Reactive power optimization for distribution network system with wind power based on improved multi-objective particle swarm optimization algorithm
•In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the density information, the global optimal particles are selected by roulette mechanism and the scale of external repository is maintained, which effe...
Gespeichert in:
| Veröffentlicht in: | Electric power systems research Jg. 213; S. 108731 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2022
|
| Schlagworte: | |
| ISSN: | 0378-7796, 1873-2046 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the density information, the global optimal particles are selected by roulette mechanism and the scale of external repository is maintained, which effectively ensures the uniformity and diversity of Pareto frontier distribution.•The proposed IMOPSOA has faster convergence speed and shorter average computing time than NSGA-II algorithm, can get Pareto frontier with better distribution and better results, which makes the voltage stability of the distribution network system with wind power higher.
Aiming at the uncertainty of the grid-connected output of wind turbines, a scenario analysis method based on probability occurrence is used to transform the uncertainty model into multi scenario problems with different occurrence probabilities, a reactive power optimization model is established with the goal of minimizing the active power network loss and voltage deviation. Aiming at the poor diversity of Pareto frontiers obtained by traditional methods, an improved multi-objective particle swarm optimization algorithm is proposed. The algorithm uses adaptive grids to obtain the density of particles in external archives, selects the global optimal particle and maintains the scale of the external repository according to the density information using a roulette mechanism, effectively ensuring the uniformity and diversity of the Pareto frontier distribution. The algorithm is used to calculate reactive power optimization of the IEEE 33-bus system with wind power, and compared with the existing NSGA-Ⅱ algorithm. The results show that the Pareto frontier obtained by the proposed algorithm is better, the voltage stability and active power loss reduction rate of the distribution network system with wind power is higher. |
|---|---|
| AbstractList | •In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the density information, the global optimal particles are selected by roulette mechanism and the scale of external repository is maintained, which effectively ensures the uniformity and diversity of Pareto frontier distribution.•The proposed IMOPSOA has faster convergence speed and shorter average computing time than NSGA-II algorithm, can get Pareto frontier with better distribution and better results, which makes the voltage stability of the distribution network system with wind power higher.
Aiming at the uncertainty of the grid-connected output of wind turbines, a scenario analysis method based on probability occurrence is used to transform the uncertainty model into multi scenario problems with different occurrence probabilities, a reactive power optimization model is established with the goal of minimizing the active power network loss and voltage deviation. Aiming at the poor diversity of Pareto frontiers obtained by traditional methods, an improved multi-objective particle swarm optimization algorithm is proposed. The algorithm uses adaptive grids to obtain the density of particles in external archives, selects the global optimal particle and maintains the scale of the external repository according to the density information using a roulette mechanism, effectively ensuring the uniformity and diversity of the Pareto frontier distribution. The algorithm is used to calculate reactive power optimization of the IEEE 33-bus system with wind power, and compared with the existing NSGA-Ⅱ algorithm. The results show that the Pareto frontier obtained by the proposed algorithm is better, the voltage stability and active power loss reduction rate of the distribution network system with wind power is higher. |
| ArticleNumber | 108731 |
| Author | Honghai, Kuang Zhiyi, He Yurui, Chang Kai, Wang Fuqing, Su |
| Author_xml | – sequence: 1 givenname: Kuang surname: Honghai fullname: Honghai, Kuang email: khhzyz@163.com – sequence: 2 givenname: Su surname: Fuqing fullname: Fuqing, Su – sequence: 3 givenname: Chang surname: Yurui fullname: Yurui, Chang – sequence: 4 givenname: Wang surname: Kai fullname: Kai, Wang – sequence: 5 givenname: He surname: Zhiyi fullname: Zhiyi, He |
| BookMark | eNp9kMlOwzAQQC1UJNrCD3DKD6Q4S-NY4oIqNqkSEoKz5dgTmJLEke02Kr_BD-MuFzj04rFG82Z5EzLqTAeEXCd0ltCkuFnNoHd2ltI0DYmSZckZGSchxinNixEZ04yVMWO8uCAT51aU0oKz-Zj8vIJUHjcQ9WYAG5neY4vf0qPpotrYSKPzFqv1PtGBH4z9itzWeWijAf1neDp9hCvpQEehDtvemk34t-vGY2yqFRyHSOtRNRC5Qdr27zTZfBgbOraX5LyWjYOrY5yS94f7t8VTvHx5fF7cLWOVUepjTTnIXGZ5qRTnta4ynVMpiyLnDOZKpQBlKRmDqq45aJ3zLOUJkwVVc8ozyKakPPRV1jhnoRYK_X4XbyU2IqFiJ1esxE6u2MkVB7kBTf-hvcVW2u1p6PYAQThqg2CFUwidAo02-BHa4Cn8F7l5nCc |
| CitedBy_id | crossref_primary_10_3390_en17112774 crossref_primary_10_3390_en17051132 crossref_primary_10_1049_rpg2_12994 crossref_primary_10_1016_j_epsr_2022_109074 crossref_primary_10_1016_j_epsr_2024_110363 crossref_primary_10_3390_en15249655 crossref_primary_10_1016_j_epsr_2024_110564 crossref_primary_10_1016_j_asoc_2023_111087 crossref_primary_10_1109_ACCESS_2025_3573197 crossref_primary_10_1007_s40313_025_01166_5 crossref_primary_10_1155_2023_6678942 crossref_primary_10_3389_fenrg_2024_1431874 crossref_primary_10_3389_fenrg_2023_1213154 crossref_primary_10_1109_ACCESS_2024_3426614 crossref_primary_10_3390_pr11102824 crossref_primary_10_3390_en18092349 crossref_primary_10_1002_ese3_1902 crossref_primary_10_3390_en17020516 crossref_primary_10_3390_en15218225 crossref_primary_10_3390_en18123209 |
| Cites_doi | 10.1049/iet-gtd.2016.1545 10.1002/ep.12589 10.1007/s40565-014-0052-4 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.epsr.2022.108731 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| ExternalDocumentID | 10_1016_j_epsr_2022_108731 S0378779622007908 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-d09ea4a348cc99fdb3d40aa66497e5cc2ee88a77ebff9edd4932917a60c5093e3 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860182300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sat Nov 29 07:18:18 EST 2025 Tue Nov 18 21:04:27 EST 2025 Fri Feb 23 02:35:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reactive power optimization Wind power Improved multi-objective particle swarm optimization algorithm (IMOPSOA) Distribution network system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-d09ea4a348cc99fdb3d40aa66497e5cc2ee88a77ebff9edd4932917a60c5093e3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_epsr_2022_108731 crossref_primary_10_1016_j_epsr_2022_108731 elsevier_sciencedirect_doi_10_1016_j_epsr_2022_108731 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yuting, Tianle, Hongji (bib0005) 2018; 37 Yingjie, Yan, Yanghong (bib0012) Jan. 2017; 29 Kuo, Gosumolo, Zulvia (bib0017) 2018; 31 Shouxian (bib0018) 2014 Zhigang, Huan, Jie (bib0008) 2013; 41 Jiming, Lizhi, Mingyu (bib0007) 2016; 44 Wenda, Xue, Xing (bib0011) Jul. 2015; 39 Jingwei, Buxiang, Zhanggang (bib0006) Apr. 2018; 34 Chuang, Minyou, Ang (bib0019) 2013; 41 Jin Shangting, Wu Jiekang, Qin Weimei, et al., “Multi-objective reactive power collaborative optimization of distribution network considering wind power consumption”, Guangdong Electr. Power, vol. 32, no.1, pp.52–59, Jan. 2019,doi:10.3969/j.issn.1007-290X.2019.001.007. Yibin, Yubo, Qi (bib0004) 2017; 45 Yusheng, Xing, Feng (bib0002) Oct. 2014; 34 Shoaib, Siddiqui, Rehman (bib0015) 2017; 36 Wang, Li, Cao (bib0014) 2017; 61 Li, Wanliang, Xinli (bib0016) 2017; 54 Dilan, Syed (bib0003) 2014; 2 Bonab, Abbas (bib0001) Mar. 2017; 11 Xing, Tianyu, Xiuchen (bib0009) Apr. 2020; 57 Fuqing, KUANG, hao (bib0010) Jan. 2021 Shoaib (10.1016/j.epsr.2022.108731_bib0015) 2017; 36 Chuang (10.1016/j.epsr.2022.108731_bib0019) 2013; 41 Li (10.1016/j.epsr.2022.108731_bib0016) 2017; 54 Yuting (10.1016/j.epsr.2022.108731_bib0005) 2018; 37 Jingwei (10.1016/j.epsr.2022.108731_bib0006) 2018; 34 Dilan (10.1016/j.epsr.2022.108731_bib0003) 2014; 2 Shouxian (10.1016/j.epsr.2022.108731_bib0018) 2014 Fuqing (10.1016/j.epsr.2022.108731_bib0010) 2021 Kuo (10.1016/j.epsr.2022.108731_bib0017) 2018; 31 Yibin (10.1016/j.epsr.2022.108731_bib0004) 2017; 45 Wang (10.1016/j.epsr.2022.108731_bib0014) 2017; 61 Zhigang (10.1016/j.epsr.2022.108731_bib0008) 2013; 41 10.1016/j.epsr.2022.108731_bib0013 Yusheng (10.1016/j.epsr.2022.108731_bib0002) 2014; 34 Yingjie (10.1016/j.epsr.2022.108731_bib0012) 2017; 29 Xing (10.1016/j.epsr.2022.108731_bib0009) 2020; 57 Wenda (10.1016/j.epsr.2022.108731_bib0011) 2015; 39 Bonab (10.1016/j.epsr.2022.108731_bib0001) 2017; 11 Jiming (10.1016/j.epsr.2022.108731_bib0007) 2016; 44 |
| References_xml | – volume: 2 start-page: 134 year: 2014 end-page: 142 ident: bib0003 article-title: Steady-state security in distribution networks with large wind farms publication-title: J. Modern Power Syst. Clean Energy – volume: 31 year: 2018 ident: bib0017 article-title: Multi-objective particle swarm optimization algorithm using adaptive archive grid for numerical association rule mining publication-title: Neural Computing and Applications – volume: 37 start-page: 69 year: 2018 end-page: 74 ident: bib0005 article-title: Reactive power optimization of distribution network with DG based on improved particle swarm optimization publication-title: Electr. Power Eng. Technol. – volume: 34 start-page: 198 year: Apr. 2018 end-page: 202 ident: bib0006 article-title: Reactive power optimization of distribution network with wind farms based on SIBCC algorithm publication-title: Hydropower Energy Sci. – volume: 41 start-page: 197 year: 2013 end-page: 203 ident: bib0008 article-title: Multi-objective reactive power optimization considering wind farm probability model publication-title: Power Syst. Protection and Control – volume: 57 start-page: 108 year: Apr. 2020 end-page: 113 ident: bib0009 article-title: Reactive power optimization of offshore wind farms based on improved genetic algorithm publication-title: Electr. Measurement & Instrumentation – volume: 36 year: 2017 ident: bib0015 article-title: Speed distribution analysis based on maximum entropy principle and Weibull distribution function publication-title: Environ. Prog. Sustain. Energy – volume: 29 start-page: 18 year: Jan. 2017 end-page: 23 ident: bib0012 article-title: Reactive power optimization of distribution network with distributed generation based on Pareto optimal solution publication-title: J. Electr. Power Syst. Automation – volume: 45 start-page: 61 year: 2017 end-page: 68 ident: bib0004 article-title: Scenario probabilistic load flow calculation and reactive power optimization considering wind farms correlation publication-title: Power Syst. Protection and Contro – volume: 54 start-page: 1012 year: 2017 end-page: 1023 ident: bib0016 article-title: Multi-objective particle swarm optimization algorithm based on grid sorting publication-title: Comput. Res. Dev. – volume: 61 start-page: 1 year: 2017 end-page: 8 ident: bib0014 article-title: The optimization of energy storage capacity for distribution networks with the consideration of probability correlation between wind farms based on PSO algorithm publication-title: IOP Conference Series. Earth and Environ. Sci. – volume: 44 start-page: 129 year: 2016 end-page: 134 ident: bib0007 article-title: Reactive power optimization for distribution network with multi-scenario wind power generator publication-title: Power Syst. Protection and Control – volume: 11 start-page: 815 year: Mar. 2017 end-page: 829 ident: bib0001 article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation publication-title: IET Generation, Trans. Distribution – year: Jan. 2021 ident: bib0010 article-title: Reactive power optimization based on cauchy mutation and improved adaptive particle swarm optimization publication-title: J. Electr. Eng. – start-page: 245 year: 2014 end-page: 247 ident: bib0018 article-title: Analysis of Modern Power Distribution System – reference: Jin Shangting, Wu Jiekang, Qin Weimei, et al., “Multi-objective reactive power collaborative optimization of distribution network considering wind power consumption”, Guangdong Electr. Power, vol. 32, no.1, pp.52–59, Jan. 2019,doi:10.3969/j.issn.1007-290X.2019.001.007. – volume: 41 start-page: 100 year: 2013 end-page: 105 ident: bib0019 article-title: Reactive power optimization strategy in distribution network with wind farm publication-title: Power Syst. Protection and Control – volume: 39 start-page: 1860 year: Jul. 2015 end-page: 1865 ident: bib0011 article-title: Multi-objective optimal reactive power flow of distribution network with multiple wind turbines publication-title: Power Syst. Technol. – volume: 34 start-page: 5029 year: Oct. 2014 end-page: 5040 ident: bib0002 article-title: A Review on impacts of wind power uncertainties on power systems publication-title: Proceed. CSEE – volume: 31 year: 2018 ident: 10.1016/j.epsr.2022.108731_bib0017 article-title: Multi-objective particle swarm optimization algorithm using adaptive archive grid for numerical association rule mining – volume: 34 start-page: 5029 issue: 294 year: 2014 ident: 10.1016/j.epsr.2022.108731_bib0002 article-title: A Review on impacts of wind power uncertainties on power systems publication-title: Proceed. CSEE – volume: 45 start-page: 61 issue: 2 year: 2017 ident: 10.1016/j.epsr.2022.108731_bib0004 article-title: Scenario probabilistic load flow calculation and reactive power optimization considering wind farms correlation publication-title: Power Syst. Protection and Contro – start-page: 245 year: 2014 ident: 10.1016/j.epsr.2022.108731_bib0018 – volume: 61 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.epsr.2022.108731_bib0014 article-title: The optimization of energy storage capacity for distribution networks with the consideration of probability correlation between wind farms based on PSO algorithm publication-title: IOP Conference Series. Earth and Environ. Sci. – volume: 34 start-page: 198 issue: 4 year: 2018 ident: 10.1016/j.epsr.2022.108731_bib0006 article-title: Reactive power optimization of distribution network with wind farms based on SIBCC algorithm publication-title: Hydropower Energy Sci. – year: 2021 ident: 10.1016/j.epsr.2022.108731_bib0010 article-title: Reactive power optimization based on cauchy mutation and improved adaptive particle swarm optimization publication-title: J. Electr. Eng. – ident: 10.1016/j.epsr.2022.108731_bib0013 – volume: 44 start-page: 129 issue: 9 year: 2016 ident: 10.1016/j.epsr.2022.108731_bib0007 article-title: Reactive power optimization for distribution network with multi-scenario wind power generator publication-title: Power Syst. Protection and Control – volume: 57 start-page: 108 issue: 4 year: 2020 ident: 10.1016/j.epsr.2022.108731_bib0009 article-title: Reactive power optimization of offshore wind farms based on improved genetic algorithm publication-title: Electr. Measurement & Instrumentation – volume: 11 start-page: 815 issue: 4 year: 2017 ident: 10.1016/j.epsr.2022.108731_bib0001 article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation publication-title: IET Generation, Trans. Distribution doi: 10.1049/iet-gtd.2016.1545 – volume: 37 start-page: 69 issue: 6 year: 2018 ident: 10.1016/j.epsr.2022.108731_bib0005 article-title: Reactive power optimization of distribution network with DG based on improved particle swarm optimization publication-title: Electr. Power Eng. Technol. – volume: 29 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.epsr.2022.108731_bib0012 article-title: Reactive power optimization of distribution network with distributed generation based on Pareto optimal solution publication-title: J. Electr. Power Syst. Automation – volume: 36 issue: 5 year: 2017 ident: 10.1016/j.epsr.2022.108731_bib0015 article-title: Speed distribution analysis based on maximum entropy principle and Weibull distribution function publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.12589 – volume: 41 start-page: 197 issue: 1 year: 2013 ident: 10.1016/j.epsr.2022.108731_bib0008 article-title: Multi-objective reactive power optimization considering wind farm probability model publication-title: Power Syst. Protection and Control – volume: 39 start-page: 1860 issue: 7 year: 2015 ident: 10.1016/j.epsr.2022.108731_bib0011 article-title: Multi-objective optimal reactive power flow of distribution network with multiple wind turbines publication-title: Power Syst. Technol. – volume: 2 start-page: 134 issue: 2 year: 2014 ident: 10.1016/j.epsr.2022.108731_bib0003 article-title: Steady-state security in distribution networks with large wind farms publication-title: J. Modern Power Syst. Clean Energy doi: 10.1007/s40565-014-0052-4 – volume: 54 start-page: 1012 issue: 5 year: 2017 ident: 10.1016/j.epsr.2022.108731_bib0016 article-title: Multi-objective particle swarm optimization algorithm based on grid sorting publication-title: Comput. Res. Dev. – volume: 41 start-page: 100 issue: 9 year: 2013 ident: 10.1016/j.epsr.2022.108731_bib0019 article-title: Reactive power optimization strategy in distribution network with wind farm publication-title: Power Syst. Protection and Control |
| SSID | ssj0006975 |
| Score | 2.4989464 |
| Snippet | •In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108731 |
| SubjectTerms | Distribution network system Improved multi-objective particle swarm optimization algorithm (IMOPSOA) Reactive power optimization Wind power |
| Title | Reactive power optimization for distribution network system with wind power based on improved multi-objective particle swarm optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.epsr.2022.108731 |
| Volume | 213 |
| WOSCitedRecordID | wos000860182300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3cP2MHZlXbehh70Zgy07lvVYSscuUMbasbwZWZJLQuJkTtz2f-xH7G_uSDp2nXSUbbAXY4TkY_J9OUc6PhdC3hpQizpJqtCkgoep4qAHhU7CKtORiliZ5qxyzSb46Wk-mYjPo9HPLhfmcs7rOr--Fqv_CjWMAdg2dfYv4O4fCgNwD6DDFWCH6x8B_8VIp8OClW2AFixBJyww2dLFFGpbKhe7XAW1jwLHgs7eK3s1tbUD3GJr47T9njB1vge4dwGI4bKcGRSCbxCsr2Sz2JYm5xfLBp642HL_u747U4USvGD77WLgVnPhvPVF1yq7lWheLc_a79iF5aztNVbbtFOMHbiZ-cmv_tYNoWuDsZ0wkds5Nz7PC869nAssoO3Vds4TIAE6M1GvM5_kestGeHfFDMz92haEZczGWXK0Rdu1t8-sMCuLWZeusEnl-4yPBajP_aMPJ5OPvdHPhKvp3L8c5mf5UMJdSb_fAw32NeePyEM8kNAjD-NjMjL1E_JgUKbyKfnRUYo6zOgQZAqUokNKUaQU9chSSylqKYWLHaUozOsoRXcoRTtKUUepbWk9pZ6Rr-9Ozo_fh9jMI1RJFG1CHQkjU5mkuVJCVLpMdBpJmWWgI8xYKWZMnkvOTVlVwmidwsFCxFxmkYI9bWKS52SvXtbmBaFwSGcp2A0Z6xTOG-OySmOthTSxTpQp9QGJu5-3UFjp3jZcmRddSOOssJAUFpLCQ3JAgn7Nytd5uXP2uEOtwJ2q34EWQLI71r38x3WH5P7N_-MV2ds0rXlN7qnLzXTdvEEu_gLMPsPl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+power+optimization+for+distribution+network+system+with+wind+power+based+on+improved+multi-objective+particle+swarm+optimization+algorithm&rft.jtitle=Electric+power+systems+research&rft.au=Honghai%2C+Kuang&rft.au=Fuqing%2C+Su&rft.au=Yurui%2C+Chang&rft.au=Kai%2C+Wang&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=213&rft_id=info:doi/10.1016%2Fj.epsr.2022.108731&rft.externalDocID=S0378779622007908 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |