Inter-subject cognitive workload estimation based on a cascade ensemble of multilayer autoencoders
•The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of multilayer autoencoders is proposed. Machine learning approaches can build a computational model to predict cognitive workload levels by using...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 211; S. 118694 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.01.2023
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of multilayer autoencoders is proposed.
Machine learning approaches can build a computational model to predict cognitive workload levels by using electroencephalogram (EEG) feature inputs at the same time instant. However, when the EEG signals are recorded on different people, the accuracy of such a model could be impaired due to its incapability of fitting varied statistical distributions across different individuals. To this end, we propose an individual-independent workload estimator, a cascade ensemble of multilayer autoencoders to tackle the individual difference within the EEG features. It could assess the workload levels of an unseen subject by adapting the EEG data recorded from non-overlapped existing subjects. We first construct a deep stacked denoising autoencoder to abstract EEG features from a specific individual. Its shallow weights are optimized with individual-specific geometrical information of the features. Then, to find generalizable feature properties, we introduce Q-statistics to measure the independence between base learners. Finally, a regularized extreme learning machine is used as a cascade meta-classifier to fuse and filter high-level EEG abstractions and determine workload levels. We employ databases from two different experiments to validate our approach. The proposed framework can lead to acceptable accuracy and computational complexity compared to several existing workload classifiers. |
|---|---|
| AbstractList | •The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of multilayer autoencoders is proposed.
Machine learning approaches can build a computational model to predict cognitive workload levels by using electroencephalogram (EEG) feature inputs at the same time instant. However, when the EEG signals are recorded on different people, the accuracy of such a model could be impaired due to its incapability of fitting varied statistical distributions across different individuals. To this end, we propose an individual-independent workload estimator, a cascade ensemble of multilayer autoencoders to tackle the individual difference within the EEG features. It could assess the workload levels of an unseen subject by adapting the EEG data recorded from non-overlapped existing subjects. We first construct a deep stacked denoising autoencoder to abstract EEG features from a specific individual. Its shallow weights are optimized with individual-specific geometrical information of the features. Then, to find generalizable feature properties, we introduce Q-statistics to measure the independence between base learners. Finally, a regularized extreme learning machine is used as a cascade meta-classifier to fuse and filter high-level EEG abstractions and determine workload levels. We employ databases from two different experiments to validate our approach. The proposed framework can lead to acceptable accuracy and computational complexity compared to several existing workload classifiers. |
| ArticleNumber | 118694 |
| Author | Zhang, Jianhua Zheng, Zhanpeng Yin, Zhong Wang, Yongxiong |
| Author_xml | – sequence: 1 givenname: Zhanpeng surname: Zheng fullname: Zheng, Zhanpeng email: 182560473@st.usst.edu.cn organization: Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, PR China – sequence: 2 givenname: Zhong surname: Yin fullname: Yin, Zhong email: yinzhong@usst.edu.cn organization: Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, PR China – sequence: 3 givenname: Yongxiong surname: Wang fullname: Wang, Yongxiong email: wyxiong@usst.edu.cn organization: Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, PR China – sequence: 4 givenname: Jianhua surname: Zhang fullname: Zhang, Jianhua email: jianhuaz@oslomet.no organization: OsloMet Artificial Intelligence Lab, Department of Computer Science, Oslo Metropolitan University, Oslo N-0130, Norway |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDyTYzsOJxAZVvKRKbGBt2eMJckhjZLut-veklBWLrmY25-resyCz0Y9IyC1nOWe8vutzjHudCyZEznlTt-UFmfNGFlkt22JG5qytZFZyWV6RRYw9Y1wyJufEvI4JQxa3pkdIFPzn6JLbId378DV4bSnG5DY6OT9SoyNaOj2ago6gLVIcI27MgNR3dLMdkhv0AQPV2-RxBG8xxGty2ekh4s3fXZKPp8f31Uu2fnt-XT2sMygYSxkgTFVNZ7DmYDSYShswokBRdVxU2nZVUyA3YEUtLXDWdo2tLG8LqUtgUCxJc8qF4GMM2Clw6bd4CtoNijN1dKV6dXSljq7UydWEin_od5hGh8N56P4E4TRq5zCoCG4ajdaFyaWy3p3DfwBU9ojs |
| CitedBy_id | crossref_primary_10_1109_TSMC_2023_3282635 crossref_primary_10_3390_s25134207 crossref_primary_10_1088_2516_1091_ad8530 crossref_primary_10_1109_ACCESS_2024_3360691 crossref_primary_10_1007_s11571_024_10160_7 crossref_primary_10_1016_j_eswa_2023_120279 crossref_primary_10_1016_j_eswa_2025_127563 |
| Cites_doi | 10.1109/TSMCA.2009.2035301 10.1016/j.apergo.2021.103493 10.29252/ArchHygSci.8.3.145 10.1016/S0301-0511(00)00085-5 10.1007/s10648-010-9130-y 10.1080/001401399185595 10.1080/00401706.1970.10488634 10.1016/j.neucom.2015.07.128 10.1016/j.chaos.2017.08.005 10.1518/hfes.45.3.381.27252 10.1016/j.clinph.2011.11.004 10.1016/j.bspc.2016.11.013 10.1016/j.neuroimage.2011.07.091 10.1109/MCI.2015.2501545 10.1016/j.neuroimage.2006.04.224 10.1016/j.aei.2022.101646 10.1016/j.apergo.2018.07.008 10.1109/TCYB.2019.2939399 10.1016/S0167-8760(98)00049-X 10.1016/j.patrec.2017.05.020 10.1016/j.bspc.2021.102711 10.1016/j.inffus.2019.06.006 10.1016/S0166-4115(08)62386-9 10.1109/TBME.2016.2574812 10.1016/j.ssci.2016.05.002 10.1126/science.1127647 10.1016/j.apergo.2012.05.008 10.1007/s10111-017-0425-3 10.1016/j.neubiorev.2012.10.003 10.1016/j.apergo.2022.103793 10.1109/ACCESS.2019.2900127 10.1016/j.inffus.2015.08.006 10.1016/j.apergo.2018.08.028 10.1109/TNSRE.2018.2884641 10.1016/j.neucom.2014.08.092 10.1016/j.cmpb.2014.04.011 10.1109/TBME.2017.2693157 10.1016/0301-0511(95)05116-3 10.1016/j.neucom.2005.12.126 10.5120/ijca2016908317 10.1016/j.ijpsycho.2016.06.015 10.1016/j.neucom.2013.06.046 10.1207/S15326985EP3801_8 10.1007/s11192-019-03035-w 10.1016/j.ijpsycho.2015.10.004 10.1201/b12791-3.9 10.1016/j.cmpb.2013.09.007 10.1016/j.neuroimage.2011.07.047 10.1109/EMBC.2015.7318984 10.1016/j.media.2017.01.008 10.1016/j.neucom.2017.05.002 10.1080/00140139.2014.934299 10.1016/j.neucom.2017.12.062 10.1016/j.inffus.2017.02.004 10.1016/j.neuroimage.2011.07.094 10.1023/A:1022859003006 10.1016/j.ymeth.2021.04.009 10.1016/j.bspc.2021.103094 10.1109/TKDE.2009.191 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2022.118694 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_118694 S0957417422017262 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-cec793bfbe61cbacb5abcb23e25f125adf583e1bcd267dc109f8d5d1937a4c0c3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870887600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:09:54 EST 2025 Tue Nov 18 22:23:08 EST 2025 Fri Feb 23 02:39:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Extreme learning machine Electroencephalogram Abstraction fusion Cognitive workload Stacked denoising autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-cec793bfbe61cbacb5abcb23e25f125adf583e1bcd267dc109f8d5d1937a4c0c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_118694 crossref_primary_10_1016_j_eswa_2022_118694 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118694 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Abbass, Mount, Tucek, Pinheiro (b0005) 2011 Model, Zibulevsky (b0200) 2006; 32 Pan, Yang (b0215) 2010; 22 Pope, Bogart, Bartolome (b0225) 1995; 40 Pang, Guo, Zhang, Wanyan, Qu, Wang (b0220) 2021; 68 Larson, Carbine (b0185) 2017; 111 Fournier, Wilson, Swain (b0075) 1999; 31 Yin, Zhang (b0275) 2014; 113 Yin, Zhang (b0280) 2017; 33 Jayaram, Alamgir, Altun, Scholkopf, Wentrup (b0150) 2015; 11 Drouot, Le Bigot, Bricard, de Bougrenet, Nourrit (b0060) 2022; 103 79, 98-106. https://doi.org/10.1016/j.apergo.2018.07.008. Aghdam (b0010) 2019; 8 Qian, Wang, Qing, Zhang, Zhang, Wang (b0230) 2017; 64 Christensen, Estepp, Wilson, Russell (b0040) 2012; 59 Kuncheva, Whitaker (b0175) 2003; 51 Yin, Zhang (b0270) 2014; 115 In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan. Haraldsson, Areskoug-Josefsson, Rolander, Strengbom, Jonker (b0105) 2021; 96 Sauer, Nickel, Wastell (b0240) 2013; 44 Huang, J., Liu, Y., & Peng, X. Y. (2022). Recognition of driver’s mental workload based on physiological signals, a comparative study. 74, 221-232. https://doi.org/10.1016/j.apergo.2018.08.028. Danasingh, Balamurugan, Leavline (b0045) 2016; 136 Halim, Rehan (b0100) 2020; 53 Baldwin, Penaranda (b0025) 2012; 59 Zhou, Shang, Yan, Guo (b0315) 2016; 32 Li, Wang, Sourina (b0195) 2022; 202 Zhang, Zheng, Lu (b0310) 2017; 10637 22, 425-438. https://doi.org/10.1007/s10648-010-9130-y. Yin, Zhang (b0290) 2018; 283 Suk, Lee, Shen, Initiative (b0245) 2017; 37 Hoerl, Kennard (b0135) 1970; 12 Reinerman-Jones, Matthews, Mercado (b0235) 2016; 88 Lal, Craig (b0180) 2001; 55 Zhang, Wang, Li (b0300) 2017; 19 Gevins, McEvoy, Smith, Chan, Vargas, Baum (b0085) 2012; 123 Zhang, Wang, Zhang, & Chen, W. J. (b0305) 2019; 27 Ting, Mahfouf, Nassef, Linkens, Hockey (b0250) 2010; 40 Antonenko, P., Paas, F., & Gog, G. T. R. (2010). Using electroencephalography to measure cognitive load. Wilson, Russell (b0265) 2003; 45 Borghini, Astolfi, Vecchiato, Mattia, Babiloni (b0030) 2014; 44 Endsley, Kaber (b0065) 1999; 42 Krawczyk, Minku, Gama, Stefanowski, Wozniak (b0170) 2017; 37 Hefron, Borghetti, Christensen, Kabban (b0115) 2017; 94 https://doi.org/10.1201/b12791-3.9. Huang, Zhu, Siew (b0140) 2006; 70 Charles, R. L., & Jim, N. (2019). Measuring mental workload using physiological measures: a systematic review. Wang, Hope, Wang, Ji, Gray (b0260) 2012; 59 Fan, Wade, Key, Warren, Sarkar (b0070) 2018; 65 Wang, Nie, Lu (b0255) 2014; 129 Dornhege, Millán, Hinterberger (b0055) 2007 Hart, Staveland (b0110) 1988; 52 Ho, Gwak, Park, Song (b0130) 2019; 7 Antonopoulos, Skokos, Bountis, Flach (b0020) 2017; 104 Hinton, Salakhutdinov (b0125) 2006; 313 Jiang, Fu, Wen, Hao, Hong (b0160) 2016; 187 Gawron, V., French, J., & Funke, D. (2001). Li, Struzik, Zhang, Cichocki (b0190) 2015; 165 Halim, Khan (b0095) 2019; 119 Morineau, T., & Flach, J. M. (2019). The heuristic version of cognitive work analysis: a first application to medical emergency situations. Ke, Qi, Zhang, Chen, Jiao, Zhou, Zhao, Wan, Ming (b0165) 2015; 98 Yin, Zhang (b0285) 2017; 260 Yung (b0295) 2014; 57 Debie, Rojas, Fidock, Barlow, Kasmarik, Anavatti (b0050) 2021; 51 Hai, Cuong, Khoa, Toi (b0090) 2013; 7 Hennrich, J., Herff, C., Heger, D., & Schultz, T. (2015, November). Jeon, Cai (b0155) 2022; 53 71, Part A. https://doi.org/10.1016/j.bspc.2021.103094. Paas, Tuovinen, Tabbers, Van Gerven (b0210) 2003; 38 Halim (10.1016/j.eswa.2022.118694_b0100) 2020; 53 Debie (10.1016/j.eswa.2022.118694_b0050) 2021; 51 Paas (10.1016/j.eswa.2022.118694_b0210) 2003; 38 Zhang (10.1016/j.eswa.2022.118694_b0305) 2019; 27 Pang (10.1016/j.eswa.2022.118694_b0220) 2021; 68 Baldwin (10.1016/j.eswa.2022.118694_b0025) 2012; 59 10.1016/j.eswa.2022.118694_b0145 Aghdam (10.1016/j.eswa.2022.118694_b0010) 2019; 8 Jeon (10.1016/j.eswa.2022.118694_b0155) 2022; 53 Jiang (10.1016/j.eswa.2022.118694_b0160) 2016; 187 Borghini (10.1016/j.eswa.2022.118694_b0030) 2014; 44 Jayaram (10.1016/j.eswa.2022.118694_b0150) 2015; 11 Yin (10.1016/j.eswa.2022.118694_b0290) 2018; 283 Halim (10.1016/j.eswa.2022.118694_b0095) 2019; 119 Drouot (10.1016/j.eswa.2022.118694_b0060) 2022; 103 Fan (10.1016/j.eswa.2022.118694_b0070) 2018; 65 Huang (10.1016/j.eswa.2022.118694_b0140) 2006; 70 Hart (10.1016/j.eswa.2022.118694_b0110) 1988; 52 Suk (10.1016/j.eswa.2022.118694_b0245) 2017; 37 Ke (10.1016/j.eswa.2022.118694_b0165) 2015; 98 Model (10.1016/j.eswa.2022.118694_b0200) 2006; 32 Christensen (10.1016/j.eswa.2022.118694_b0040) 2012; 59 Wang (10.1016/j.eswa.2022.118694_b0260) 2012; 59 Ting (10.1016/j.eswa.2022.118694_b0250) 2010; 40 Qian (10.1016/j.eswa.2022.118694_b0230) 2017; 64 Yung (10.1016/j.eswa.2022.118694_b0295) 2014; 57 Danasingh (10.1016/j.eswa.2022.118694_b0045) 2016; 136 Yin (10.1016/j.eswa.2022.118694_b0270) 2014; 115 10.1016/j.eswa.2022.118694_b0015 Dornhege (10.1016/j.eswa.2022.118694_b0055) 2007 Kuncheva (10.1016/j.eswa.2022.118694_b0175) 2003; 51 Wilson (10.1016/j.eswa.2022.118694_b0265) 2003; 45 Abbass (10.1016/j.eswa.2022.118694_b0005) 2011 Zhang (10.1016/j.eswa.2022.118694_b0300) 2017; 19 Zhou (10.1016/j.eswa.2022.118694_b0315) 2016; 32 Reinerman-Jones (10.1016/j.eswa.2022.118694_b0235) 2016; 88 Fournier (10.1016/j.eswa.2022.118694_b0075) 1999; 31 Krawczyk (10.1016/j.eswa.2022.118694_b0170) 2017; 37 10.1016/j.eswa.2022.118694_b0080 Lal (10.1016/j.eswa.2022.118694_b0180) 2001; 55 Hai (10.1016/j.eswa.2022.118694_b0090) 2013; 7 Yin (10.1016/j.eswa.2022.118694_b0280) 2017; 33 Endsley (10.1016/j.eswa.2022.118694_b0065) 1999; 42 Pan (10.1016/j.eswa.2022.118694_b0215) 2010; 22 Li (10.1016/j.eswa.2022.118694_b0195) 2022; 202 Antonopoulos (10.1016/j.eswa.2022.118694_b0020) 2017; 104 10.1016/j.eswa.2022.118694_b0205 Yin (10.1016/j.eswa.2022.118694_b0285) 2017; 260 Gevins (10.1016/j.eswa.2022.118694_b0085) 2012; 123 10.1016/j.eswa.2022.118694_b0120 Hoerl (10.1016/j.eswa.2022.118694_b0135) 1970; 12 Haraldsson (10.1016/j.eswa.2022.118694_b0105) 2021; 96 Wang (10.1016/j.eswa.2022.118694_b0255) 2014; 129 Sauer (10.1016/j.eswa.2022.118694_b0240) 2013; 44 Pope (10.1016/j.eswa.2022.118694_b0225) 1995; 40 Zhang (10.1016/j.eswa.2022.118694_b0310) 2017; 10637 Li (10.1016/j.eswa.2022.118694_b0190) 2015; 165 10.1016/j.eswa.2022.118694_b0035 Hefron (10.1016/j.eswa.2022.118694_b0115) 2017; 94 Larson (10.1016/j.eswa.2022.118694_b0185) 2017; 111 Hinton (10.1016/j.eswa.2022.118694_b0125) 2006; 313 Ho (10.1016/j.eswa.2022.118694_b0130) 2019; 7 Yin (10.1016/j.eswa.2022.118694_b0275) 2014; 113 |
| References_xml | – volume: 51 start-page: 181 year: 2003 end-page: 207 ident: b0175 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Machine Learning – volume: 68 start-page: 102711 year: 2021 ident: b0220 article-title: Subject-specific mental workload classification using EEG and stochastic configuration network (SCN) publication-title: Biomedical Signal Processing and Control – volume: 129 start-page: 94 year: 2014 end-page: 106 ident: b0255 article-title: Emotional state classification from EEG data using machine learning approach publication-title: Neurocomputing – reference: , 79, 98-106. https://doi.org/10.1016/j.apergo.2018.07.008. – volume: 37 start-page: 132 year: 2017 end-page: 156 ident: b0170 article-title: Ensemble learning for data stream analysis: A survey publication-title: Information Fusion – volume: 37 start-page: 101 year: 2017 end-page: 113 ident: b0245 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Medical Image Analysis – reference: , 74, 221-232. https://doi.org/10.1016/j.apergo.2018.08.028. – reference: Hennrich, J., Herff, C., Heger, D., & Schultz, T. (2015, November). – volume: 113 start-page: 101 year: 2014 end-page: 115 ident: b0275 article-title: Operator functional state classification using least square support vector machine based recursive feature elimination technique publication-title: Computer Methods and Programs in Biomedicine – reference: Antonenko, P., Paas, F., & Gog, G. T. R. (2010). Using electroencephalography to measure cognitive load. – volume: 94 start-page: 96 year: 2017 end-page: 104 ident: b0115 article-title: Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation publication-title: Pattern Recognition Letters – volume: 65 start-page: 43 year: 2018 end-page: 51 ident: b0070 article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention publication-title: IEEE Transactions Biomedical Engineering – volume: 55 start-page: 173 year: 2001 end-page: 194 ident: b0180 article-title: A critical review of the psychophysiology of driver fatigue publication-title: Biological Psychology – volume: 64 start-page: 743 year: 2017 end-page: 754 ident: b0230 article-title: Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap publication-title: IEEE Transactions on Biomedical Engineering – volume: 40 start-page: 187 year: 1995 end-page: 195 ident: b0225 article-title: Biocybernetic system evaluates indices of operator engagement in automated task publication-title: Biological Psychology – volume: 123 start-page: 1291 year: 2012 end-page: 1299 ident: b0085 article-title: Long-term and within-day variability of working memory performance and EEG in individuals publication-title: Clinical Neurophysiology – volume: 88 start-page: 97 year: 2016 end-page: 107 ident: b0235 article-title: Detection tasks in nuclear power plant operation: Vigilance decrement and physiological workload monitoring publication-title: Safety Science – volume: 11 start-page: 20 year: 2015 end-page: 31 ident: b0150 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Computational Intelligence Magazine – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0125 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 44 start-page: 119 year: 2013 end-page: 127 ident: b0240 article-title: Designing automation for complex work environments under different levels of stress publication-title: Applied Ergonomics – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b0215 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 53 start-page: 66 year: 2020 end-page: 79 ident: b0100 article-title: On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning publication-title: Information Fusion – volume: 59 start-page: 64 year: 2012 end-page: 69 ident: b0260 article-title: Cross-subject workload classification with a hierarchical Bayes model publication-title: NeuroImage – volume: 165 start-page: 23 year: 2015 end-page: 31 ident: b0190 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing – reference: , 71, Part A. https://doi.org/10.1016/j.bspc.2021.103094. – volume: 59 start-page: 48 year: 2012 end-page: 56 ident: b0025 article-title: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification publication-title: NeuroImage – volume: 42 start-page: 462 year: 1999 end-page: 492 ident: b0065 article-title: Level of automation effects on performance, situation awareness and workload in a dynamic control task publication-title: Ergonomics – volume: 260 start-page: 349 year: 2017 end-page: 366 ident: b0285 article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights publication-title: Neurocomputing – volume: 8 start-page: 145 year: 2019 end-page: 153 ident: b0010 article-title: Fatigue assessment scales: A comprehensive literature review publication-title: Archives of Hygiene Sciences – year: 2011 ident: b0005 article-title: Towards a code of best practice for evaluating air traffic control interfaces – volume: 119 start-page: 393 year: 2019 end-page: 423 ident: b0095 article-title: A data science-based framework to categorize academic journals publication-title: Scientometrics – volume: 53 year: 2022 ident: b0155 article-title: Multi-class classification of construction hazards via cognitive states assessment using wearable EEG publication-title: Advanced Engineering Informatics – volume: 111 start-page: 33 year: 2017 end-page: 41 ident: b0185 article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor publication-title: International Journal of Psychophysiology – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0140 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing – volume: 33 start-page: 30 year: 2017 end-page: 47 ident: b0280 article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model publication-title: Biomedical Signal Processing and Control – volume: 187 start-page: 109 year: 2016 end-page: 118 ident: b0160 article-title: Dimensionality reduction on anchorgraph with an efficient locality preserving projection publication-title: Neurocomputing – volume: 52 start-page: 139 year: 1988 end-page: 183 ident: b0110 article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research publication-title: Advances in Psychology – volume: 32 start-page: 1631 year: 2006 end-page: 1641 ident: b0200 article-title: Learning subject-specific spatial and temporal filters for single-trial EEG classification publication-title: NeuroImage – start-page: 409 year: 2007 end-page: 422 ident: b0055 article-title: Improving human performance in a real operating environment through real-time mental workload detection publication-title: Toward Brain-Computer Interfacing – volume: 283 start-page: 266 year: 2018 end-page: 281 ident: b0290 article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine publication-title: Neurocomputing – volume: 51 start-page: 1542 year: 2021 end-page: 1555 ident: b0050 article-title: Multimodal fusion for objective assessment of cognitive workload: A review publication-title: IEEE Transactions on Cybernetics – reference: . In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan. – volume: 103 start-page: 103793 year: 2022 ident: b0060 article-title: Augmented reality on industrial assembly line: Impact on effectiveness and mental workload publication-title: Applied Ergonomics – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: b0135 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 59 start-page: 57 year: 2012 end-page: 63 ident: b0040 article-title: The effects of day-to-day variability of physiological data on operator functional state classification publication-title: NeuroImage – volume: 115 start-page: 119 year: 2014 end-page: 134 ident: b0270 article-title: Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector machine-based clustering and classification techniques publication-title: Computer Methods and Programs in Biomedicine – volume: 7 start-page: 24392 year: 2019 end-page: 24403 ident: b0130 article-title: Discrimination of mental workload levels from multi-channel fNIRS using deep leaning-based approaches publication-title: IEEE Access – reference: Huang, J., Liu, Y., & Peng, X. Y. (2022). Recognition of driver’s mental workload based on physiological signals, a comparative study. – volume: 40 start-page: 251 year: 2010 end-page: 262 ident: b0250 article-title: Real-time adaptive automation system based on identification of operator functional state in simulated process control operations publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A Systems and Humans – volume: 98 start-page: 157 year: 2015 end-page: 166 ident: b0165 article-title: Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression publication-title: International Journal of Psychophysiology – volume: 96 start-page: 103493 year: 2021 ident: b0105 article-title: Comparing the Structured Multidisciplinary work Evaluation Tool (SMET) questionnaire with technical measurements of physical workload in certified nursing assistants in a medical ward setting publication-title: Applied Ergonomics – reference: Morineau, T., & Flach, J. M. (2019). The heuristic version of cognitive work analysis: a first application to medical emergency situations. – volume: 27 start-page: 31 year: 2019 end-page: 42 ident: b0305 article-title: Learning spatial–spectral temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 44 start-page: 58 year: 2014 end-page: 75 ident: b0030 article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness publication-title: Neuroscience & Biobehavioral Reviews – volume: 57 start-page: 1562 year: 2014 end-page: 1573 ident: b0295 article-title: Detecting within- and between-day manifestations of neuromuscular fatigue at work: An exploratory study publication-title: Ergonomics – volume: 32 start-page: 40 year: 2016 end-page: 48 ident: b0315 article-title: Ensemble similarity learning for kinship verification from facial images in the wild publication-title: Information Fusion – reference: . https://doi.org/10.1201/b12791-3.9. – volume: 136 start-page: 9 year: 2016 end-page: 17 ident: b0045 article-title: Literature review on feature selection methods for high-dimensional data publication-title: International Journal of Computer Applications – volume: 45 start-page: 381 year: 2003 end-page: 389 ident: b0265 article-title: Operator functional state classification using multiple psychophysiological features in an air traffic control task publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society – volume: 38 start-page: 63 year: 2003 end-page: 71 ident: b0210 article-title: Cognitive load measurement as means to advance cognitive load theory publication-title: Educational Psychologist – volume: 31 start-page: 129 year: 1999 end-page: 145 ident: b0075 article-title: Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: Manipulations of task difficulty and training publication-title: International Journal of Psychophysiology – volume: 104 start-page: 129 year: 2017 end-page: 134 ident: b0020 article-title: Analyzing chaos in higher order disordered quartic-sextic Klein-Gordon lattices using q-statistics publication-title: Chaos, Solitons & Fractals – volume: 10637 start-page: 543 year: 2017 end-page: 552 ident: b0310 article-title: EEG-Based sleep quality evaluation with deep transfer learning publication-title: International Conference on Neural Information Processing – volume: 7 start-page: 24392 year: 2013 end-page: 24403 ident: b0090 article-title: Temporal hemodynamic classification of two hands tapping using functional near– infrared spectroscopy publication-title: Frontiers in Human Neuroscience – volume: 202 start-page: 136 year: 2022 end-page: 143 ident: b0195 article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness publication-title: Methods – reference: Charles, R. L., & Jim, N. (2019). Measuring mental workload using physiological measures: a systematic review. – volume: 19 start-page: 587 year: 2017 end-page: 605 ident: b0300 article-title: Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques publication-title: Cognition Technology & Work – reference: Gawron, V., French, J., & Funke, D. (2001). – reference: , 22, 425-438. https://doi.org/10.1007/s10648-010-9130-y. – year: 2011 ident: 10.1016/j.eswa.2022.118694_b0005 – volume: 40 start-page: 251 year: 2010 ident: 10.1016/j.eswa.2022.118694_b0250 article-title: Real-time adaptive automation system based on identification of operator functional state in simulated process control operations publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A Systems and Humans doi: 10.1109/TSMCA.2009.2035301 – volume: 96 start-page: 103493 year: 2021 ident: 10.1016/j.eswa.2022.118694_b0105 article-title: Comparing the Structured Multidisciplinary work Evaluation Tool (SMET) questionnaire with technical measurements of physical workload in certified nursing assistants in a medical ward setting publication-title: Applied Ergonomics doi: 10.1016/j.apergo.2021.103493 – volume: 8 start-page: 145 year: 2019 ident: 10.1016/j.eswa.2022.118694_b0010 article-title: Fatigue assessment scales: A comprehensive literature review publication-title: Archives of Hygiene Sciences doi: 10.29252/ArchHygSci.8.3.145 – volume: 55 start-page: 173 year: 2001 ident: 10.1016/j.eswa.2022.118694_b0180 article-title: A critical review of the psychophysiology of driver fatigue publication-title: Biological Psychology doi: 10.1016/S0301-0511(00)00085-5 – ident: 10.1016/j.eswa.2022.118694_b0015 doi: 10.1007/s10648-010-9130-y – volume: 42 start-page: 462 year: 1999 ident: 10.1016/j.eswa.2022.118694_b0065 article-title: Level of automation effects on performance, situation awareness and workload in a dynamic control task publication-title: Ergonomics doi: 10.1080/001401399185595 – volume: 12 start-page: 55 year: 1970 ident: 10.1016/j.eswa.2022.118694_b0135 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 187 start-page: 109 year: 2016 ident: 10.1016/j.eswa.2022.118694_b0160 article-title: Dimensionality reduction on anchorgraph with an efficient locality preserving projection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.128 – volume: 104 start-page: 129 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0020 article-title: Analyzing chaos in higher order disordered quartic-sextic Klein-Gordon lattices using q-statistics publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2017.08.005 – volume: 45 start-page: 381 year: 2003 ident: 10.1016/j.eswa.2022.118694_b0265 article-title: Operator functional state classification using multiple psychophysiological features in an air traffic control task publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society doi: 10.1518/hfes.45.3.381.27252 – volume: 123 start-page: 1291 year: 2012 ident: 10.1016/j.eswa.2022.118694_b0085 article-title: Long-term and within-day variability of working memory performance and EEG in individuals publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2011.11.004 – volume: 33 start-page: 30 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0280 article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.11.013 – volume: 59 start-page: 57 year: 2012 ident: 10.1016/j.eswa.2022.118694_b0040 article-title: The effects of day-to-day variability of physiological data on operator functional state classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.07.091 – volume: 10637 start-page: 543 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0310 article-title: EEG-Based sleep quality evaluation with deep transfer learning publication-title: International Conference on Neural Information Processing – volume: 11 start-page: 20 year: 2015 ident: 10.1016/j.eswa.2022.118694_b0150 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2015.2501545 – volume: 32 start-page: 1631 year: 2006 ident: 10.1016/j.eswa.2022.118694_b0200 article-title: Learning subject-specific spatial and temporal filters for single-trial EEG classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.04.224 – volume: 53 year: 2022 ident: 10.1016/j.eswa.2022.118694_b0155 article-title: Multi-class classification of construction hazards via cognitive states assessment using wearable EEG publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2022.101646 – ident: 10.1016/j.eswa.2022.118694_b0205 doi: 10.1016/j.apergo.2018.07.008 – volume: 51 start-page: 1542 year: 2021 ident: 10.1016/j.eswa.2022.118694_b0050 article-title: Multimodal fusion for objective assessment of cognitive workload: A review publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2939399 – volume: 31 start-page: 129 year: 1999 ident: 10.1016/j.eswa.2022.118694_b0075 article-title: Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: Manipulations of task difficulty and training publication-title: International Journal of Psychophysiology doi: 10.1016/S0167-8760(98)00049-X – volume: 94 start-page: 96 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0115 article-title: Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.05.020 – volume: 68 start-page: 102711 year: 2021 ident: 10.1016/j.eswa.2022.118694_b0220 article-title: Subject-specific mental workload classification using EEG and stochastic configuration network (SCN) publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102711 – volume: 53 start-page: 66 year: 2020 ident: 10.1016/j.eswa.2022.118694_b0100 article-title: On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning publication-title: Information Fusion doi: 10.1016/j.inffus.2019.06.006 – start-page: 409 year: 2007 ident: 10.1016/j.eswa.2022.118694_b0055 article-title: Improving human performance in a real operating environment through real-time mental workload detection publication-title: Toward Brain-Computer Interfacing – volume: 52 start-page: 139 year: 1988 ident: 10.1016/j.eswa.2022.118694_b0110 article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research publication-title: Advances in Psychology doi: 10.1016/S0166-4115(08)62386-9 – volume: 64 start-page: 743 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0230 article-title: Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2016.2574812 – volume: 88 start-page: 97 year: 2016 ident: 10.1016/j.eswa.2022.118694_b0235 article-title: Detection tasks in nuclear power plant operation: Vigilance decrement and physiological workload monitoring publication-title: Safety Science doi: 10.1016/j.ssci.2016.05.002 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.eswa.2022.118694_b0125 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 44 start-page: 119 year: 2013 ident: 10.1016/j.eswa.2022.118694_b0240 article-title: Designing automation for complex work environments under different levels of stress publication-title: Applied Ergonomics doi: 10.1016/j.apergo.2012.05.008 – volume: 19 start-page: 587 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0300 article-title: Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques publication-title: Cognition Technology & Work doi: 10.1007/s10111-017-0425-3 – volume: 44 start-page: 58 year: 2014 ident: 10.1016/j.eswa.2022.118694_b0030 article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness publication-title: Neuroscience & Biobehavioral Reviews doi: 10.1016/j.neubiorev.2012.10.003 – volume: 103 start-page: 103793 year: 2022 ident: 10.1016/j.eswa.2022.118694_b0060 article-title: Augmented reality on industrial assembly line: Impact on effectiveness and mental workload publication-title: Applied Ergonomics doi: 10.1016/j.apergo.2022.103793 – volume: 7 start-page: 24392 year: 2019 ident: 10.1016/j.eswa.2022.118694_b0130 article-title: Discrimination of mental workload levels from multi-channel fNIRS using deep leaning-based approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900127 – volume: 32 start-page: 40 year: 2016 ident: 10.1016/j.eswa.2022.118694_b0315 article-title: Ensemble similarity learning for kinship verification from facial images in the wild publication-title: Information Fusion doi: 10.1016/j.inffus.2015.08.006 – ident: 10.1016/j.eswa.2022.118694_b0035 doi: 10.1016/j.apergo.2018.08.028 – volume: 27 start-page: 31 year: 2019 ident: 10.1016/j.eswa.2022.118694_b0305 article-title: Learning spatial–spectral temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2018.2884641 – volume: 165 start-page: 23 year: 2015 ident: 10.1016/j.eswa.2022.118694_b0190 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.092 – volume: 115 start-page: 119 year: 2014 ident: 10.1016/j.eswa.2022.118694_b0270 article-title: Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector machine-based clustering and classification techniques publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2014.04.011 – volume: 65 start-page: 43 year: 2018 ident: 10.1016/j.eswa.2022.118694_b0070 article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention publication-title: IEEE Transactions Biomedical Engineering doi: 10.1109/TBME.2017.2693157 – volume: 7 start-page: 24392 year: 2013 ident: 10.1016/j.eswa.2022.118694_b0090 article-title: Temporal hemodynamic classification of two hands tapping using functional near– infrared spectroscopy publication-title: Frontiers in Human Neuroscience – volume: 40 start-page: 187 year: 1995 ident: 10.1016/j.eswa.2022.118694_b0225 article-title: Biocybernetic system evaluates indices of operator engagement in automated task publication-title: Biological Psychology doi: 10.1016/0301-0511(95)05116-3 – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.eswa.2022.118694_b0140 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 136 start-page: 9 year: 2016 ident: 10.1016/j.eswa.2022.118694_b0045 article-title: Literature review on feature selection methods for high-dimensional data publication-title: International Journal of Computer Applications doi: 10.5120/ijca2016908317 – volume: 111 start-page: 33 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0185 article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2016.06.015 – volume: 129 start-page: 94 year: 2014 ident: 10.1016/j.eswa.2022.118694_b0255 article-title: Emotional state classification from EEG data using machine learning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.046 – volume: 38 start-page: 63 year: 2003 ident: 10.1016/j.eswa.2022.118694_b0210 article-title: Cognitive load measurement as means to advance cognitive load theory publication-title: Educational Psychologist doi: 10.1207/S15326985EP3801_8 – volume: 119 start-page: 393 year: 2019 ident: 10.1016/j.eswa.2022.118694_b0095 article-title: A data science-based framework to categorize academic journals publication-title: Scientometrics doi: 10.1007/s11192-019-03035-w – volume: 98 start-page: 157 year: 2015 ident: 10.1016/j.eswa.2022.118694_b0165 article-title: Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2015.10.004 – ident: 10.1016/j.eswa.2022.118694_b0080 doi: 10.1201/b12791-3.9 – volume: 113 start-page: 101 year: 2014 ident: 10.1016/j.eswa.2022.118694_b0275 article-title: Operator functional state classification using least square support vector machine based recursive feature elimination technique publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2013.09.007 – volume: 59 start-page: 48 year: 2012 ident: 10.1016/j.eswa.2022.118694_b0025 article-title: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.07.047 – ident: 10.1016/j.eswa.2022.118694_b0120 doi: 10.1109/EMBC.2015.7318984 – volume: 37 start-page: 101 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0245 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Medical Image Analysis doi: 10.1016/j.media.2017.01.008 – volume: 260 start-page: 349 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0285 article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.002 – volume: 57 start-page: 1562 year: 2014 ident: 10.1016/j.eswa.2022.118694_b0295 article-title: Detecting within- and between-day manifestations of neuromuscular fatigue at work: An exploratory study publication-title: Ergonomics doi: 10.1080/00140139.2014.934299 – volume: 283 start-page: 266 year: 2018 ident: 10.1016/j.eswa.2022.118694_b0290 article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.062 – volume: 37 start-page: 132 year: 2017 ident: 10.1016/j.eswa.2022.118694_b0170 article-title: Ensemble learning for data stream analysis: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2017.02.004 – volume: 59 start-page: 64 year: 2012 ident: 10.1016/j.eswa.2022.118694_b0260 article-title: Cross-subject workload classification with a hierarchical Bayes model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.07.094 – volume: 51 start-page: 181 year: 2003 ident: 10.1016/j.eswa.2022.118694_b0175 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Machine Learning doi: 10.1023/A:1022859003006 – volume: 202 start-page: 136 year: 2022 ident: 10.1016/j.eswa.2022.118694_b0195 article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness publication-title: Methods doi: 10.1016/j.ymeth.2021.04.009 – ident: 10.1016/j.eswa.2022.118694_b0145 doi: 10.1016/j.bspc.2021.103094 – volume: 22 start-page: 1345 year: 2010 ident: 10.1016/j.eswa.2022.118694_b0215 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 |
| SSID | ssj0017007 |
| Score | 2.4657645 |
| Snippet | •The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 118694 |
| SubjectTerms | Abstraction fusion Cognitive workload Electroencephalogram Extreme learning machine Stacked denoising autoencoder |
| Title | Inter-subject cognitive workload estimation based on a cascade ensemble of multilayer autoencoders |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.118694 |
| Volume | 211 |
| WOSCitedRecordID | wos000870887600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQcuvBHlJR-4Ra4S5-HkWKEiqFCFRBELl8ivqK22yaqbLXvkpzOztpNQUAVIXKLEG8crz6fx-PM8CHmVFoZj4TdmKlmxTImCSSlSZniJ6aUyKZqtpN-L4-NyPq8-zGbfQyzM1UK0bbnZVMv_KmpoA2Fj6OxfiHv4KDTAPQgdriB2uP6R4LccH1utFTIs0egehB5Yi06aCPNquIDFCNcwg-cFMtJyha7yEWxr7YVyLodbb8OFBKs8kuu-w5yXxnvMD2w-pkrufULoECo3ORQfiWnrtAoy1Evr10tUNy6JwdfTbmz77EnsL9C2OZv8MNDbR4Dq07WcchY8vcZZDME0o-eSYyQFyxJXtGffOn1cAm4K4YooBoXNnXr-Rfk7HuJ8366-YUYpzmE9KIsqG5e6wQHxIw6GY3GOm2BcxHe5yCvQi7sH7w7nR8NJlIhdyH34cz7wyvkIXh_p98bNxGA5uUfu-J0GPXAIuU9mtn1A7oYqHtQr9YdE_QQYOgCGBsDQETB0CxgKN5J6wNAAGNo1dAQMnQLmEfn05vDk9VvmK28wncZxz7TVMOeqUbZItJJa5VJpxVPL8wYsYmmavExtorThhTA6iaumNLmBzYCQmY51-pjstF1rnxCqciFsljY6UXGmlJKyrLiETYUtcnzaI0mYslr7tPRYHWVRB__D8xqnucZprt0075Fo6LN0SVlufDsPkqi9WenMxRqAc0O_p__Y7xm5PWL-OdnpL9f2Bbmlr_qz1eVLj68fiKyjGA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+cognitive+workload+estimation+based+on+a+cascade+ensemble+of+multilayer+autoencoders&rft.jtitle=Expert+systems+with+applications&rft.au=Zheng%2C+Zhanpeng&rft.au=Yin%2C+Zhong&rft.au=Wang%2C+Yongxiong&rft.au=Zhang%2C+Jianhua&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=211&rft_id=info:doi/10.1016%2Fj.eswa.2022.118694&rft.externalDocID=S0957417422017262 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |