A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion

Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper proposes an enhanced self-adaptive weighted possibilistic fuzzy clustering algorithm. Firstly, the principle of maximum entropy is introduced t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 209; s. 118280
Hlavní autoři: Wu, Chengmao, Zhang, Xialu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.12.2022
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper proposes an enhanced self-adaptive weighted possibilistic fuzzy clustering algorithm. Firstly, the principle of maximum entropy is introduced to weighted possibilistic fuzzy clustering, and the weighted coefficients of fuzzy clustering and possibilistic clustering are subject to regularization entropy constraint and a novel self-learning iterative weighted possibilistic fuzzy clustering is obtained, and its convergence is strictly proved by Zangwill theorem and bordered Hessian matrix. Secondly, a series of clustering validity functions for the proposed algorithm are constructed to determine the optimal number of clusters in the data set. In the end, to enhance the anti-noise robustness of the proposed algorithm, a robust loss function is applied in the adaptive weighted possibilistic fuzzy clustering, and a robust algorithm is obtained for noisy data clustering. Experimental results show that the proposed algorithm outperforms existing possibilistic fuzzy clustering-related algorithms, and the validity functions for the proposed algorithm can accurately determine the optimal number of clusters in the data set, meanwhile, the corresponding robust algorithm effectively enhances the performance of the algorithm in the presence of noise.
AbstractList Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper proposes an enhanced self-adaptive weighted possibilistic fuzzy clustering algorithm. Firstly, the principle of maximum entropy is introduced to weighted possibilistic fuzzy clustering, and the weighted coefficients of fuzzy clustering and possibilistic clustering are subject to regularization entropy constraint and a novel self-learning iterative weighted possibilistic fuzzy clustering is obtained, and its convergence is strictly proved by Zangwill theorem and bordered Hessian matrix. Secondly, a series of clustering validity functions for the proposed algorithm are constructed to determine the optimal number of clusters in the data set. In the end, to enhance the anti-noise robustness of the proposed algorithm, a robust loss function is applied in the adaptive weighted possibilistic fuzzy clustering, and a robust algorithm is obtained for noisy data clustering. Experimental results show that the proposed algorithm outperforms existing possibilistic fuzzy clustering-related algorithms, and the validity functions for the proposed algorithm can accurately determine the optimal number of clusters in the data set, meanwhile, the corresponding robust algorithm effectively enhances the performance of the algorithm in the presence of noise.
ArticleNumber 118280
Author Wu, Chengmao
Zhang, Xialu
Author_xml – sequence: 1
  givenname: Chengmao
  surname: Wu
  fullname: Wu, Chengmao
– sequence: 2
  givenname: Xialu
  surname: Zhang
  fullname: Zhang, Xialu
  email: zhangxialu0708@163.com
BookMark eNp90E1uwjAQBWCrolKB9gJd5QJJx4kTB6kbhPonIXXTLivLsSd0UEiQbUBw-ialqy5YzeobvfcmbNR2LTJ2zyHhwIuHdYL-oJMU0jThvExLuGJjXsosLuQsG7ExzHIZCy7FDZt4vwbgEkCO2dc88tjUcYPatdSuIgrodKA9Rgek1XdAG20776mihnwgE9W70-kYmXiDuvWRaXa-F4Pck4601dtfXO88de0tu6514_Hu707Z5_PTx-I1Xr6_vC3my9hkACG2UEHeZxOi1KXRdSErtKnIbSlzjibLeAV1bjSIokRurQYjQeqZFJkQVphsysrzX-P6rA5rZSj0Lbo2OE2N4qCGmdRaDTOpYSZ1nqmn6T-6dbTR7ngZPZ4R9qX2hE55Q9gatOTQBGU7usR_ANEbhVA
CitedBy_id crossref_primary_10_1016_j_measurement_2024_116229
crossref_primary_10_32604_cmc_2024_054775
crossref_primary_10_1016_j_procs_2024_05_182
crossref_primary_10_1016_j_eswa_2023_122270
crossref_primary_10_1016_j_fss_2025_109507
crossref_primary_10_1016_j_compbiomed_2025_110053
crossref_primary_10_3390_electronics12020265
crossref_primary_10_3390_e26080670
crossref_primary_10_1016_j_fss_2025_109575
crossref_primary_10_1016_j_fss_2024_108860
crossref_primary_10_1016_j_autcon_2024_105655
crossref_primary_10_1016_j_asoc_2024_112263
crossref_primary_10_1016_j_asoc_2023_110395
crossref_primary_10_1109_TNNLS_2025_3551159
crossref_primary_10_1007_s11227_025_07678_w
crossref_primary_10_1016_j_inffus_2023_101977
crossref_primary_10_3233_JIFS_231883
crossref_primary_10_3390_su15065588
crossref_primary_10_3390_sym14112431
crossref_primary_10_1007_s00500_023_09367_3
crossref_primary_10_1016_j_eswa_2025_128245
