Reactive power optimization for distribution network system with wind power based on improved multi-objective particle swarm optimization algorithm

•In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the density information, the global optimal particles are selected by roulette mechanism and the scale of external repository is maintained, which effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research Jg. 213; S. 108731
Hauptverfasser: Honghai, Kuang, Fuqing, Su, Yurui, Chang, Kai, Wang, Zhiyi, He
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2022
Schlagworte:
ISSN:0378-7796, 1873-2046
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the density information, the global optimal particles are selected by roulette mechanism and the scale of external repository is maintained, which effectively ensures the uniformity and diversity of Pareto frontier distribution.•The proposed IMOPSOA has faster convergence speed and shorter average computing time than NSGA-II algorithm, can get Pareto frontier with better distribution and better results, which makes the voltage stability of the distribution network system with wind power higher. Aiming at the uncertainty of the grid-connected output of wind turbines, a scenario analysis method based on probability occurrence is used to transform the uncertainty model into multi scenario problems with different occurrence probabilities, a reactive power optimization model is established with the goal of minimizing the active power network loss and voltage deviation. Aiming at the poor diversity of Pareto frontiers obtained by traditional methods, an improved multi-objective particle swarm optimization algorithm is proposed. The algorithm uses adaptive grids to obtain the density of particles in external archives, selects the global optimal particle and maintains the scale of the external repository according to the density information using a roulette mechanism, effectively ensuring the uniformity and diversity of the Pareto frontier distribution. The algorithm is used to calculate reactive power optimization of the IEEE 33-bus system with wind power, and compared with the existing NSGA-Ⅱ algorithm. The results show that the Pareto frontier obtained by the proposed algorithm is better, the voltage stability and active power loss reduction rate of the distribution network system with wind power is higher.
AbstractList •In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the density information, the global optimal particles are selected by roulette mechanism and the scale of external repository is maintained, which effectively ensures the uniformity and diversity of Pareto frontier distribution.•The proposed IMOPSOA has faster convergence speed and shorter average computing time than NSGA-II algorithm, can get Pareto frontier with better distribution and better results, which makes the voltage stability of the distribution network system with wind power higher. Aiming at the uncertainty of the grid-connected output of wind turbines, a scenario analysis method based on probability occurrence is used to transform the uncertainty model into multi scenario problems with different occurrence probabilities, a reactive power optimization model is established with the goal of minimizing the active power network loss and voltage deviation. Aiming at the poor diversity of Pareto frontiers obtained by traditional methods, an improved multi-objective particle swarm optimization algorithm is proposed. The algorithm uses adaptive grids to obtain the density of particles in external archives, selects the global optimal particle and maintains the scale of the external repository according to the density information using a roulette mechanism, effectively ensuring the uniformity and diversity of the Pareto frontier distribution. The algorithm is used to calculate reactive power optimization of the IEEE 33-bus system with wind power, and compared with the existing NSGA-Ⅱ algorithm. The results show that the Pareto frontier obtained by the proposed algorithm is better, the voltage stability and active power loss reduction rate of the distribution network system with wind power is higher.
ArticleNumber 108731
Author Honghai, Kuang
Zhiyi, He
Yurui, Chang
Kai, Wang
Fuqing, Su
Author_xml – sequence: 1
  givenname: Kuang
  surname: Honghai
  fullname: Honghai, Kuang
  email: khhzyz@163.com
– sequence: 2
  givenname: Su
  surname: Fuqing
  fullname: Fuqing, Su
– sequence: 3
  givenname: Chang
  surname: Yurui
  fullname: Yurui, Chang
– sequence: 4
  givenname: Wang
  surname: Kai
  fullname: Kai, Wang
– sequence: 5
  givenname: He
  surname: Zhiyi
  fullname: Zhiyi, He
BookMark eNp9kMlOwzAQQC1UJNrCD3DKD6Q4S-NY4oIqNqkSEoKz5dgTmJLEke02Kr_BD-MuFzj04rFG82Z5EzLqTAeEXCd0ltCkuFnNoHd2ltI0DYmSZckZGSchxinNixEZ04yVMWO8uCAT51aU0oKz-Zj8vIJUHjcQ9WYAG5neY4vf0qPpotrYSKPzFqv1PtGBH4z9itzWeWijAf1neDp9hCvpQEehDtvemk34t-vGY2yqFRyHSOtRNRC5Qdr27zTZfBgbOraX5LyWjYOrY5yS94f7t8VTvHx5fF7cLWOVUepjTTnIXGZ5qRTnta4ynVMpiyLnDOZKpQBlKRmDqq45aJ3zLOUJkwVVc8ozyKakPPRV1jhnoRYK_X4XbyU2IqFiJ1esxE6u2MkVB7kBTf-hvcVW2u1p6PYAQThqg2CFUwidAo02-BHa4Cn8F7l5nCc
CitedBy_id crossref_primary_10_3390_en17112774
crossref_primary_10_3390_en17051132
crossref_primary_10_1049_rpg2_12994
crossref_primary_10_1016_j_epsr_2022_109074
crossref_primary_10_1016_j_epsr_2024_110363
crossref_primary_10_3390_en15249655
crossref_primary_10_1016_j_epsr_2024_110564
crossref_primary_10_1016_j_asoc_2023_111087
crossref_primary_10_1109_ACCESS_2025_3573197
crossref_primary_10_1007_s40313_025_01166_5
crossref_primary_10_1155_2023_6678942
crossref_primary_10_3389_fenrg_2024_1431874
crossref_primary_10_3389_fenrg_2023_1213154
crossref_primary_10_1109_ACCESS_2024_3426614
crossref_primary_10_3390_pr11102824
crossref_primary_10_3390_en18092349
crossref_primary_10_1002_ese3_1902
crossref_primary_10_3390_en17020516
crossref_primary_10_3390_en15218225
crossref_primary_10_3390_en18123209
Cites_doi 10.1049/iet-gtd.2016.1545
10.1002/ep.12589
10.1007/s40565-014-0052-4
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2022.108731
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2022_108731
S0378779622007908
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-d09ea4a348cc99fdb3d40aa66497e5cc2ee88a77ebff9edd4932917a60c5093e3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860182300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sat Nov 29 07:18:18 EST 2025
Tue Nov 18 21:04:27 EST 2025
Fri Feb 23 02:35:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reactive power optimization
Wind power
Improved multi-objective particle swarm optimization algorithm (IMOPSOA)
Distribution network system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-d09ea4a348cc99fdb3d40aa66497e5cc2ee88a77ebff9edd4932917a60c5093e3
ParticipantIDs crossref_citationtrail_10_1016_j_epsr_2022_108731
crossref_primary_10_1016_j_epsr_2022_108731
elsevier_sciencedirect_doi_10_1016_j_epsr_2022_108731
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yuting, Tianle, Hongji (bib0005) 2018; 37
Yingjie, Yan, Yanghong (bib0012) Jan. 2017; 29
Kuo, Gosumolo, Zulvia (bib0017) 2018; 31
Shouxian (bib0018) 2014
Zhigang, Huan, Jie (bib0008) 2013; 41
Jiming, Lizhi, Mingyu (bib0007) 2016; 44
Wenda, Xue, Xing (bib0011) Jul. 2015; 39
Jingwei, Buxiang, Zhanggang (bib0006) Apr. 2018; 34
Chuang, Minyou, Ang (bib0019) 2013; 41
Jin Shangting, Wu Jiekang, Qin Weimei, et al., “Multi-objective reactive power collaborative optimization of distribution network considering wind power consumption”, Guangdong Electr. Power, vol. 32, no.1, pp.52–59, Jan. 2019,doi:10.3969/j.issn.1007-290X.2019.001.007.
Yibin, Yubo, Qi (bib0004) 2017; 45
Yusheng, Xing, Feng (bib0002) Oct. 2014; 34
Shoaib, Siddiqui, Rehman (bib0015) 2017; 36
Wang, Li, Cao (bib0014) 2017; 61
Li, Wanliang, Xinli (bib0016) 2017; 54
Dilan, Syed (bib0003) 2014; 2
Bonab, Abbas (bib0001) Mar. 2017; 11
Xing, Tianyu, Xiuchen (bib0009) Apr. 2020; 57
Fuqing, KUANG, hao (bib0010) Jan. 2021
Shoaib (10.1016/j.epsr.2022.108731_bib0015) 2017; 36
Chuang (10.1016/j.epsr.2022.108731_bib0019) 2013; 41
Li (10.1016/j.epsr.2022.108731_bib0016) 2017; 54
Yuting (10.1016/j.epsr.2022.108731_bib0005) 2018; 37
Jingwei (10.1016/j.epsr.2022.108731_bib0006) 2018; 34
Dilan (10.1016/j.epsr.2022.108731_bib0003) 2014; 2
Shouxian (10.1016/j.epsr.2022.108731_bib0018) 2014
Fuqing (10.1016/j.epsr.2022.108731_bib0010) 2021
Kuo (10.1016/j.epsr.2022.108731_bib0017) 2018; 31
Yibin (10.1016/j.epsr.2022.108731_bib0004) 2017; 45
Wang (10.1016/j.epsr.2022.108731_bib0014) 2017; 61
Zhigang (10.1016/j.epsr.2022.108731_bib0008) 2013; 41
10.1016/j.epsr.2022.108731_bib0013
Yusheng (10.1016/j.epsr.2022.108731_bib0002) 2014; 34
Yingjie (10.1016/j.epsr.2022.108731_bib0012) 2017; 29
Xing (10.1016/j.epsr.2022.108731_bib0009) 2020; 57
Wenda (10.1016/j.epsr.2022.108731_bib0011) 2015; 39
Bonab (10.1016/j.epsr.2022.108731_bib0001) 2017; 11
Jiming (10.1016/j.epsr.2022.108731_bib0007) 2016; 44
References_xml – volume: 2
  start-page: 134
  year: 2014
  end-page: 142
  ident: bib0003
  article-title: Steady-state security in distribution networks with large wind farms
  publication-title: J. Modern Power Syst. Clean Energy
– volume: 31
  year: 2018
  ident: bib0017
  article-title: Multi-objective particle swarm optimization algorithm using adaptive archive grid for numerical association rule mining
  publication-title: Neural Computing and Applications
– volume: 37
  start-page: 69
  year: 2018
  end-page: 74
  ident: bib0005
  article-title: Reactive power optimization of distribution network with DG based on improved particle swarm optimization
  publication-title: Electr. Power Eng. Technol.
– volume: 34
  start-page: 198
  year: Apr. 2018
  end-page: 202
  ident: bib0006
  article-title: Reactive power optimization of distribution network with wind farms based on SIBCC algorithm
  publication-title: Hydropower Energy Sci.
– volume: 41
  start-page: 197
  year: 2013
  end-page: 203
  ident: bib0008
  article-title: Multi-objective reactive power optimization considering wind farm probability model
  publication-title: Power Syst. Protection and Control
– volume: 57
  start-page: 108
  year: Apr. 2020
  end-page: 113
  ident: bib0009
  article-title: Reactive power optimization of offshore wind farms based on improved genetic algorithm
  publication-title: Electr. Measurement & Instrumentation
– volume: 36
  year: 2017
  ident: bib0015
  article-title: Speed distribution analysis based on maximum entropy principle and Weibull distribution function
  publication-title: Environ. Prog. Sustain. Energy
– volume: 29
  start-page: 18
  year: Jan. 2017
  end-page: 23
  ident: bib0012
  article-title: Reactive power optimization of distribution network with distributed generation based on Pareto optimal solution
  publication-title: J. Electr. Power Syst. Automation
– volume: 45
  start-page: 61
  year: 2017
  end-page: 68
  ident: bib0004
  article-title: Scenario probabilistic load flow calculation and reactive power optimization considering wind farms correlation
  publication-title: Power Syst. Protection and Contro
– volume: 54
  start-page: 1012
  year: 2017
  end-page: 1023
  ident: bib0016
  article-title: Multi-objective particle swarm optimization algorithm based on grid sorting
  publication-title: Comput. Res. Dev.
– volume: 61
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib0014
  article-title: The optimization of energy storage capacity for distribution networks with the consideration of probability correlation between wind farms based on PSO algorithm
  publication-title: IOP Conference Series. Earth and Environ. Sci.
– volume: 44
  start-page: 129
  year: 2016
  end-page: 134
  ident: bib0007
  article-title: Reactive power optimization for distribution network with multi-scenario wind power generator
  publication-title: Power Syst. Protection and Control
– volume: 11
  start-page: 815
  year: Mar. 2017
  end-page: 829
  ident: bib0001
  article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation
  publication-title: IET Generation, Trans. Distribution
– year: Jan. 2021
  ident: bib0010
  article-title: Reactive power optimization based on cauchy mutation and improved adaptive particle swarm optimization
  publication-title: J. Electr. Eng.
– start-page: 245
  year: 2014
  end-page: 247
  ident: bib0018
  article-title: Analysis of Modern Power Distribution System
– reference: Jin Shangting, Wu Jiekang, Qin Weimei, et al., “Multi-objective reactive power collaborative optimization of distribution network considering wind power consumption”, Guangdong Electr. Power, vol. 32, no.1, pp.52–59, Jan. 2019,doi:10.3969/j.issn.1007-290X.2019.001.007.
– volume: 41
  start-page: 100
  year: 2013
  end-page: 105
  ident: bib0019
  article-title: Reactive power optimization strategy in distribution network with wind farm
  publication-title: Power Syst. Protection and Control
– volume: 39
  start-page: 1860
  year: Jul. 2015
  end-page: 1865
  ident: bib0011
  article-title: Multi-objective optimal reactive power flow of distribution network with multiple wind turbines
  publication-title: Power Syst. Technol.
– volume: 34
  start-page: 5029
  year: Oct. 2014
  end-page: 5040
  ident: bib0002
  article-title: A Review on impacts of wind power uncertainties on power systems
  publication-title: Proceed. CSEE
– volume: 31
  year: 2018
  ident: 10.1016/j.epsr.2022.108731_bib0017
  article-title: Multi-objective particle swarm optimization algorithm using adaptive archive grid for numerical association rule mining
– volume: 34
  start-page: 5029
  issue: 294
  year: 2014
  ident: 10.1016/j.epsr.2022.108731_bib0002
  article-title: A Review on impacts of wind power uncertainties on power systems
  publication-title: Proceed. CSEE
– volume: 45
  start-page: 61
  issue: 2
  year: 2017
  ident: 10.1016/j.epsr.2022.108731_bib0004
  article-title: Scenario probabilistic load flow calculation and reactive power optimization considering wind farms correlation
  publication-title: Power Syst. Protection and Contro
– start-page: 245
  year: 2014
  ident: 10.1016/j.epsr.2022.108731_bib0018
– volume: 61
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.epsr.2022.108731_bib0014
  article-title: The optimization of energy storage capacity for distribution networks with the consideration of probability correlation between wind farms based on PSO algorithm
  publication-title: IOP Conference Series. Earth and Environ. Sci.
– volume: 34
  start-page: 198
  issue: 4
  year: 2018
  ident: 10.1016/j.epsr.2022.108731_bib0006
  article-title: Reactive power optimization of distribution network with wind farms based on SIBCC algorithm
  publication-title: Hydropower Energy Sci.
– year: 2021
  ident: 10.1016/j.epsr.2022.108731_bib0010
  article-title: Reactive power optimization based on cauchy mutation and improved adaptive particle swarm optimization
  publication-title: J. Electr. Eng.
– ident: 10.1016/j.epsr.2022.108731_bib0013
– volume: 44
  start-page: 129
  issue: 9
  year: 2016
  ident: 10.1016/j.epsr.2022.108731_bib0007
  article-title: Reactive power optimization for distribution network with multi-scenario wind power generator
  publication-title: Power Syst. Protection and Control
– volume: 57
  start-page: 108
  issue: 4
  year: 2020
  ident: 10.1016/j.epsr.2022.108731_bib0009
  article-title: Reactive power optimization of offshore wind farms based on improved genetic algorithm
  publication-title: Electr. Measurement & Instrumentation
– volume: 11
  start-page: 815
  issue: 4
  year: 2017
  ident: 10.1016/j.epsr.2022.108731_bib0001
  article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation
  publication-title: IET Generation, Trans. Distribution
  doi: 10.1049/iet-gtd.2016.1545
– volume: 37
  start-page: 69
  issue: 6
  year: 2018
  ident: 10.1016/j.epsr.2022.108731_bib0005
  article-title: Reactive power optimization of distribution network with DG based on improved particle swarm optimization
  publication-title: Electr. Power Eng. Technol.
– volume: 29
  start-page: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.epsr.2022.108731_bib0012
  article-title: Reactive power optimization of distribution network with distributed generation based on Pareto optimal solution
  publication-title: J. Electr. Power Syst. Automation
– volume: 36
  issue: 5
  year: 2017
  ident: 10.1016/j.epsr.2022.108731_bib0015
  article-title: Speed distribution analysis based on maximum entropy principle and Weibull distribution function
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.12589
– volume: 41
  start-page: 197
  issue: 1
  year: 2013
  ident: 10.1016/j.epsr.2022.108731_bib0008
  article-title: Multi-objective reactive power optimization considering wind farm probability model
  publication-title: Power Syst. Protection and Control
– volume: 39
  start-page: 1860
  issue: 7
  year: 2015
  ident: 10.1016/j.epsr.2022.108731_bib0011
  article-title: Multi-objective optimal reactive power flow of distribution network with multiple wind turbines
  publication-title: Power Syst. Technol.
– volume: 2
  start-page: 134
  issue: 2
  year: 2014
  ident: 10.1016/j.epsr.2022.108731_bib0003
  article-title: Steady-state security in distribution networks with large wind farms
  publication-title: J. Modern Power Syst. Clean Energy
  doi: 10.1007/s40565-014-0052-4
– volume: 54
  start-page: 1012
  issue: 5
  year: 2017
  ident: 10.1016/j.epsr.2022.108731_bib0016
  article-title: Multi-objective particle swarm optimization algorithm based on grid sorting
  publication-title: Comput. Res. Dev.
– volume: 41
  start-page: 100
  issue: 9
  year: 2013
  ident: 10.1016/j.epsr.2022.108731_bib0019
  article-title: Reactive power optimization strategy in distribution network with wind farm
  publication-title: Power Syst. Protection and Control
SSID ssj0006975
Score 2.4989464
Snippet •In the multi-objective particle swarm optimization algorithm, the adaptive mesh is introduced to reflect the density of particles, and according to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108731
SubjectTerms Distribution network system
Improved multi-objective particle swarm optimization algorithm (IMOPSOA)
Reactive power optimization
Wind power
Title Reactive power optimization for distribution network system with wind power based on improved multi-objective particle swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.epsr.2022.108731
Volume 213
WOSCitedRecordID wos000860182300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3cP2MHZlXbehh70Zgy07lvVYSscuUMbasbwZWZJLQuJkTtz2f-xH7G_uSDp2nXSUbbAXY4TkY_J9OUc6PhdC3hpQizpJqtCkgoep4qAHhU7CKtORiliZ5qxyzSb46Wk-mYjPo9HPLhfmcs7rOr--Fqv_CjWMAdg2dfYv4O4fCgNwD6DDFWCH6x8B_8VIp8OClW2AFixBJyww2dLFFGpbKhe7XAW1jwLHgs7eK3s1tbUD3GJr47T9njB1vge4dwGI4bKcGRSCbxCsr2Sz2JYm5xfLBp642HL_u747U4USvGD77WLgVnPhvPVF1yq7lWheLc_a79iF5aztNVbbtFOMHbiZ-cmv_tYNoWuDsZ0wkds5Nz7PC869nAssoO3Vds4TIAE6M1GvM5_kestGeHfFDMz92haEZczGWXK0Rdu1t8-sMCuLWZeusEnl-4yPBajP_aMPJ5OPvdHPhKvp3L8c5mf5UMJdSb_fAw32NeePyEM8kNAjD-NjMjL1E_JgUKbyKfnRUYo6zOgQZAqUokNKUaQU9chSSylqKYWLHaUozOsoRXcoRTtKUUepbWk9pZ6Rr-9Ozo_fh9jMI1RJFG1CHQkjU5mkuVJCVLpMdBpJmWWgI8xYKWZMnkvOTVlVwmidwsFCxFxmkYI9bWKS52SvXtbmBaFwSGcp2A0Z6xTOG-OySmOthTSxTpQp9QGJu5-3UFjp3jZcmRddSOOssJAUFpLCQ3JAgn7Nytd5uXP2uEOtwJ2q34EWQLI71r38x3WH5P7N_-MV2ds0rXlN7qnLzXTdvEEu_gLMPsPl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+power+optimization+for+distribution+network+system+with+wind+power+based+on+improved+multi-objective+particle+swarm+optimization+algorithm&rft.jtitle=Electric+power+systems+research&rft.au=Honghai%2C+Kuang&rft.au=Fuqing%2C+Su&rft.au=Yurui%2C+Chang&rft.au=Kai%2C+Wang&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=213&rft_id=info:doi/10.1016%2Fj.epsr.2022.108731&rft.externalDocID=S0378779622007908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon