– volume: 13
  issue: 15
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0295
  publication-title: Energies
– volume: 248
  start-page: 14
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0150
  publication-title: J Cleaner Prod
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.seta.2021.101048_b0175
  article-title: The Whale Optimization Algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.seta.2021.101048_b0170
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 28
  start-page: 44
  year: 2013
  ident: 10.1016/j.seta.2021.101048_b0285
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.07.058
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.seta.2021.101048_b0125
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 118
  start-page: 357
  year: 2018
  ident: 10.1016/j.seta.2021.101048_b0090
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.11.011
– start-page: 111
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0065
  publication-title: J Biomed Inform
– volume: 66
  start-page: 78
  year: 2014
  ident: 10.1016/j.seta.2021.101048_b0140
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2013.11.067
– ident: 10.1016/j.seta.2021.101048_b0280
  doi: 10.1016/j.renene.2019.02.087
– volume: 228
  start-page: 359
  year: 2019
  ident: 10.1016/j.seta.2021.101048_b0130
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2019.04.331
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.seta.2021.101048_b0230
  publication-title: J Appl Math
  doi: 10.1155/2017/2030489
– volume: 23
  start-page: 156
  issue: 1
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0035
  publication-title: Eng Sci Technol- Int J-Jestech
– volume: 85
  start-page: 389
  year: 2014
  ident: 10.1016/j.seta.2021.101048_b0015
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.05.090
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.seta.2021.101048_b0025
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 10.1016/j.seta.2021.101048_b0165
  doi: 10.1007/978-3-319-11857-4_10
– volume: 124
  start-page: 945
  year: 2016
  ident: 10.1016/j.seta.2021.101048_b0040
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-015-1469-z
– volume: 397
  start-page: 415
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0290
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.110
– volume: 31
  start-page: 2727
  issue: 7
  year: 2019
  ident: 10.1016/j.seta.2021.101048_b0005
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3225-z
– volume: 277
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0195
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2020.123948
– volume: 9
  start-page: 19
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0055
  publication-title: Electronics
– year: 2016
  ident: 10.1016/j.seta.2021.101048_b0265
  publication-title: 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE
– volume: 13
  start-page: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0255
  publication-title: Energies
– volume: 206
  start-page: 12
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0030
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118098
– volume: 204
  start-page: 10
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0305
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117894
– volume: 242
  start-page: 12
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0135
  publication-title: J Cleaner Prod
– ident: 10.1016/j.seta.2021.101048_b0205
  doi: 10.1016/j.asoc.2020.106651
– volume: 177
  start-page: 704
  year: 2018
  ident: 10.1016/j.seta.2021.101048_b0145
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.015
– volume: 139
  start-page: 80
  year: 2019
  ident: 10.1016/j.seta.2021.101048_b0050
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.02.077
– volume: 11
  start-page: 15
  issue: 2
  year: 2019
  ident: 10.1016/j.seta.2021.101048_b0080
  publication-title: Sustainability
  doi: 10.3390/su11020512
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.seta.2021.101048_b0085
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 65
  start-page: 300
  year: 2018
  ident: 10.1016/j.seta.2021.101048_b0235
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2714127
– volume: 12
  start-page: 371
  issue: 4
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0155
  publication-title: Memetic Comput
  doi: 10.1007/s12293-020-00313-6
– volume: 7
  start-page: 181
  year: 2016
  ident: 10.1016/j.seta.2021.101048_b0185
  publication-title: IEEE Trans Sustainable Energy
  doi: 10.1109/TSTE.2015.2482120
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.seta.2021.101048_b0180
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.039
– volume: 167
  start-page: 395
  year: 2017
  ident: 10.1016/j.seta.2021.101048_b0105
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2017.08.081
– volume: 42
  start-page: 513
  year: 2012
  ident: 10.1016/j.seta.2021.101048_b0120
  publication-title: IEEE Trans Syst Man Cybernet Part B-Cybernet
  doi: 10.1109/TSMCB.2011.2168604
– volume: 192
  start-page: 11
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0200
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116669
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 10.1016/j.seta.2021.101048_b0210
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1806-7
– volume: 239
  start-page: 181
  year: 2019
  ident: 10.1016/j.seta.2021.101048_b0100
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.193
– volume: 98
  start-page: 226
  year: 2013
  ident: 10.1016/j.seta.2021.101048_b0045
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.10.002
– volume: 200
  start-page: 731
  year: 2018
  ident: 10.1016/j.seta.2021.101048_b0110
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.07.311
– volume: 2014
  start-page: 9
  year: 2014
  ident: 10.1016/j.seta.2021.101048_b0270
  publication-title: Int J Photoenergy
– ident: 10.1016/j.seta.2021.101048_b0010
  doi: 10.1016/j.apenergy.2018.12.050
– ident: 10.1016/j.seta.2021.101048_b0260
– volume: 68
  start-page: 651
  year: 2014
  ident: 10.1016/j.seta.2021.101048_b0245
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.048
– volume: 61
  start-page: 32
  year: 2015
  ident: 10.1016/j.seta.2021.101048_b0115
  article-title: Trends in extreme learning machines: A review
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.10.001
– volume: 93
  start-page: 14
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0190
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106389
– volume: 60
  start-page: 97
  year: 2013
  ident: 10.1016/j.seta.2021.101048_b0240
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2225427
– volume: 36
  start-page: 451
  issue: 7
  year: 2019
  ident: 10.1016/j.seta.2021.101048_b0060
  publication-title: J Ind Prod Eng
– volume: 118
  start-page: 357
  year: 2018
  ident: 10.1016/j.seta.2021.101048_b0075
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.11.011
– ident: 10.1016/j.seta.2021.101048_b0215
  doi: 10.1109/EPEC48502.2020.9320072
– volume: 46
  start-page: 95
  year: 2018
  ident: 10.1016/j.seta.2021.101048_b0220
  publication-title: Electr Power Compon Syst
  doi: 10.1080/15325008.2018.1433733
– volume: 13
  start-page: 20
  issue: 8
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0020
  publication-title: Energies
  doi: 10.3390/en13081879
– start-page: 116
  year: 2020
  ident: 10.1016/j.seta.2021.101048_b0070
  publication-title: NDT E Int
SSID ssj0001361410
Score 2.447316
Snippet [Display omitted] •A novel hybrid forecasting model for short-term PV power based on modal reconstruction is proposed.•An enhanced GWO algorithm is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101048
SubjectTerms Ensemble empirical mode decomposition
Extreme learning machine
Gray wolf optimization algorithm
Modal reconstruction
Photovoltaic power forecasting
Title Short-term photovoltaic power prediction on modal reconstruction: A novel hybrid model approach
URI https://dx.doi.org/10.1016/j.seta.2021.101048
Volume 45
WOSCitedRecordID wos000711872000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2213-1388
  databaseCode: AIEXJ
  dateStart: 20130301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001361410
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4ftoezKunVDD3sLGr5Ilry3UFq6kZZBspE3I8nykpLZYXVD9z_2g3dk-aKWrqwPA2OCkE-Mz5fjT8o530HoPctVmAsrhagCSijTjChGE6KB_QKfUDJoyqO_TfnZmVgs0i-j0e-uFma75mUprq7SzX91NYyBs23p7D3c3RuFAfgMToczuB3O_-T42RIYNbERd7xZVnUF8QeW_3q8sf3QrCZAvnLtweH4UeWNsL-uBiFZV6teVluzHi9_2YIu1y6nlx_3-ezMq78yroyw7jbrYQ3upGB78c-ev09Xl82_IssVgWf3vR--bDZuZ3Z4QO38wriAdAqvWTKV3nxn5kSW5LRVEG83MCIv0crFuSgKYyuFKPygTJkXVUO7aBS3Bny392Dr82urIhWFH4bJ19W1b7z1-lzELs3tPLM2MmsjczYeoN2IsxTC_e7k09Hi87B3Fyc2Pdb2Lezuva3HcqmDN2_mds7j8Zj5E7TXLkDwxAHnKRqZ8hl67MlSPkfZACHsQwg3EMIDhDAcDYTwdQh9xBPcAAg7AOEGQLgD0Av09fhofnhC2kYcRMdBUJMcfs65oEqFSSQNi42MYkPTnEpuZJBSmXMVCal4mBudiARYOy-4KiJZcK0gFLxEO2VVmlcIC6F1QLmxOXiUGglGVGoKEcu4kIKyfRR2jyrTrUq9bZayzv7up3007q_ZOI2WO2ezzgNZyzIde8wAU3dc9_pe3_IGPRqwfoB2wAHmLXqot_Xq4ue7FlB_ABj9obE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+photovoltaic+power+prediction+on+modal+reconstruction%3A+A+novel+hybrid+model+approach&rft.jtitle=Sustainable+energy+technologies+and+assessments&rft.au=Liu%2C+Zhi-Feng&rft.au=Luo%2C+Shi-Fan&rft.au=Tseng%2C+Ming-Lang&rft.au=Liu%2C+Han-Min&rft.date=2021-06-01&rft.issn=2213-1388&rft.volume=45&rft.spage=101048&rft_id=info:doi/10.1016%2Fj.seta.2021.101048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seta_2021_101048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1388&client=summon