crossref_primary_10_1016_j_knosys_2024_111388
crossref_primary_10_1016_j_inffus_2022_12_008
Cites_doi 10.1016/j.asoc.2016.12.049
10.1016/j.msea.2018.08.083
10.1080/01969727308546046
10.1016/j.cjph.2021.02.009
10.1109/TSMC.2018.2876202
10.1016/j.knosys.2018.12.007
10.1016/S0167-8655(02)00401-4
10.1007/s00034-012-9531-x
10.1109/ICAICA50127.2020.9182394
10.3390/s20143903
10.1016/j.dsp.2019.102615
10.1016/j.istruc.2021.03.001
10.1109/JSYST.2015.2423499
10.1080/01969727308546047
10.1016/0165-0114(78)90029-5
10.1109/TNNLS.2017.2737941
10.1109/ACCESS.2019.2907573
10.1016/j.fss.2005.04.009
10.1109/CSE.2011.109
10.1155/2021/9965813
10.1016/j.eswa.2020.114149
10.1016/j.procir.2021.03.071
10.1049/el:19981523
10.1016/j.knosys.2021.107191
10.1109/CVPR.2019.00446
10.1109/FUZZY.1997.616338
10.1109/ICICCT.2017.7975186
10.1109/ICMLC.2005.1527713
10.1016/j.is.2021.101766
10.1109/TFUZZ.2004.840099
10.1007/978-3-642-22589-5_15
10.1109/TPAMI.1980.4766964
10.1109/FUZZ-IEEE.2016.7737755
10.1109/TSMC.1987.6499296
10.2307/2343701
10.1016/j.eswa.2014.01.003
10.1007/s11430-017-9224-6
10.1016/j.intimp.2021.107909
10.1109/TSP.2012.2196696
10.1109/91.227387
10.1016/j.knosys.2019.05.018
10.1016/j.neucom.2019.07.048
10.1016/0031-3203(92)90087-Y
10.1007/s00500-020-05403-8
10.1016/j.patcog.2017.05.017
10.1109/IDAP.2017.8090183
10.1016/j.compbiolchem.2021.107454
10.1016/j.trac.2021.116409
10.1016/j.gerinurse.2021.07.005
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.118280
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_118280
S0957417422014191
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-d0b05174448a8caf67bed245d8751ec331b0f5ca0468e1dda0c707a974344d4c3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888797000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:08:57 EST 2025
Tue Nov 18 22:26:55 EST 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Validity function
Maximum entropy principle
Possibilistic fuzzy clustering
Robust loss function
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d0b05174448a8caf67bed245d8751ec331b0f5ca0468e1dda0c707a974344d4c3
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_118280
crossref_primary_10_1016_j_eswa_2022_118280
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118280
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Balaghi, Naseralavi, Khojastehfar (b0080) 2021; 32
Pakhira, Bandyopadhyay, Maulik (b0135) 2005; 155
Zhu, Zhang, Wen (b0150) 2019; 363
Wu, Liu (b0285) 2021; 25
Li, Liang, Feng, Ruan, Jiang (b0025) 2021; 143
Gornitz, N., Lima, L.A., & Muller, K., R. (2018). Support vector data descriptions and k-Means clustering: One class?. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 3994-4006. https://doi.org/10.1109/TNNLS.2017.2737941.
Pal, N. R., Pal, K., & Bezdek, J. C. (1997). A mixed c-means clustering model. Proceedings of 6th International Fuzzy Systems Conference (pp. 11-21). https://doi.org/10.1109/FUZZY.1997.616338.
Chowdhary, Mittal, Kumaresan (b0115) 2020; 20
Fukuyama, Sugeno (b0250) 1989
Blumenthal, D. B., Boria, N., & Bougleux, S. (2021). Scalable generalized median graph estimation and its manifold use in bioinformatics, clustering, classification, and indexing. Information Systems, 100, 101766. https://doi.org/10.1016/j.is.2021.101766.
Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., M., & Nagendra, N. (2021). Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Computational Biology and Chemistry, 92, 107475. https://doi.org/10.1016/j.compbiolchem.2021.107454.
Sriharikrishnaa, Shukla, Khan, Eswaran, Adiga, Kabekkodu (b0045) 2021; 21
Chen, J., Zhang, H., & Pi, D. (2021). A weight possibilistic fuzzy c-means clustering algorithm. Scientific Programming, 2021, Article 9965813.
He, Xing, Hu, Yu (b0245) 2019; 62
Xie, Beni (b0165) 1991
Mittal, Saraswat (b0180) 2020; 11
Weerapong, Sathapornvajana, Padungweang, Krathu (b0155) 2020
Yang, Yessica (b0300) 2017; 71
Krishnapuram, Keller (b0105) 1993; 1
Fan, J., W. Zhen, W., & Xie, W. (2003). Suppressed fuzzy c-means clustering algorithm, Pattern Recognition Letters, 24, 1607-1612. https://doi.org/ 10.1016/S0167-8655(02)00401-4.
Beale (b0230) 1970; 133
Guo, Sengur (b0235) 2013; 32
Cebeci, Z., Kavlak, A. T., & Yildiz, F. (2017). Validation of fuzzy and possibilistic clustering results. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP)(pp. 1-7). https://doi.org/10.1109/IDAP.2017.8090183.
Muranishi, Honda, Notsu (b0170) 2014
Tao, Wang, Chang, Li (b0210) 2019; 166
.
Yadav, S., & Singh, K. K. (2017). Image sectionalization techniques: A review. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 195–199). https://doi.org/10.1109/ICICCT.2017.7975186.
