A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion
Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper proposes an enhanced self-adaptive weighted possibilistic fuzzy clustering algorithm. Firstly, the principle of maximum entropy is introduced t...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 209; s. 118280 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.12.2022
|
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper proposes an enhanced self-adaptive weighted possibilistic fuzzy clustering algorithm. Firstly, the principle of maximum entropy is introduced to weighted possibilistic fuzzy clustering, and the weighted coefficients of fuzzy clustering and possibilistic clustering are subject to regularization entropy constraint and a novel self-learning iterative weighted possibilistic fuzzy clustering is obtained, and its convergence is strictly proved by Zangwill theorem and bordered Hessian matrix. Secondly, a series of clustering validity functions for the proposed algorithm are constructed to determine the optimal number of clusters in the data set. In the end, to enhance the anti-noise robustness of the proposed algorithm, a robust loss function is applied in the adaptive weighted possibilistic fuzzy clustering, and a robust algorithm is obtained for noisy data clustering. Experimental results show that the proposed algorithm outperforms existing possibilistic fuzzy clustering-related algorithms, and the validity functions for the proposed algorithm can accurately determine the optimal number of clusters in the data set, meanwhile, the corresponding robust algorithm effectively enhances the performance of the algorithm in the presence of noise. |
|---|---|
| AbstractList | Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper proposes an enhanced self-adaptive weighted possibilistic fuzzy clustering algorithm. Firstly, the principle of maximum entropy is introduced to weighted possibilistic fuzzy clustering, and the weighted coefficients of fuzzy clustering and possibilistic clustering are subject to regularization entropy constraint and a novel self-learning iterative weighted possibilistic fuzzy clustering is obtained, and its convergence is strictly proved by Zangwill theorem and bordered Hessian matrix. Secondly, a series of clustering validity functions for the proposed algorithm are constructed to determine the optimal number of clusters in the data set. In the end, to enhance the anti-noise robustness of the proposed algorithm, a robust loss function is applied in the adaptive weighted possibilistic fuzzy clustering, and a robust algorithm is obtained for noisy data clustering. Experimental results show that the proposed algorithm outperforms existing possibilistic fuzzy clustering-related algorithms, and the validity functions for the proposed algorithm can accurately determine the optimal number of clusters in the data set, meanwhile, the corresponding robust algorithm effectively enhances the performance of the algorithm in the presence of noise. |
| ArticleNumber | 118280 |
| Author | Wu, Chengmao Zhang, Xialu |
| Author_xml | – sequence: 1 givenname: Chengmao surname: Wu fullname: Wu, Chengmao – sequence: 2 givenname: Xialu surname: Zhang fullname: Zhang, Xialu email: zhangxialu0708@163.com |
| BookMark | eNp90E1uwjAQBWCrolKB9gJd5QJJx4kTB6kbhPonIXXTLivLsSd0UEiQbUBw-ialqy5YzeobvfcmbNR2LTJ2zyHhwIuHdYL-oJMU0jThvExLuGJjXsosLuQsG7ExzHIZCy7FDZt4vwbgEkCO2dc88tjUcYPatdSuIgrodKA9Rgek1XdAG20776mihnwgE9W70-kYmXiDuvWRaXa-F4Pck4601dtfXO88de0tu6514_Hu707Z5_PTx-I1Xr6_vC3my9hkACG2UEHeZxOi1KXRdSErtKnIbSlzjibLeAV1bjSIokRurQYjQeqZFJkQVphsysrzX-P6rA5rZSj0Lbo2OE2N4qCGmdRaDTOpYSZ1nqmn6T-6dbTR7ngZPZ4R9qX2hE55Q9gatOTQBGU7usR_ANEbhVA |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_116229 crossref_primary_10_32604_cmc_2024_054775 crossref_primary_10_1016_j_procs_2024_05_182 crossref_primary_10_1016_j_eswa_2023_122270 crossref_primary_10_1016_j_fss_2025_109507 crossref_primary_10_1016_j_compbiomed_2025_110053 crossref_primary_10_3390_electronics12020265 crossref_primary_10_3390_e26080670 crossref_primary_10_1016_j_fss_2025_109575 crossref_primary_10_1016_j_fss_2024_108860 crossref_primary_10_1016_j_autcon_2024_105655 crossref_primary_10_1016_j_asoc_2024_112263 crossref_primary_10_1016_j_asoc_2023_110395 crossref_primary_10_1109_TNNLS_2025_3551159 crossref_primary_10_1007_s11227_025_07678_w crossref_primary_10_1016_j_inffus_2023_101977 crossref_primary_10_3233_JIFS_231883 crossref_primary_10_3390_su15065588 crossref_primary_10_3390_sym14112431 crossref_primary_10_1007_s00500_023_09367_3 crossref_primary_10_1016_j_eswa_2025_128245 crossref_primary_10_1016_j_knosys_2024_111388 crossref_primary_10_1016_j_inffus_2022_12_008 |
| Cites_doi | 10.1016/j.asoc.2016.12.049 10.1016/j.msea.2018.08.083 10.1080/01969727308546046 10.1016/j.cjph.2021.02.009 10.1109/TSMC.2018.2876202 10.1016/j.knosys.2018.12.007 10.1016/S0167-8655(02)00401-4 10.1007/s00034-012-9531-x 10.1109/ICAICA50127.2020.9182394 10.3390/s20143903 10.1016/j.dsp.2019.102615 10.1016/j.istruc.2021.03.001 10.1109/JSYST.2015.2423499 10.1080/01969727308546047 10.1016/0165-0114(78)90029-5 10.1109/TNNLS.2017.2737941 10.1109/ACCESS.2019.2907573 10.1016/j.fss.2005.04.009 10.1109/CSE.2011.109 10.1155/2021/9965813 10.1016/j.eswa.2020.114149 10.1016/j.procir.2021.03.071 10.1049/el:19981523 10.1016/j.knosys.2021.107191 10.1109/CVPR.2019.00446 10.1109/FUZZY.1997.616338 10.1109/ICICCT.2017.7975186 10.1109/ICMLC.2005.1527713 10.1016/j.is.2021.101766 10.1109/TFUZZ.2004.840099 10.1007/978-3-642-22589-5_15 10.1109/TPAMI.1980.4766964 10.1109/FUZZ-IEEE.2016.7737755 10.1109/TSMC.1987.6499296 10.2307/2343701 10.1016/j.eswa.2014.01.003 10.1007/s11430-017-9224-6 10.1016/j.intimp.2021.107909 10.1109/TSP.2012.2196696 10.1109/91.227387 10.1016/j.knosys.2019.05.018 10.1016/j.neucom.2019.07.048 10.1016/0031-3203(92)90087-Y 10.1007/s00500-020-05403-8 10.1016/j.patcog.2017.05.017 10.1109/IDAP.2017.8090183 10.1016/j.compbiolchem.2021.107454 10.1016/j.trac.2021.116409 10.1016/j.gerinurse.2021.07.005 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2022.118280 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_118280 S0957417422014191 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-d0b05174448a8caf67bed245d8751ec331b0f5ca0468e1dda0c707a974344d4c3 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888797000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:08:57 EST 2025 Tue Nov 18 22:26:55 EST 2025 Fri Feb 23 02:39:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Validity function Maximum entropy principle Possibilistic fuzzy clustering Robust loss function |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-d0b05174448a8caf67bed245d8751ec331b0f5ca0468e1dda0c707a974344d4c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_118280 crossref_primary_10_1016_j_eswa_2022_118280 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118280 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-15 |
| PublicationDateYYYYMMDD | 2022-12-15 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Balaghi, Naseralavi, Khojastehfar (b0080) 2021; 32 Pakhira, Bandyopadhyay, Maulik (b0135) 2005; 155 Zhu, Zhang, Wen (b0150) 2019; 363 Wu, Liu (b0285) 2021; 25 Li, Liang, Feng, Ruan, Jiang (b0025) 2021; 143 Gornitz, N., Lima, L.A., & Muller, K., R. (2018). Support vector data descriptions and k-Means clustering: One class?. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 3994-4006. https://doi.org/10.1109/TNNLS.2017.2737941. Pal, N. R., Pal, K., & Bezdek, J. C. (1997). A mixed c-means clustering model. Proceedings of 6th International Fuzzy Systems Conference (pp. 11-21). https://doi.org/10.1109/FUZZY.1997.616338. Chowdhary, Mittal, Kumaresan (b0115) 2020; 20 Fukuyama, Sugeno (b0250) 1989 Blumenthal, D. B., Boria, N., & Bougleux, S. (2021). Scalable generalized median graph estimation and its manifold use in bioinformatics, clustering, classification, and indexing. Information Systems, 100, 101766. https://doi.org/10.1016/j.is.2021.101766. Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., M., & Nagendra, N. (2021). Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Computational Biology and Chemistry, 92, 107475. https://doi.org/10.1016/j.compbiolchem.2021.107454. Sriharikrishnaa, Shukla, Khan, Eswaran, Adiga, Kabekkodu (b0045) 2021; 21 Chen, J., Zhang, H., & Pi, D. (2021). A weight possibilistic fuzzy c-means clustering algorithm. Scientific Programming, 2021, Article 9965813. He, Xing, Hu, Yu (b0245) 2019; 62 Xie, Beni (b0165) 1991 Mittal, Saraswat (b0180) 2020; 11 Weerapong, Sathapornvajana, Padungweang, Krathu (b0155) 2020 Yang, Yessica (b0300) 2017; 71 Krishnapuram, Keller (b0105) 1993; 1 Fan, J., W. Zhen, W., & Xie, W. (2003). Suppressed fuzzy c-means clustering algorithm, Pattern Recognition Letters, 24, 1607-1612. https://doi.org/ 10.1016/S0167-8655(02)00401-4. Beale (b0230) 1970; 133 Guo, Sengur (b0235) 2013; 32 Cebeci, Z., Kavlak, A. T., & Yildiz, F. (2017). Validation of fuzzy and possibilistic clustering results. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP)(pp. 1-7). https://doi.org/10.1109/IDAP.2017.8090183. Muranishi, Honda, Notsu (b0170) 2014 Tao, Wang, Chang, Li (b0210) 2019; 166 . Yadav, S., & Singh, K. K. (2017). Image sectionalization techniques: A review. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 195–199). https://doi.org/10.1109/ICICCT.2017.7975186. Bezdek, Hathaway, Sabin (b0100) 1987; 17 Forero, Kekatos, Giannakis (b0185) 2012; 60 Caggiano, Napolitano, Teti (b0035) 2021; 99 Wang, Wang, Du, Guo (b0145) 2020 Pal, N. R., Pal, K., & Keller, J. M. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4),517-530. https://doi.org/10.1109/TFUZZ.2004.840099. Barron, J. T. (2019). A general and adaptive robust loss function. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4326-4334). https://doi.org/10.1109/CVPR.2019.00446. Yu, C. Y., Li, Y., Liu, & A. L. (2011). A novel modified kernel fuzzy C- means clustering algorithm On image segmentation. IEEE International Conference on Computational Science and Engineering (pp. 621–626). https://doi.org/10.1109/CSE.2011.109. Kwon (b0175) 1998; 22 Zhao, F., Fan, J., & Liu, H. (2014) Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Systems with Applications, 41(9), 4083-4093. https://doi.org/ 10.1016/j.eswa.2014.01.003. Allahverdyan, Khalafyan, Martirosyan (b0130) 2021; 71 Bezdek (b0095) 1981 Bezdek (b0160) 1974; 3 Bezdek (b0225) 1980; 2 Huang, Wang, Peng, Lai, Kwoh (b0005) 2021; 51 Chen, Daly (b0040) 2018; 736 Askari, Montazerin, Fazel Zarandi (b0190) 2017; 53 Potard, Landais (b0015) 2021; 42 Liu, He, He, Zhang, Guizani (b0290) 2019; 7 Krishnapuram, Reg (b0255) 1992; 25 Dunn (b0090) 1973; 3 Singh, V., & Verma, N. K. (2019). An entropy-based variable feature weighted fuzzy k-means algorithm for high dimensional data. arXiv:1912.11209. https://arxiv.org/abs/1912.11209. Zhang, Yang, Chen (b0110) 2017; 11 Ye, Xia, Chang (b0215) 2019 Campagner, Ciucci (b0065) 2019; 180 Liang, J. Z., & Gao, J. H. (2005). Kernel function clustering algorithm with optimized parameters. 2005 International Conference on Machine Learning and Cybernetics (pp. 4400-4404). https://doi.org/10.1109/ICMLC.2005.1527713. Wu, Yang (b0240) 2020; 97 Zadeh (b0075) 1978; 1 Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds) Modeling decision for artificial intelligence, 6820, 150-161. https://doi.org/10.1007/978-3-642-22589-5_15. Rong, Y., & Liu, Y. (2020). Staged text clustering algorithm based on K-means and hierarchical agglomeration clustering. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 124-127). https://doi.org/10.1109/ICAICA50127.2020.9182394. He, H., Tan, Y., & Fujimoto, K. (2016). Estimation of optimal cluster number for fuzzy clustering with combined fuzzy entropy index. 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp.697-703). https://doi.org/10.1109/FUZZ-IEEE.2016.7737755. Yuki, Koutsogiannaki (b0030) 2021; 98 Ahmad, Khan (b0060) 2021; 167 Rodriguez, Carvalho (b0070) 2021; 227 Pakhira (10.1016/j.eswa.2022.118280_b0135) 2005; 155 Wang (10.1016/j.eswa.2022.118280_b0145) 2020 Wu (10.1016/j.eswa.2022.118280_b0240) 2020; 97 Liu (10.1016/j.eswa.2022.118280_b0290) 2019; 7 Huang (10.1016/j.eswa.2022.118280_b0005) 2021; 51 Xie (10.1016/j.eswa.2022.118280_b0165) 1991 10.1016/j.eswa.2022.118280_b0125 Askari (10.1016/j.eswa.2022.118280_b0190) 2017; 53 10.1016/j.eswa.2022.118280_b0200 10.1016/j.eswa.2022.118280_b0120 10.1016/j.eswa.2022.118280_b0085 Caggiano (10.1016/j.eswa.2022.118280_b0035) 2021; 99 Mittal (10.1016/j.eswa.2022.118280_b0180) 2020; 11 10.1016/j.eswa.2022.118280_b0280 Ye (10.1016/j.eswa.2022.118280_b0215) 2019 Beale (10.1016/j.eswa.2022.118280_b0230) 1970; 133 Zhu (10.1016/j.eswa.2022.118280_b0150) 2019; 363 Campagner (10.1016/j.eswa.2022.118280_b0065) 2019; 180 Muranishi (10.1016/j.eswa.2022.118280_b0170) 2014 Chen (10.1016/j.eswa.2022.118280_b0040) 2018; 736 Wu (10.1016/j.eswa.2022.118280_b0285) 2021; 25 Li (10.1016/j.eswa.2022.118280_b0025) 2021; 143 10.1016/j.eswa.2022.118280_b0010 10.1016/j.eswa.2022.118280_b0055 Zhang (10.1016/j.eswa.2022.118280_b0110) 2017; 11 10.1016/j.eswa.2022.118280_b0295 Yang (10.1016/j.eswa.2022.118280_b0300) 2017; 71 10.1016/j.eswa.2022.118280_b0050 He (10.1016/j.eswa.2022.118280_b0245) 2019; 62 Balaghi (10.1016/j.eswa.2022.118280_b0080) 2021; 32 Dunn (10.1016/j.eswa.2022.118280_b0090) 1973; 3 Yuki (10.1016/j.eswa.2022.118280_b0030) 2021; 98 Potard (10.1016/j.eswa.2022.118280_b0015) 2021; 42 Zadeh (10.1016/j.eswa.2022.118280_b0075) 1978; 1 Allahverdyan (10.1016/j.eswa.2022.118280_b0130) 2021; 71 Bezdek (10.1016/j.eswa.2022.118280_b0160) 1974; 3 Krishnapuram (10.1016/j.eswa.2022.118280_b0255) 1992; 25 Krishnapuram (10.1016/j.eswa.2022.118280_b0105) 1993; 1 Rodriguez (10.1016/j.eswa.2022.118280_b0070) 2021; 227 Weerapong (10.1016/j.eswa.2022.118280_b0155) 2020 10.1016/j.eswa.2022.118280_b0265 Sriharikrishnaa (10.1016/j.eswa.2022.118280_b0045) 2021; 21 10.1016/j.eswa.2022.118280_b0220 10.1016/j.eswa.2022.118280_b0140 10.1016/j.eswa.2022.118280_b0020 10.1016/j.eswa.2022.118280_b0260 Bezdek (10.1016/j.eswa.2022.118280_b0100) 1987; 17 Chowdhary (10.1016/j.eswa.2022.118280_b0115) 2020; 20 Guo (10.1016/j.eswa.2022.118280_b0235) 2013; 32 Forero (10.1016/j.eswa.2022.118280_b0185) 2012; 60 Kwon (10.1016/j.eswa.2022.118280_b0175) 1998; 22 Bezdek (10.1016/j.eswa.2022.118280_b0225) 1980; 2 Tao (10.1016/j.eswa.2022.118280_b0210) 2019; 166 Bezdek (10.1016/j.eswa.2022.118280_b0095) 1981 Ahmad (10.1016/j.eswa.2022.118280_b0060) 2021; 167 10.1016/j.eswa.2022.118280_b0275 10.1016/j.eswa.2022.118280_b0195 10.1016/j.eswa.2022.118280_b0270 Fukuyama (10.1016/j.eswa.2022.118280_b0250) 1989 |
| References_xml | – reference: Gornitz, N., Lima, L.A., & Muller, K., R. (2018). Support vector data descriptions and k-Means clustering: One class?. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 3994-4006. https://doi.org/10.1109/TNNLS.2017.2737941. – volume: 62 start-page: 438 year: 2019 end-page: 450 ident: b0245 article-title: Novel fuzzy uncertainty modeling for land cover classification based on clustering analysis publication-title: Science China Earth Sciences – reference: He, H., Tan, Y., & Fujimoto, K. (2016). Estimation of optimal cluster number for fuzzy clustering with combined fuzzy entropy index. 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp.697-703). https://doi.org/10.1109/FUZZ-IEEE.2016.7737755. – reference: Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds) Modeling decision for artificial intelligence, 6820, 150-161. https://doi.org/10.1007/978-3-642-22589-5_15. – volume: 7 start-page: 42169 year: 2019 end-page: 42180 ident: b0290 article-title: A spark-based parallel fuzzy c-means segmentation algorithm for agricultural image big data publication-title: IEEE Access – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: b0090 article-title: A fuzzy relative of the ISODATA Process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics – volume: 71 start-page: 95 year: 2021 end-page: 111 ident: b0130 article-title: Validity limits of the maximum entropy method publication-title: Chinese Journal of Physics – volume: 25 start-page: 385 year: 1992 end-page: 400 ident: b0255 article-title: Fitting an unknown number of lines and planes to image data through compatible cluster merging publication-title: Pattern Recognition – start-page: 34 year: 2014 end-page: 38 ident: b0170 article-title: Application of xie-beni-type validity index to fuzzy co-clustering models based on cluster aggregation and pseudo-cluster-center estimation publication-title: 2014 14Th International Conference on Intelligent Systems Design and Applications – volume: 1 start-page: 98 year: 1993 end-page: 110 ident: b0105 article-title: A possibilistic approach to clustering publication-title: IEEE Transactions on Fuzzy Systems – volume: 98 year: 2021 ident: b0030 article-title: Pattern recognition receptors as therapeutic targets for bacterial, viral and fungal sepsis publication-title: International Immunopharmacology – reference: Fan, J., W. Zhen, W., & Xie, W. (2003). Suppressed fuzzy c-means clustering algorithm, Pattern Recognition Letters, 24, 1607-1612. https://doi.org/ 10.1016/S0167-8655(02)00401-4. – volume: 736 start-page: 61 year: 2018 end-page: 75 ident: b0040 article-title: Deformation twin identification in magnesium through clustering and computer vision publication-title: Materials Science and Engineering: A – reference: Pal, N. R., Pal, K., & Keller, J. M. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4),517-530. https://doi.org/10.1109/TFUZZ.2004.840099. – volume: 166 start-page: 42 year: 2019 end-page: 57 ident: b0210 article-title: Density-sensitive fuzzy kernel maximum entropy clustering algorithm publication-title: Knowledge-Based Systems – start-page: 633 year: 2019 end-page: 635 ident: b0215 article-title: Experimental investigations on reliability assessment based on hierarchical maximum entropy bayesian method publication-title: 2019 2Nd International Conference on Safety Produce Informatization (IICSPI) – volume: 32 start-page: 1699 year: 2013 end-page: 1723 ident: b0235 article-title: A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-Means publication-title: Circuits, Systems, and Signal Processing – reference: Cebeci, Z., Kavlak, A. T., & Yildiz, F. (2017). Validation of fuzzy and possibilistic clustering results. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP)(pp. 1-7). https://doi.org/10.1109/IDAP.2017.8090183. – reference: Rong, Y., & Liu, Y. (2020). Staged text clustering algorithm based on K-means and hierarchical agglomeration clustering. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 124-127). https://doi.org/10.1109/ICAICA50127.2020.9182394. – volume: 60 start-page: 4163 year: 2012 end-page: 4177 ident: b0185 article-title: Robust clustering using outlier-sparsity regularization publication-title: IEEE Transactions on Signal Processing – reference: Chen, J., Zhang, H., & Pi, D. (2021). A weight possibilistic fuzzy c-means clustering algorithm. Scientific Programming, 2021, Article 9965813. – volume: 42 start-page: 1135 year: 2021 end-page: 1142 ident: b0015 article-title: The use of cluster analysis to identify different burnout profiles among nurses and care assistants for older adults publication-title: Geriatric Nursing – volume: 133 start-page: 264 year: 1970 end-page: 265 ident: b0230 article-title: Review of nonlinear programming: a unified approach., by W. Zangwill publication-title: Journal of the Royal Statistical Society. Series A (General) – reference: Liang, J. Z., & Gao, J. H. (2005). Kernel function clustering algorithm with optimized parameters. 2005 International Conference on Machine Learning and Cybernetics (pp. 4400-4404). https://doi.org/10.1109/ICMLC.2005.1527713. – volume: 11 start-page: 2160 year: 2017 end-page: 2169 ident: b0110 article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data publication-title: IEEE Systems Journal – volume: 227 year: 2021 ident: b0070 article-title: Soft subspace clustering of interval-valued data with regularizations publication-title: Knowledge-Based Systems – reference: Yadav, S., & Singh, K. K. (2017). Image sectionalization techniques: A review. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 195–199). https://doi.org/10.1109/ICICCT.2017.7975186. – volume: 17 start-page: 873 year: 1987 end-page: 877 ident: b0100 article-title: Convergence theory for fuzzy c-Means: Counterexamples and repairs publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 32 start-page: 778 year: 2021 end-page: 791 ident: b0080 article-title: Optimal design of structures under earthquake loads using basic modal displacements method enhanced by fuzzy c-Means clustering publication-title: Structures – volume: 97 year: 2020 ident: b0240 article-title: Robust credibilistic fuzzy local information clustering with spatial information constraints publication-title: Digital Signal Processing – volume: 155 start-page: 191 year: 2005 end-page: 214 ident: b0135 article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification publication-title: Fuzzy Sets and Systems – start-page: 223 year: 2020 end-page: 227 ident: b0145 article-title: Fuzzy c-means clustering algorithm for automatically determining the number of clusters publication-title: 2020 16Th International Conference on Computational Intelligence and Security (CIS) – reference: Zhao, F., Fan, J., & Liu, H. (2014) Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Systems with Applications, 41(9), 4083-4093. https://doi.org/ 10.1016/j.eswa.2014.01.003. – reference: Yu, C. Y., Li, Y., Liu, & A. L. (2011). A novel modified kernel fuzzy C- means clustering algorithm On image segmentation. IEEE International Conference on Computational Science and Engineering (pp. 621–626). https://doi.org/10.1109/CSE.2011.109. – start-page: 247 year: 1989 end-page: 252 ident: b0250 article-title: A new method of choosing the number of clusters for the fuzzy c-means method publication-title: Proceedings of fifth fuzzy system symposium – volume: 21 year: 2021 ident: b0045 article-title: Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer publication-title: Reproductive Biology – volume: 2 start-page: 1 year: 1980 end-page: 8 ident: b0225 article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 167 year: 2021 ident: b0060 article-title: InitKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clustering publication-title: Expert Systems with Applications – start-page: 95 year: 1981 end-page: 107 ident: b0095 article-title: Pattern recognition with fuzzy objective function algorithms – volume: 51 start-page: 508 year: 2021 end-page: 520 ident: b0005 article-title: Enhanced ensemble clustering via fast propagation of cluster-wise similarities publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 20 start-page: 3903 year: 2020 end-page: 3923 ident: b0115 article-title: An efficient segmentation and classification system in medical images using intuitionistic possibilistic fuzzy c-means clustering and fuzzy SVM algorithm publication-title: Sensors – volume: 99 start-page: 514 year: 2021 end-page: 519 ident: b0035 article-title: Hierarchical cluster analysis for pattern recognition of process conditions in die sinking EDM process monitoring publication-title: Procedia CIRP – volume: 180 start-page: 51 year: 2019 end-page: 61 ident: b0065 article-title: Orthopartitions and soft clustering: Soft mutual information measures for clustering validation publication-title: Knowledge-Based Systems – volume: 1 start-page: 3 year: 1978 end-page: 28 ident: b0075 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzzy Sets and Systems – reference: Singh, V., & Verma, N. K. (2019). An entropy-based variable feature weighted fuzzy k-means algorithm for high dimensional data. arXiv:1912.11209. https://arxiv.org/abs/1912.11209. – reference: Pal, N. R., Pal, K., & Bezdek, J. C. (1997). A mixed c-means clustering model. Proceedings of 6th International Fuzzy Systems Conference (pp. 11-21). https://doi.org/10.1109/FUZZY.1997.616338. – volume: 22 start-page: 2176 year: 1998 end-page: 2177 ident: b0175 article-title: Cluster validity index for fuzzy clustering publication-title: Electronics Letters – volume: 71 start-page: 45 year: 2017 end-page: 59 ident: b0300 article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters publication-title: Pattern Recognition – reference: . – volume: 143 year: 2021 ident: b0025 article-title: Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry publication-title: TrAC Trends in Analytical Chemistry – reference: Barron, J. T. (2019). A general and adaptive robust loss function. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4326-4334). https://doi.org/10.1109/CVPR.2019.00446. – volume: 25 start-page: 3751 year: 2021 end-page: 3774 ident: b0285 article-title: Suppressed robust picture fuzzy clustering for image segmentation publication-title: Soft Computing – reference: Blumenthal, D. B., Boria, N., & Bougleux, S. (2021). Scalable generalized median graph estimation and its manifold use in bioinformatics, clustering, classification, and indexing. Information Systems, 100, 101766. https://doi.org/10.1016/j.is.2021.101766. – volume: 363 start-page: 149 year: 2019 end-page: 170 ident: b0150 article-title: Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index publication-title: Neurocomputing – volume: 11 start-page: 3249 year: 2020 end-page: 3258 ident: b0180 article-title: A new fuzzy cluster validity index for hyper-ellipsoid or hyper-spherical shape close clusters with distant centroids publication-title: IEEE Transactions on Fuzzy Systems – volume: 53 start-page: 262 year: 2017 end-page: 283 ident: b0190 article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data publication-title: Applied Soft Computing – volume: 3 start-page: 58 year: 1974 end-page: 73 ident: b0160 article-title: Cluster validity with fuzzy sets publication-title: Journal of Cybernetics – start-page: 463 year: 1991 end-page: 468 ident: b0165 article-title: A new fuzzy clustering validity criterion and its application to color image segmentation publication-title: IEEE International Symposium on Intelligent Control – start-page: 1 year: 2020 end-page: 4 ident: b0155 article-title: Cluster validity index for big data based on density discriminant analysis publication-title: 2020 1St International Conference on Big Data Analytics and Practices (IBDAP) – reference: Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., M., & Nagendra, N. (2021). Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Computational Biology and Chemistry, 92, 107475. https://doi.org/10.1016/j.compbiolchem.2021.107454. – start-page: 95 year: 1981 ident: 10.1016/j.eswa.2022.118280_b0095 – volume: 53 start-page: 262 year: 2017 ident: 10.1016/j.eswa.2022.118280_b0190 article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.12.049 – volume: 736 start-page: 61 year: 2018 ident: 10.1016/j.eswa.2022.118280_b0040 article-title: Deformation twin identification in magnesium through clustering and computer vision publication-title: Materials Science and Engineering: A doi: 10.1016/j.msea.2018.08.083 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 10.1016/j.eswa.2022.118280_b0090 article-title: A fuzzy relative of the ISODATA Process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics doi: 10.1080/01969727308546046 – volume: 71 start-page: 95 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0130 article-title: Validity limits of the maximum entropy method publication-title: Chinese Journal of Physics doi: 10.1016/j.cjph.2021.02.009 – ident: 10.1016/j.eswa.2022.118280_b0220 – start-page: 633 year: 2019 ident: 10.1016/j.eswa.2022.118280_b0215 article-title: Experimental investigations on reliability assessment based on hierarchical maximum entropy bayesian method – volume: 51 start-page: 508 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0005 article-title: Enhanced ensemble clustering via fast propagation of cluster-wise similarities publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2018.2876202 – volume: 166 start-page: 42 year: 2019 ident: 10.1016/j.eswa.2022.118280_b0210 article-title: Density-sensitive fuzzy kernel maximum entropy clustering algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.12.007 – ident: 10.1016/j.eswa.2022.118280_b0275 doi: 10.1016/S0167-8655(02)00401-4 – start-page: 223 year: 2020 ident: 10.1016/j.eswa.2022.118280_b0145 article-title: Fuzzy c-means clustering algorithm for automatically determining the number of clusters – volume: 32 start-page: 1699 issue: 4 year: 2013 ident: 10.1016/j.eswa.2022.118280_b0235 article-title: A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-Means publication-title: Circuits, Systems, and Signal Processing doi: 10.1007/s00034-012-9531-x – ident: 10.1016/j.eswa.2022.118280_b0010 doi: 10.1109/ICAICA50127.2020.9182394 – volume: 20 start-page: 3903 issue: 14 year: 2020 ident: 10.1016/j.eswa.2022.118280_b0115 article-title: An efficient segmentation and classification system in medical images using intuitionistic possibilistic fuzzy c-means clustering and fuzzy SVM algorithm publication-title: Sensors doi: 10.3390/s20143903 – start-page: 247 year: 1989 ident: 10.1016/j.eswa.2022.118280_b0250 article-title: A new method of choosing the number of clusters for the fuzzy c-means method – volume: 97 year: 2020 ident: 10.1016/j.eswa.2022.118280_b0240 article-title: Robust credibilistic fuzzy local information clustering with spatial information constraints publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2019.102615 – volume: 32 start-page: 778 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0080 article-title: Optimal design of structures under earthquake loads using basic modal displacements method enhanced by fuzzy c-Means clustering publication-title: Structures doi: 10.1016/j.istruc.2021.03.001 – volume: 11 start-page: 2160 issue: 4 year: 2017 ident: 10.1016/j.eswa.2022.118280_b0110 article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2015.2423499 – volume: 3 start-page: 58 issue: 3 year: 1974 ident: 10.1016/j.eswa.2022.118280_b0160 article-title: Cluster validity with fuzzy sets publication-title: Journal of Cybernetics doi: 10.1080/01969727308546047 – volume: 1 start-page: 3 issue: 1 year: 1978 ident: 10.1016/j.eswa.2022.118280_b0075 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(78)90029-5 – ident: 10.1016/j.eswa.2022.118280_b0055 doi: 10.1109/TNNLS.2017.2737941 – volume: 11 start-page: 3249 issue: 29 year: 2020 ident: 10.1016/j.eswa.2022.118280_b0180 article-title: A new fuzzy cluster validity index for hyper-ellipsoid or hyper-spherical shape close clusters with distant centroids publication-title: IEEE Transactions on Fuzzy Systems – volume: 7 start-page: 42169 year: 2019 ident: 10.1016/j.eswa.2022.118280_b0290 article-title: A spark-based parallel fuzzy c-means segmentation algorithm for agricultural image big data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907573 – volume: 155 start-page: 191 issue: 2 year: 2005 ident: 10.1016/j.eswa.2022.118280_b0135 article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2005.04.009 – ident: 10.1016/j.eswa.2022.118280_b0085 doi: 10.1109/CSE.2011.109 – ident: 10.1016/j.eswa.2022.118280_b0125 doi: 10.1155/2021/9965813 – volume: 167 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0060 article-title: InitKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clustering publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114149 – volume: 99 start-page: 514 issue: 2 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0035 article-title: Hierarchical cluster analysis for pattern recognition of process conditions in die sinking EDM process monitoring publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.03.071 – volume: 22 start-page: 2176 issue: 34 year: 1998 ident: 10.1016/j.eswa.2022.118280_b0175 article-title: Cluster validity index for fuzzy clustering publication-title: Electronics Letters doi: 10.1049/el:19981523 – volume: 21 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0045 article-title: Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer publication-title: Reproductive Biology – volume: 227 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0070 article-title: Soft subspace clustering of interval-valued data with regularizations publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107191 – start-page: 463 year: 1991 ident: 10.1016/j.eswa.2022.118280_b0165 article-title: A new fuzzy clustering validity criterion and its application to color image segmentation – ident: 10.1016/j.eswa.2022.118280_b0200 doi: 10.1109/CVPR.2019.00446 – ident: 10.1016/j.eswa.2022.118280_b0265 doi: 10.1109/FUZZY.1997.616338 – ident: 10.1016/j.eswa.2022.118280_b0020 doi: 10.1109/ICICCT.2017.7975186 – ident: 10.1016/j.eswa.2022.118280_b0195 doi: 10.1109/ICMLC.2005.1527713 – ident: 10.1016/j.eswa.2022.118280_b0050 doi: 10.1016/j.is.2021.101766 – ident: 10.1016/j.eswa.2022.118280_b0120 doi: 10.1109/TFUZZ.2004.840099 – ident: 10.1016/j.eswa.2022.118280_b0270 doi: 10.1007/978-3-642-22589-5_15 – volume: 2 start-page: 1 issue: 1 year: 1980 ident: 10.1016/j.eswa.2022.118280_b0225 article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1980.4766964 – ident: 10.1016/j.eswa.2022.118280_b0140 doi: 10.1109/FUZZ-IEEE.2016.7737755 – volume: 17 start-page: 873 issue: 5 year: 1987 ident: 10.1016/j.eswa.2022.118280_b0100 article-title: Convergence theory for fuzzy c-Means: Counterexamples and repairs publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1987.6499296 – volume: 133 start-page: 264 issue: 2 year: 1970 ident: 10.1016/j.eswa.2022.118280_b0230 article-title: Review of nonlinear programming: a unified approach., by W. Zangwill publication-title: Journal of the Royal Statistical Society. Series A (General) doi: 10.2307/2343701 – ident: 10.1016/j.eswa.2022.118280_b0280 doi: 10.1016/j.eswa.2014.01.003 – volume: 62 start-page: 438 issue: 2 year: 2019 ident: 10.1016/j.eswa.2022.118280_b0245 article-title: Novel fuzzy uncertainty modeling for land cover classification based on clustering analysis publication-title: Science China Earth Sciences doi: 10.1007/s11430-017-9224-6 – volume: 98 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0030 article-title: Pattern recognition receptors as therapeutic targets for bacterial, viral and fungal sepsis publication-title: International Immunopharmacology doi: 10.1016/j.intimp.2021.107909 – volume: 60 start-page: 4163 issue: 8 year: 2012 ident: 10.1016/j.eswa.2022.118280_b0185 article-title: Robust clustering using outlier-sparsity regularization publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2012.2196696 – volume: 1 start-page: 98 issue: 2 year: 1993 ident: 10.1016/j.eswa.2022.118280_b0105 article-title: A possibilistic approach to clustering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.227387 – volume: 180 start-page: 51 year: 2019 ident: 10.1016/j.eswa.2022.118280_b0065 article-title: Orthopartitions and soft clustering: Soft mutual information measures for clustering validation publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.05.018 – volume: 363 start-page: 149 year: 2019 ident: 10.1016/j.eswa.2022.118280_b0150 article-title: Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.048 – volume: 25 start-page: 385 issue: 4 year: 1992 ident: 10.1016/j.eswa.2022.118280_b0255 article-title: Fitting an unknown number of lines and planes to image data through compatible cluster merging publication-title: Pattern Recognition doi: 10.1016/0031-3203(92)90087-Y – volume: 25 start-page: 3751 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0285 article-title: Suppressed robust picture fuzzy clustering for image segmentation publication-title: Soft Computing doi: 10.1007/s00500-020-05403-8 – volume: 71 start-page: 45 year: 2017 ident: 10.1016/j.eswa.2022.118280_b0300 article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.05.017 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.118280_b0155 article-title: Cluster validity index for big data based on density discriminant analysis – ident: 10.1016/j.eswa.2022.118280_b0260 doi: 10.1109/IDAP.2017.8090183 – start-page: 34 year: 2014 ident: 10.1016/j.eswa.2022.118280_b0170 article-title: Application of xie-beni-type validity index to fuzzy co-clustering models based on cluster aggregation and pseudo-cluster-center estimation – ident: 10.1016/j.eswa.2022.118280_b0295 doi: 10.1016/j.compbiolchem.2021.107454 – volume: 143 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0025 article-title: Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry publication-title: TrAC Trends in Analytical Chemistry doi: 10.1016/j.trac.2021.116409 – volume: 42 start-page: 1135 issue: 5 year: 2021 ident: 10.1016/j.eswa.2022.118280_b0015 article-title: The use of cluster analysis to identify different burnout profiles among nurses and care assistants for older adults publication-title: Geriatric Nursing doi: 10.1016/j.gerinurse.2021.07.005 |
| SSID | ssj0017007 |
| Score | 2.518955 |
| Snippet | Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 118280 |
| SubjectTerms | Maximum entropy principle Possibilistic fuzzy clustering Robust loss function Validity function |
| Title | A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.118280 |
| Volume | 209 |
| WOSCitedRecordID | wos000888797000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3fa9swEMdFaPewl_0e636hh70ZB1uyLfsxlJZ2lDJYN_IyjC3JY8F1QhynXf_6nnySk_6gbIO9mGCi2OgjLrrT3fcI-cSlTgopM59llRHVrphfAnpfpUEshYyyotfp_n4iTk_T6TT7Mhodu1qYdS2aJr28zBb_FTXcA9imdPYvcA8_CjfgM0CHK2CH6x-Bn3itriu_djEP1E02CUIXfRgUdpiLeYtZsUak2au6q6vfnvTPNfxtebLujHaCGbk2BVuqWKA0eNc6hLMhfU8vV1YL2lXJbZ2HD_a-w3N93fw8L-Z3ItVTmJJuO_jA-j4oWH6JETFXFbNJQcLQImAPsfvOWKNhTQX3E4HdEJ3lZb0ywl0rjgGF2Vi3F0YairGxcYOw49Mtdeyv5mHmWYyZlFWjY7DLRJyBgdudHB9MPw9HSiLA2nn3craCCpP9bj_p_l3K1s7j7Bl5Yl0GOkHUz8lINy_IU9eOg1rr_JL8mNAb5OlAnjry9AZ52pOnljzdkKdAnjryFMm_It8OD872j3zbPcOXPAhWvgrKXoYc_O8ilUWViFIrFsUKPNRQS87DMqhiWQRRkupQqSKQIhAF-Jc8ilQk-Wuy08wb_YZQyRJRJVwrnfEolUmZlebAXGYpOLSq5HskdLOVSystbzqc1LnLIZzlZoZzM8M5zvAe8YYxCxRWefDbsYOQ260hbvlyWDMPjHv7j-Pekceb5f6e7KyWnf5AHsn16le7_GiX1jXKYYvG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-learning+iterative+weighted+possibilistic+fuzzy+c-means+clustering+via+adaptive+fusion&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Chengmao&rft.au=Zhang%2C+Xialu&rft.date=2022-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=209&rft_id=info:doi/10.1016%2Fj.eswa.2022.118280&rft.externalDocID=S0957417422014191 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |