Faster exact algorithms for some terminal set problems

Many problems on graphs can be expressed in the following language: given a graph G=(V,E) and a terminal set T⊆V, find a minimum size set S⊆V which intersects all “structures” (such as cycles or paths) passing through the vertices in T. We refer to this class of problems as terminal set problems. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computer and system sciences Ročník 88; s. 195 - 207
Hlavní autoři: Chitnis, Rajesh, Fomin, Fedor V., Lokshtanov, Daniel, Misra, Pranabendu, Ramanujan, M.S., Saurabh, Saket
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2017
Témata:
ISSN:0022-0000, 1090-2724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many problems on graphs can be expressed in the following language: given a graph G=(V,E) and a terminal set T⊆V, find a minimum size set S⊆V which intersects all “structures” (such as cycles or paths) passing through the vertices in T. We refer to this class of problems as terminal set problems. In this paper, we introduce a general method to obtain faster exact exponential time algorithms for several terminal set problems. In the process, we break the O⁎(2n) barrier for the classic Node Multiway Cut, Directed Unrestricted Node Multiway Cut and Directed Subset Feedback Vertex Set problems. •A general methodology to obtain faster exact exponential time algorithms well-studied terminal set problems is presented.•It combines polynomial time, fixed parameter tractable and exact exponential time algorithms for the non-terminal versions.•We break the O⁎(2n) barrier for the classic Node Multiway Cut and Directed Subset Feedback Vertex Set problems.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2017.04.003