Bezdek, Hathaway, Sabin (b0100) 1987; 17
Forero, Kekatos, Giannakis (b0185) 2012; 60
Caggiano, Napolitano, Teti (b0035) 2021; 99
Wang, Wang, Du, Guo (b0145) 2020
Pal, N. R., Pal, K., & Keller, J. M. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4),517-530. https://doi.org/10.1109/TFUZZ.2004.840099.
Barron, J. T. (2019). A general and adaptive robust loss function. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4326-4334). https://doi.org/10.1109/CVPR.2019.00446.
Yu, C. Y., Li, Y., Liu, & A. L. (2011). A novel modified kernel fuzzy C- means clustering algorithm On image segmentation. IEEE International Conference on Computational Science and Engineering (pp. 621–626). https://doi.org/10.1109/CSE.2011.109.
Kwon (b0175) 1998; 22
Zhao, F., Fan, J., & Liu, H. (2014) Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Systems with Applications, 41(9), 4083-4093. https://doi.org/ 10.1016/j.eswa.2014.01.003.
Allahverdyan, Khalafyan, Martirosyan (b0130) 2021; 71
Bezdek (b0095) 1981
Bezdek (b0160) 1974; 3
Bezdek (b0225) 1980; 2
Huang, Wang, Peng, Lai, Kwoh (b0005) 2021; 51
Chen, Daly (b0040) 2018; 736
Askari, Montazerin, Fazel Zarandi (b0190) 2017; 53
Potard, Landais (b0015) 2021; 42
Liu, He, He, Zhang, Guizani (b0290) 2019; 7
Krishnapuram, Reg (b0255) 1992; 25
Dunn (b0090) 1973; 3
Singh, V., & Verma, N. K. (2019). An entropy-based variable feature weighted fuzzy k-means algorithm for high dimensional data. arXiv:1912.11209. https://arxiv.org/abs/1912.11209.
Zhang, Yang, Chen (b0110) 2017; 11
Ye, Xia, Chang (b0215) 2019
Campagner, Ciucci (b0065) 2019; 180
Liang, J. Z., & Gao, J. H. (2005). Kernel function clustering algorithm with optimized parameters. 2005 International Conference on Machine Learning and Cybernetics (pp. 4400-4404). https://doi.org/10.1109/ICMLC.2005.1527713.
Wu, Yang (b0240) 2020; 97
Zadeh (b0075) 1978; 1
Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds) Modeling decision for artificial intelligence, 6820, 150-161. https://doi.org/10.1007/978-3-642-22589-5_15.
Rong, Y., & Liu, Y. (2020). Staged text clustering algorithm based on K-means and hierarchical agglomeration clustering. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 124-127). https://doi.org/10.1109/ICAICA50127.2020.9182394.
He, H., Tan, Y., & Fujimoto, K. (2016). Estimation of optimal cluster number for fuzzy clustering with combined fuzzy entropy index. 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp.697-703). https://doi.org/10.1109/FUZZ-IEEE.2016.7737755.
Yuki, Koutsogiannaki (b0030) 2021; 98
Ahmad, Khan (b0060) 2021; 167
Rodriguez, Carvalho (b0070) 2021; 227
Pakhira (10.1016/j.eswa.2022.118280_b0135) 2005; 155
Wang (10.1016/j.eswa.2022.118280_b0145) 2020
Wu (10.1016/j.eswa.2022.118280_b0240) 2020; 97
Liu (10.1016/j.eswa.2022.118280_b0290) 2019; 7
Huang (10.1016/j.eswa.2022.118280_b0005) 2021; 51
Xie (10.1016/j.eswa.2022.118280_b0165) 1991
10.1016/j.eswa.2022.118280_b0125
Askari (10.1016/j.eswa.2022.118280_b0190) 2017; 53
10.1016/j.eswa.2022.118280_b0200
10.1016/j.eswa.2022.118280_b0120
10.1016/j.eswa.2022.118280_b0085
Caggiano (10.1016/j.eswa.2022.118280_b0035) 2021; 99
Mittal (10.1016/j.eswa.2022.118280_b0180) 2020; 11
10.1016/j.eswa.2022.118280_b0280
Ye (10.1016/j.eswa.2022.118280_b0215) 2019
Beale (10.1016/j.eswa.2022.118280_b0230) 1970; 133
Zhu (10.1016/j.eswa.2022.118280_b0150) 2019; 363
Campagner (10.1016/j.eswa.2022.118280_b0065) 2019; 180
Muranishi (10.1016/j.eswa.2022.118280_b0170) 2014
Chen (10.1016/j.eswa.2022.118280_b0040) 2018; 736
Wu (10.1016/j.eswa.2022.118280_b0285) 2021; 25
Li (10.1016/j.eswa.2022.118280_b0025) 2021; 143
10.1016/j.eswa.2022.118280_b0010
10.1016/j.eswa.2022.118280_b0055
Zhang (10.1016/j.eswa.2022.118280_b0110) 2017; 11
10.1016/j.eswa.2022.118280_b0295
Yang (10.1016/j.eswa.2022.118280_b0300) 2017; 71
10.1016/j.eswa.2022.118280_b0050
He (10.1016/j.eswa.2022.118280_b0245) 2019; 62
Balaghi (10.1016/j.eswa.2022.118280_b0080) 2021; 32
Dunn (10.1016/j.eswa.2022.118280_b0090) 1973; 3
Yuki (10.1016/j.eswa.2022.118280_b0030) 2021; 98
Potard (10.1016/j.eswa.2022.118280_b0015) 2021; 42
Zadeh (10.1016/j.eswa.2022.118280_b0075) 1978; 1
Allahverdyan (10.1016/j.eswa.2022.118280_b0130) 2021; 71
Bezdek (10.1016/j.eswa.2022.118280_b0160) 1974; 3
Krishnapuram (10.1016/j.eswa.2022.118280_b0255) 1992; 25
Krishnapuram (10.1016/j.eswa.2022.118280_b0105) 1993; 1
Rodriguez (10.1016/j.eswa.2022.118280_b0070) 2021; 227
Weerapong (10.1016/j.eswa.2022.118280_b0155) 2020
10.1016/j.eswa.2022.118280_b0265
Sriharikrishnaa (10.1016/j.eswa.2022.118280_b0045) 2021; 21
10.1016/j.eswa.2022.118280_b0220
10.1016/j.eswa.2022.118280_b0140
10.1016/j.eswa.2022.118280_b0020
10.1016/j.eswa.2022.118280_b0260
Bezdek (10.1016/j.eswa.2022.118280_b0100) 1987; 17
Chowdhary (10.1016/j.eswa.2022.118280_b0115) 2020; 20
Guo (10.1016/j.eswa.2022.118280_b0235) 2013; 32
Forero (10.1016/j.eswa.2022.118280_b0185) 2012; 60
Kwon (10.1016/j.eswa.2022.118280_b0175) 1998; 22
Bezdek (10.1016/j.eswa.2022.118280_b0225) 1980; 2
Tao (10.1016/j.eswa.2022.118280_b0210) 2019; 166
Bezdek (10.1016/j.eswa.2022.118280_b0095) 1981
Ahmad (10.1016/j.eswa.2022.118280_b0060) 2021; 167
10.1016/j.eswa.2022.118280_b0275
10.1016/j.eswa.2022.118280_b0195
10.1016/j.eswa.2022.118280_b0270
Fukuyama (10.1016/j.eswa.2022.118280_b0250) 1989
References_xml – reference: Gornitz, N., Lima, L.A., & Muller, K., R. (2018). Support vector data descriptions and k-Means clustering: One class?. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 3994-4006. https://doi.org/10.1109/TNNLS.2017.2737941.
– volume: 62
  start-page: 438
  year: 2019
  end-page: 450
  ident: b0245
  article-title: Novel fuzzy uncertainty modeling for land cover classification based on clustering analysis
  publication-title: Science China Earth Sciences
– reference: He, H., Tan, Y., & Fujimoto, K. (2016). Estimation of optimal cluster number for fuzzy clustering with combined fuzzy entropy index. 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp.697-703). https://doi.org/10.1109/FUZZ-IEEE.2016.7737755.
– reference: Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds) Modeling decision for artificial intelligence, 6820, 150-161. https://doi.org/10.1007/978-3-642-22589-5_15.
– volume: 7
  start-page: 42169
  year: 2019
  end-page: 42180
  ident: b0290
  article-title: A spark-based parallel fuzzy c-means segmentation algorithm for agricultural image big data
  publication-title: IEEE Access
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: b0090
  article-title: A fuzzy relative of the ISODATA Process and its use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
– volume: 71
  start-page: 95
  year: 2021
  end-page: 111
  ident: b0130
  article-title: Validity limits of the maximum entropy method
  publication-title: Chinese Journal of Physics
– volume: 25
  start-page: 385
  year: 1992
  end-page: 400
  ident: b0255
  article-title: Fitting an unknown number of lines and planes to image data through compatible cluster merging
  publication-title: Pattern Recognition
– start-page: 34
  year: 2014
  end-page: 38
  ident: b0170
  article-title: Application of xie-beni-type validity index to fuzzy co-clustering models based on cluster aggregation and pseudo-cluster-center estimation
  publication-title: 2014 14Th International Conference on Intelligent Systems Design and Applications
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: b0105
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 98
  year: 2021
  ident: b0030
  article-title: Pattern recognition receptors as therapeutic targets for bacterial, viral and fungal sepsis
  publication-title: International Immunopharmacology
– reference: Fan, J., W. Zhen, W., & Xie, W. (2003). Suppressed fuzzy c-means clustering algorithm, Pattern Recognition Letters, 24, 1607-1612. https://doi.org/ 10.1016/S0167-8655(02)00401-4.
– volume: 736
  start-page: 61
  year: 2018
  end-page: 75
  ident: b0040
  article-title: Deformation twin identification in magnesium through clustering and computer vision
  publication-title: Materials Science and Engineering: A
– reference: Pal, N. R., Pal, K., & Keller, J. M. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4),517-530. https://doi.org/10.1109/TFUZZ.2004.840099.
– volume: 166
  start-page: 42
  year: 2019
  end-page: 57
  ident: b0210
  article-title: Density-sensitive fuzzy kernel maximum entropy clustering algorithm
  publication-title: Knowledge-Based Systems
– start-page: 633
  year: 2019
  end-page: 635
  ident: b0215
  article-title: Experimental investigations on reliability assessment based on hierarchical maximum entropy bayesian method
  publication-title: 2019 2Nd International Conference on Safety Produce Informatization (IICSPI)
– volume: 32
  start-page: 1699
  year: 2013
  end-page: 1723
  ident: b0235
  article-title: A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-Means
  publication-title: Circuits, Systems, and Signal Processing
– reference: Cebeci, Z., Kavlak, A. T., & Yildiz, F. (2017). Validation of fuzzy and possibilistic clustering results. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP)(pp. 1-7). https://doi.org/10.1109/IDAP.2017.8090183.
– reference: Rong, Y., & Liu, Y. (2020). Staged text clustering algorithm based on K-means and hierarchical agglomeration clustering. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 124-127). https://doi.org/10.1109/ICAICA50127.2020.9182394.
– volume: 60
  start-page: 4163
  year: 2012
  end-page: 4177
  ident: b0185
  article-title: Robust clustering using outlier-sparsity regularization
  publication-title: IEEE Transactions on Signal Processing
– reference: Chen, J., Zhang, H., & Pi, D. (2021). A weight possibilistic fuzzy c-means clustering algorithm. Scientific Programming, 2021, Article 9965813.
– volume: 42
  start-page: 1135
  year: 2021
  end-page: 1142
  ident: b0015
  article-title: The use of cluster analysis to identify different burnout profiles among nurses and care assistants for older adults
  publication-title: Geriatric Nursing
– volume: 133
  start-page: 264
  year: 1970
  end-page: 265
  ident: b0230
  article-title: Review of nonlinear programming: a unified approach., by W. Zangwill
  publication-title: Journal of the Royal Statistical Society. Series A (General)
– reference: Liang, J. Z., & Gao, J. H. (2005). Kernel function clustering algorithm with optimized parameters. 2005 International Conference on Machine Learning and Cybernetics (pp. 4400-4404). https://doi.org/10.1109/ICMLC.2005.1527713.
– volume: 11
  start-page: 2160
  year: 2017
  end-page: 2169
  ident: b0110
  article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data
  publication-title: IEEE Systems Journal
– volume: 227
  year: 2021
  ident: b0070
  article-title: Soft subspace clustering of interval-valued data with regularizations
  publication-title: Knowledge-Based Systems
– reference: Yadav, S., & Singh, K. K. (2017). Image sectionalization techniques: A review. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 195–199). https://doi.org/10.1109/ICICCT.2017.7975186.
– volume: 17
  start-page: 873
  year: 1987
  end-page: 877
  ident: b0100
  article-title: Convergence theory for fuzzy c-Means: Counterexamples and repairs
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– volume: 32
  start-page: 778
  year: 2021
  end-page: 791
  ident: b0080
  article-title: Optimal design of structures under earthquake loads using basic modal displacements method enhanced by fuzzy c-Means clustering
  publication-title: Structures
– volume: 97
  year: 2020
  ident: b0240
  article-title: Robust credibilistic fuzzy local information clustering with spatial information constraints
  publication-title: Digital Signal Processing
– volume: 155
  start-page: 191
  year: 2005
  end-page: 214
  ident: b0135
  article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification
  publication-title: Fuzzy Sets and Systems
– start-page: 223
  year: 2020
  end-page: 227
  ident: b0145
  article-title: Fuzzy c-means clustering algorithm for automatically determining the number of clusters
  publication-title: 2020 16Th International Conference on Computational Intelligence and Security (CIS)
– reference: Zhao, F., Fan, J., & Liu, H. (2014) Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Systems with Applications, 41(9), 4083-4093. https://doi.org/ 10.1016/j.eswa.2014.01.003.
– reference: Yu, C. Y., Li, Y., Liu, & A. L. (2011). A novel modified kernel fuzzy C- means clustering algorithm On image segmentation. IEEE International Conference on Computational Science and Engineering (pp. 621–626). https://doi.org/10.1109/CSE.2011.109.
– start-page: 247
  year: 1989
  end-page: 252
  ident: b0250
  article-title: A new method of choosing the number of clusters for the fuzzy c-means method
  publication-title: Proceedings of fifth fuzzy system symposium
– volume: 21
  year: 2021
  ident: b0045
  article-title: Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer
  publication-title: Reproductive Biology
– volume: 2
  start-page: 1
  year: 1980
  end-page: 8
  ident: b0225
  article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 167
  year: 2021
  ident: b0060
  article-title: InitKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clustering
  publication-title: Expert Systems with Applications
– start-page: 95
  year: 1981
  end-page: 107
  ident: b0095
  article-title: Pattern recognition with fuzzy objective function algorithms
– volume: 51
  start-page: 508
  year: 2021
  end-page: 520
  ident: b0005
  article-title: Enhanced ensemble clustering via fast propagation of cluster-wise similarities
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 20
  start-page: 3903
  year: 2020
  end-page: 3923
  ident: b0115
  article-title: An efficient segmentation and classification system in medical images using intuitionistic possibilistic fuzzy c-means clustering and fuzzy SVM algorithm
  publication-title: Sensors
– volume: 99
  start-page: 514
  year: 2021
  end-page: 519
  ident: b0035
  article-title: Hierarchical cluster analysis for pattern recognition of process conditions in die sinking EDM process monitoring
  publication-title: Procedia CIRP
– volume: 180
  start-page: 51
  year: 2019
  end-page: 61
  ident: b0065
  article-title: Orthopartitions and soft clustering: Soft mutual information measures for clustering validation
  publication-title: Knowledge-Based Systems
– volume: 1
  start-page: 3
  year: 1978
  end-page: 28
  ident: b0075
  article-title: Fuzzy sets as a basis for a theory of possibility
  publication-title: Fuzzy Sets and Systems
– reference: Singh, V., & Verma, N. K. (2019). An entropy-based variable feature weighted fuzzy k-means algorithm for high dimensional data. arXiv:1912.11209. https://arxiv.org/abs/1912.11209.
– reference: Pal, N. R., Pal, K., & Bezdek, J. C. (1997). A mixed c-means clustering model. Proceedings of 6th International Fuzzy Systems Conference (pp. 11-21). https://doi.org/10.1109/FUZZY.1997.616338.
– volume: 22
  start-page: 2176
  year: 1998
  end-page: 2177
  ident: b0175
  article-title: Cluster validity index for fuzzy clustering
  publication-title: Electronics Letters
– volume: 71
  start-page: 45
  year: 2017
  end-page: 59
  ident: b0300
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recognition
– reference: .
– volume: 143
  year: 2021
  ident: b0025
  article-title: Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry
  publication-title: TrAC Trends in Analytical Chemistry
– reference: Barron, J. T. (2019). A general and adaptive robust loss function. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4326-4334). https://doi.org/10.1109/CVPR.2019.00446.
– volume: 25
  start-page: 3751
  year: 2021
  end-page: 3774
  ident: b0285
  article-title: Suppressed robust picture fuzzy clustering for image segmentation
  publication-title: Soft Computing
– reference: Blumenthal, D. B., Boria, N., & Bougleux, S. (2021). Scalable generalized median graph estimation and its manifold use in bioinformatics, clustering, classification, and indexing. Information Systems, 100, 101766. https://doi.org/10.1016/j.is.2021.101766.
– volume: 363
  start-page: 149
  year: 2019
  end-page: 170
  ident: b0150
  article-title: Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index
  publication-title: Neurocomputing
– volume: 11
  start-page: 3249
  year: 2020
  end-page: 3258
  ident: b0180
  article-title: A new fuzzy cluster validity index for hyper-ellipsoid or hyper-spherical shape close clusters with distant centroids
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 53
  start-page: 262
  year: 2017
  end-page: 283
  ident: b0190
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
– volume: 3
  start-page: 58
  year: 1974
  end-page: 73
  ident: b0160
  article-title: Cluster validity with fuzzy sets
  publication-title: Journal of Cybernetics
– start-page: 463
  year: 1991
  end-page: 468
  ident: b0165
  article-title: A new fuzzy clustering validity criterion and its application to color image segmentation
  publication-title: IEEE International Symposium on Intelligent Control
– start-page: 1
  year: 2020
  end-page: 4
  ident: b0155
  article-title: Cluster validity index for big data based on density discriminant analysis
  publication-title: 2020 1St International Conference on Big Data Analytics and Practices (IBDAP)
– reference: Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., M., & Nagendra, N. (2021). Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Computational Biology and Chemistry, 92, 107475. https://doi.org/10.1016/j.compbiolchem.2021.107454.
– start-page: 95
  year: 1981
  ident: 10.1016/j.eswa.2022.118280_b0095
– volume: 53
  start-page: 262
  year: 2017
  ident: 10.1016/j.eswa.2022.118280_b0190
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.12.049
– volume: 736
  start-page: 61
  year: 2018
  ident: 10.1016/j.eswa.2022.118280_b0040
  article-title: Deformation twin identification in magnesium through clustering and computer vision
  publication-title: Materials Science and Engineering: A
  doi: 10.1016/j.msea.2018.08.083
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 10.1016/j.eswa.2022.118280_b0090
  article-title: A fuzzy relative of the ISODATA Process and its use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727308546046
– volume: 71
  start-page: 95
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0130
  article-title: Validity limits of the maximum entropy method
  publication-title: Chinese Journal of Physics
  doi: 10.1016/j.cjph.2021.02.009
– ident: 10.1016/j.eswa.2022.118280_b0220
– start-page: 633
  year: 2019
  ident: 10.1016/j.eswa.2022.118280_b0215
  article-title: Experimental investigations on reliability assessment based on hierarchical maximum entropy bayesian method
– volume: 51
  start-page: 508
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0005
  article-title: Enhanced ensemble clustering via fast propagation of cluster-wise similarities
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2018.2876202
– volume: 166
  start-page: 42
  year: 2019
  ident: 10.1016/j.eswa.2022.118280_b0210
  article-title: Density-sensitive fuzzy kernel maximum entropy clustering algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.12.007
– ident: 10.1016/j.eswa.2022.118280_b0275
  doi: 10.1016/S0167-8655(02)00401-4
– start-page: 223
  year: 2020
  ident: 10.1016/j.eswa.2022.118280_b0145
  article-title: Fuzzy c-means clustering algorithm for automatically determining the number of clusters
– volume: 32
  start-page: 1699
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2022.118280_b0235
  article-title: A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-Means
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-012-9531-x
– ident: 10.1016/j.eswa.2022.118280_b0010
  doi: 10.1109/ICAICA50127.2020.9182394
– volume: 20
  start-page: 3903
  issue: 14
  year: 2020
  ident: 10.1016/j.eswa.2022.118280_b0115
  article-title: An efficient segmentation and classification system in medical images using intuitionistic possibilistic fuzzy c-means clustering and fuzzy SVM algorithm
  publication-title: Sensors
  doi: 10.3390/s20143903
– start-page: 247
  year: 1989
  ident: 10.1016/j.eswa.2022.118280_b0250
  article-title: A new method of choosing the number of clusters for the fuzzy c-means method
– volume: 97
  year: 2020
  ident: 10.1016/j.eswa.2022.118280_b0240
  article-title: Robust credibilistic fuzzy local information clustering with spatial information constraints
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2019.102615
– volume: 32
  start-page: 778
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0080
  article-title: Optimal design of structures under earthquake loads using basic modal displacements method enhanced by fuzzy c-Means clustering
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.03.001
– volume: 11
  start-page: 2160
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2022.118280_b0110
  article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2015.2423499
– volume: 3
  start-page: 58
  issue: 3
  year: 1974
  ident: 10.1016/j.eswa.2022.118280_b0160
  article-title: Cluster validity with fuzzy sets
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727308546047
– volume: 1
  start-page: 3
  issue: 1
  year: 1978
  ident: 10.1016/j.eswa.2022.118280_b0075
  article-title: Fuzzy sets as a basis for a theory of possibility
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(78)90029-5
– ident: 10.1016/j.eswa.2022.118280_b0055
  doi: 10.1109/TNNLS.2017.2737941
– volume: 11
  start-page: 3249
  issue: 29
  year: 2020
  ident: 10.1016/j.eswa.2022.118280_b0180
  article-title: A new fuzzy cluster validity index for hyper-ellipsoid or hyper-spherical shape close clusters with distant centroids
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 7
  start-page: 42169
  year: 2019
  ident: 10.1016/j.eswa.2022.118280_b0290
  article-title: A spark-based parallel fuzzy c-means segmentation algorithm for agricultural image big data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907573
– volume: 155
  start-page: 191
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2022.118280_b0135
  article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2005.04.009
– ident: 10.1016/j.eswa.2022.118280_b0085
  doi: 10.1109/CSE.2011.109
– ident: 10.1016/j.eswa.2022.118280_b0125
  doi: 10.1155/2021/9965813
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0060
  article-title: InitKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114149
– volume: 99
  start-page: 514
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0035
  article-title: Hierarchical cluster analysis for pattern recognition of process conditions in die sinking EDM process monitoring
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.03.071
– volume: 22
  start-page: 2176
  issue: 34
  year: 1998
  ident: 10.1016/j.eswa.2022.118280_b0175
  article-title: Cluster validity index for fuzzy clustering
  publication-title: Electronics Letters
  doi: 10.1049/el:19981523
– volume: 21
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0045
  article-title: Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer
  publication-title: Reproductive Biology
– volume: 227
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0070
  article-title: Soft subspace clustering of interval-valued data with regularizations
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107191
– start-page: 463
  year: 1991
  ident: 10.1016/j.eswa.2022.118280_b0165
  article-title: A new fuzzy clustering validity criterion and its application to color image segmentation
– ident: 10.1016/j.eswa.2022.118280_b0200
  doi: 10.1109/CVPR.2019.00446
– ident: 10.1016/j.eswa.2022.118280_b0265
  doi: 10.1109/FUZZY.1997.616338
– ident: 10.1016/j.eswa.2022.118280_b0020
  doi: 10.1109/ICICCT.2017.7975186
– ident: 10.1016/j.eswa.2022.118280_b0195
  doi: 10.1109/ICMLC.2005.1527713
– ident: 10.1016/j.eswa.2022.118280_b0050
  doi: 10.1016/j.is.2021.101766
– ident: 10.1016/j.eswa.2022.118280_b0120
  doi: 10.1109/TFUZZ.2004.840099
– ident: 10.1016/j.eswa.2022.118280_b0270
  doi: 10.1007/978-3-642-22589-5_15
– volume: 2
  start-page: 1
  issue: 1
  year: 1980
  ident: 10.1016/j.eswa.2022.118280_b0225
  article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1980.4766964
– ident: 10.1016/j.eswa.2022.118280_b0140
  doi: 10.1109/FUZZ-IEEE.2016.7737755
– volume: 17
  start-page: 873
  issue: 5
  year: 1987
  ident: 10.1016/j.eswa.2022.118280_b0100
  article-title: Convergence theory for fuzzy c-Means: Counterexamples and repairs
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1987.6499296
– volume: 133
  start-page: 264
  issue: 2
  year: 1970
  ident: 10.1016/j.eswa.2022.118280_b0230
  article-title: Review of nonlinear programming: a unified approach., by W. Zangwill
  publication-title: Journal of the Royal Statistical Society. Series A (General)
  doi: 10.2307/2343701
– ident: 10.1016/j.eswa.2022.118280_b0280
  doi: 10.1016/j.eswa.2014.01.003
– volume: 62
  start-page: 438
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2022.118280_b0245
  article-title: Novel fuzzy uncertainty modeling for land cover classification based on clustering analysis
  publication-title: Science China Earth Sciences
  doi: 10.1007/s11430-017-9224-6
– volume: 98
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0030
  article-title: Pattern recognition receptors as therapeutic targets for bacterial, viral and fungal sepsis
  publication-title: International Immunopharmacology
  doi: 10.1016/j.intimp.2021.107909
– volume: 60
  start-page: 4163
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2022.118280_b0185
  article-title: Robust clustering using outlier-sparsity regularization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2196696
– volume: 1
  start-page: 98
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2022.118280_b0105
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.227387
– volume: 180
  start-page: 51
  year: 2019
  ident: 10.1016/j.eswa.2022.118280_b0065
  article-title: Orthopartitions and soft clustering: Soft mutual information measures for clustering validation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.05.018
– volume: 363
  start-page: 149
  year: 2019
  ident: 10.1016/j.eswa.2022.118280_b0150
  article-title: Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.048
– volume: 25
  start-page: 385
  issue: 4
  year: 1992
  ident: 10.1016/j.eswa.2022.118280_b0255
  article-title: Fitting an unknown number of lines and planes to image data through compatible cluster merging
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(92)90087-Y
– volume: 25
  start-page: 3751
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0285
  article-title: Suppressed robust picture fuzzy clustering for image segmentation
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05403-8
– volume: 71
  start-page: 45
  year: 2017
  ident: 10.1016/j.eswa.2022.118280_b0300
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.05.017
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.118280_b0155
  article-title: Cluster validity index for big data based on density discriminant analysis
– ident: 10.1016/j.eswa.2022.118280_b0260
  doi: 10.1109/IDAP.2017.8090183
– start-page: 34
  year: 2014
  ident: 10.1016/j.eswa.2022.118280_b0170
  article-title: Application of xie-beni-type validity index to fuzzy co-clustering models based on cluster aggregation and pseudo-cluster-center estimation
– ident: 10.1016/j.eswa.2022.118280_b0295
  doi: 10.1016/j.compbiolchem.2021.107454
– volume: 143
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0025
  article-title: Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry
  publication-title: TrAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2021.116409
– volume: 42
  start-page: 1135
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2022.118280_b0015
  article-title: The use of cluster analysis to identify different burnout profiles among nurses and care assistants for older adults
  publication-title: Geriatric Nursing
  doi: 10.1016/j.gerinurse.2021.07.005
SSID ssj0017007
Score 2.518955
Snippet Considering that weighted possibilistic fuzzy clustering does not obtain significant performance compared with possibilistic fuzzy clustering, so this paper...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118280
SubjectTerms Maximum entropy principle
Possibilistic fuzzy clustering
Robust loss function
Validity function
Title A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion
URI https://dx.doi.org/10.1016/j.eswa.2022.118280
Volume 209
WOSCitedRecordID wos000888797000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3fa9swEMdFaPewl_0e636hh70ZB1uyLfsxlJZ2lDJYN_IyjC3JY8F1QhynXf_6nnySk_6gbIO9mGCi2OgjLrrT3fcI-cSlTgopM59llRHVrphfAnpfpUEshYyyotfp_n4iTk_T6TT7Mhodu1qYdS2aJr28zBb_FTXcA9imdPYvcA8_CjfgM0CHK2CH6x-Bn3itriu_djEP1E02CUIXfRgUdpiLeYtZsUak2au6q6vfnvTPNfxtebLujHaCGbk2BVuqWKA0eNc6hLMhfU8vV1YL2lXJbZ2HD_a-w3N93fw8L-Z3ItVTmJJuO_jA-j4oWH6JETFXFbNJQcLQImAPsfvOWKNhTQX3E4HdEJ3lZb0ywl0rjgGF2Vi3F0YairGxcYOw49Mtdeyv5mHmWYyZlFWjY7DLRJyBgdudHB9MPw9HSiLA2nn3craCCpP9bj_p_l3K1s7j7Bl5Yl0GOkHUz8lINy_IU9eOg1rr_JL8mNAb5OlAnjry9AZ52pOnljzdkKdAnjryFMm_It8OD872j3zbPcOXPAhWvgrKXoYc_O8ilUWViFIrFsUKPNRQS87DMqhiWQRRkupQqSKQIhAF-Jc8ilQk-Wuy08wb_YZQyRJRJVwrnfEolUmZlebAXGYpOLSq5HskdLOVSystbzqc1LnLIZzlZoZzM8M5zvAe8YYxCxRWefDbsYOQ260hbvlyWDMPjHv7j-Pekceb5f6e7KyWnf5AHsn16le7_GiX1jXKYYvG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-learning+iterative+weighted+possibilistic+fuzzy+c-means+clustering+via+adaptive+fusion&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Chengmao&rft.au=Zhang%2C+Xialu&rft.date=2022-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=209&rft_id=info:doi/10.1016%2Fj.eswa.2022.118280&rft.externalDocID=S0957417422014191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon