Inter-subject cognitive workload estimation based on a cascade ensemble of multilayer autoencoders

•The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of multilayer autoencoders is proposed. Machine learning approaches can build a computational model to predict cognitive workload levels by using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 211; S. 118694
Hauptverfasser: Zheng, Zhanpeng, Yin, Zhong, Wang, Yongxiong, Zhang, Jianhua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2023
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of multilayer autoencoders is proposed. Machine learning approaches can build a computational model to predict cognitive workload levels by using electroencephalogram (EEG) feature inputs at the same time instant. However, when the EEG signals are recorded on different people, the accuracy of such a model could be impaired due to its incapability of fitting varied statistical distributions across different individuals. To this end, we propose an individual-independent workload estimator, a cascade ensemble of multilayer autoencoders to tackle the individual difference within the EEG features. It could assess the workload levels of an unseen subject by adapting the EEG data recorded from non-overlapped existing subjects. We first construct a deep stacked denoising autoencoder to abstract EEG features from a specific individual. Its shallow weights are optimized with individual-specific geometrical information of the features. Then, to find generalizable feature properties, we introduce Q-statistics to measure the independence between base learners. Finally, a regularized extreme learning machine is used as a cascade meta-classifier to fuse and filter high-level EEG abstractions and determine workload levels. We employ databases from two different experiments to validate our approach. The proposed framework can lead to acceptable accuracy and computational complexity compared to several existing workload classifiers.
AbstractList •The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of multilayer autoencoders is proposed. Machine learning approaches can build a computational model to predict cognitive workload levels by using electroencephalogram (EEG) feature inputs at the same time instant. However, when the EEG signals are recorded on different people, the accuracy of such a model could be impaired due to its incapability of fitting varied statistical distributions across different individuals. To this end, we propose an individual-independent workload estimator, a cascade ensemble of multilayer autoencoders to tackle the individual difference within the EEG features. It could assess the workload levels of an unseen subject by adapting the EEG data recorded from non-overlapped existing subjects. We first construct a deep stacked denoising autoencoder to abstract EEG features from a specific individual. Its shallow weights are optimized with individual-specific geometrical information of the features. Then, to find generalizable feature properties, we introduce Q-statistics to measure the independence between base learners. Finally, a regularized extreme learning machine is used as a cascade meta-classifier to fuse and filter high-level EEG abstractions and determine workload levels. We employ databases from two different experiments to validate our approach. The proposed framework can lead to acceptable accuracy and computational complexity compared to several existing workload classifiers.
ArticleNumber 118694
Author Zhang, Jianhua
Zheng, Zhanpeng
Yin, Zhong
Wang, Yongxiong
Author_xml – sequence: 1
  givenname: Zhanpeng
  surname: Zheng
  fullname: Zheng, Zhanpeng
  email: 182560473@st.usst.edu.cn
  organization: Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, PR China
– sequence: 2
  givenname: Zhong
  surname: Yin
  fullname: Yin, Zhong
  email: yinzhong@usst.edu.cn
  organization: Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, PR China
– sequence: 3
  givenname: Yongxiong
  surname: Wang
  fullname: Wang, Yongxiong
  email: wyxiong@usst.edu.cn
  organization: Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, PR China
– sequence: 4
  givenname: Jianhua
  surname: Zhang
  fullname: Zhang, Jianhua
  email: jianhuaz@oslomet.no
  organization: OsloMet Artificial Intelligence Lab, Department of Computer Science, Oslo Metropolitan University, Oslo N-0130, Norway
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDyTYzsOJxAZVvKRKbGBt2eMJckhjZLut-veklBWLrmY25-resyCz0Y9IyC1nOWe8vutzjHudCyZEznlTt-UFmfNGFlkt22JG5qytZFZyWV6RRYw9Y1wyJufEvI4JQxa3pkdIFPzn6JLbId378DV4bSnG5DY6OT9SoyNaOj2ago6gLVIcI27MgNR3dLMdkhv0AQPV2-RxBG8xxGty2ekh4s3fXZKPp8f31Uu2fnt-XT2sMygYSxkgTFVNZ7DmYDSYShswokBRdVxU2nZVUyA3YEUtLXDWdo2tLG8LqUtgUCxJc8qF4GMM2Clw6bd4CtoNijN1dKV6dXSljq7UydWEin_od5hGh8N56P4E4TRq5zCoCG4ajdaFyaWy3p3DfwBU9ojs
CitedBy_id crossref_primary_10_1109_TSMC_2023_3282635
crossref_primary_10_3390_s25134207
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_1007_s11571_024_10160_7
crossref_primary_10_1016_j_eswa_2023_120279
crossref_primary_10_1016_j_eswa_2025_127563
Cites_doi 10.1109/TSMCA.2009.2035301
10.1016/j.apergo.2021.103493
10.29252/ArchHygSci.8.3.145
10.1016/S0301-0511(00)00085-5
10.1007/s10648-010-9130-y
10.1080/001401399185595
10.1080/00401706.1970.10488634
10.1016/j.neucom.2015.07.128
10.1016/j.chaos.2017.08.005
10.1518/hfes.45.3.381.27252
10.1016/j.clinph.2011.11.004
10.1016/j.bspc.2016.11.013
10.1016/j.neuroimage.2011.07.091
10.1109/MCI.2015.2501545
10.1016/j.neuroimage.2006.04.224
10.1016/j.aei.2022.101646
10.1016/j.apergo.2018.07.008
10.1109/TCYB.2019.2939399
10.1016/S0167-8760(98)00049-X
10.1016/j.patrec.2017.05.020
10.1016/j.bspc.2021.102711
10.1016/j.inffus.2019.06.006
10.1016/S0166-4115(08)62386-9
10.1109/TBME.2016.2574812
10.1016/j.ssci.2016.05.002
10.1126/science.1127647
10.1016/j.apergo.2012.05.008
10.1007/s10111-017-0425-3
10.1016/j.neubiorev.2012.10.003
10.1016/j.apergo.2022.103793
10.1109/ACCESS.2019.2900127
10.1016/j.inffus.2015.08.006
10.1016/j.apergo.2018.08.028
10.1109/TNSRE.2018.2884641
10.1016/j.neucom.2014.08.092
10.1016/j.cmpb.2014.04.011
10.1109/TBME.2017.2693157
10.1016/0301-0511(95)05116-3
10.1016/j.neucom.2005.12.126
10.5120/ijca2016908317
10.1016/j.ijpsycho.2016.06.015
10.1016/j.neucom.2013.06.046
10.1207/S15326985EP3801_8
10.1007/s11192-019-03035-w
10.1016/j.ijpsycho.2015.10.004
10.1201/b12791-3.9
10.1016/j.cmpb.2013.09.007
10.1016/j.neuroimage.2011.07.047
10.1109/EMBC.2015.7318984
10.1016/j.media.2017.01.008
10.1016/j.neucom.2017.05.002
10.1080/00140139.2014.934299
10.1016/j.neucom.2017.12.062
10.1016/j.inffus.2017.02.004
10.1016/j.neuroimage.2011.07.094
10.1023/A:1022859003006
10.1016/j.ymeth.2021.04.009
10.1016/j.bspc.2021.103094
10.1109/TKDE.2009.191
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.118694
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_118694
S0957417422017262
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-cec793bfbe61cbacb5abcb23e25f125adf583e1bcd267dc109f8d5d1937a4c0c3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870887600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:09:54 EST 2025
Tue Nov 18 22:23:08 EST 2025
Fri Feb 23 02:39:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Extreme learning machine
Electroencephalogram
Abstraction fusion
Cognitive workload
Stacked denoising autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-cec793bfbe61cbacb5abcb23e25f125adf583e1bcd267dc109f8d5d1937a4c0c3
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_118694
crossref_primary_10_1016_j_eswa_2022_118694
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118694
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abbass, Mount, Tucek, Pinheiro (b0005) 2011
Model, Zibulevsky (b0200) 2006; 32
Pan, Yang (b0215) 2010; 22
Pope, Bogart, Bartolome (b0225) 1995; 40
Pang, Guo, Zhang, Wanyan, Qu, Wang (b0220) 2021; 68
Larson, Carbine (b0185) 2017; 111
Fournier, Wilson, Swain (b0075) 1999; 31
Yin, Zhang (b0275) 2014; 113
Yin, Zhang (b0280) 2017; 33
Jayaram, Alamgir, Altun, Scholkopf, Wentrup (b0150) 2015; 11
Drouot, Le Bigot, Bricard, de Bougrenet, Nourrit (b0060) 2022; 103
79, 98-106. https://doi.org/10.1016/j.apergo.2018.07.008.
Aghdam (b0010) 2019; 8
Qian, Wang, Qing, Zhang, Zhang, Wang (b0230) 2017; 64
Christensen, Estepp, Wilson, Russell (b0040) 2012; 59
Kuncheva, Whitaker (b0175) 2003; 51
Yin, Zhang (b0270) 2014; 115
In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan.
Haraldsson, Areskoug-Josefsson, Rolander, Strengbom, Jonker (b0105) 2021; 96
Sauer, Nickel, Wastell (b0240) 2013; 44
Huang, J., Liu, Y., & Peng, X. Y. (2022). Recognition of driver’s mental workload based on physiological signals, a comparative study.
74, 221-232. https://doi.org/10.1016/j.apergo.2018.08.028.
Danasingh, Balamurugan, Leavline (b0045) 2016; 136
Halim, Rehan (b0100) 2020; 53
Baldwin, Penaranda (b0025) 2012; 59
Zhou, Shang, Yan, Guo (b0315) 2016; 32
Li, Wang, Sourina (b0195) 2022; 202
Zhang, Zheng, Lu (b0310) 2017; 10637
22, 425-438. https://doi.org/10.1007/s10648-010-9130-y.
Yin, Zhang (b0290) 2018; 283
Suk, Lee, Shen, Initiative (b0245) 2017; 37
Hoerl, Kennard (b0135) 1970; 12
Reinerman-Jones, Matthews, Mercado (b0235) 2016; 88
Lal, Craig (b0180) 2001; 55
Zhang, Wang, Li (b0300) 2017; 19
Gevins, McEvoy, Smith, Chan, Vargas, Baum (b0085) 2012; 123
Zhang, Wang, Zhang, & Chen, W. J. (b0305) 2019; 27
Ting, Mahfouf, Nassef, Linkens, Hockey (b0250) 2010; 40
Antonenko, P., Paas, F., & Gog, G. T. R. (2010). Using electroencephalography to measure cognitive load.
Wilson, Russell (b0265) 2003; 45
Borghini, Astolfi, Vecchiato, Mattia, Babiloni (b0030) 2014; 44
Endsley, Kaber (b0065) 1999; 42
Krawczyk, Minku, Gama, Stefanowski, Wozniak (b0170) 2017; 37
Hefron, Borghetti, Christensen, Kabban (b0115) 2017; 94
https://doi.org/10.1201/b12791-3.9.
Huang, Zhu, Siew (b0140) 2006; 70
Charles, R. L., & Jim, N. (2019). Measuring mental workload using physiological measures: a systematic review.
Wang, Hope, Wang, Ji, Gray (b0260) 2012; 59
Fan, Wade, Key, Warren, Sarkar (b0070) 2018; 65
Wang, Nie, Lu (b0255) 2014; 129
Dornhege, Millán, Hinterberger (b0055) 2007
Hart, Staveland (b0110) 1988; 52
Ho, Gwak, Park, Song (b0130) 2019; 7
Antonopoulos, Skokos, Bountis, Flach (b0020) 2017; 104
Hinton, Salakhutdinov (b0125) 2006; 313
Jiang, Fu, Wen, Hao, Hong (b0160) 2016; 187
Gawron, V., French, J., & Funke, D. (2001).
Li, Struzik, Zhang, Cichocki (b0190) 2015; 165
Halim, Khan (b0095) 2019; 119
Morineau, T., & Flach, J. M. (2019). The heuristic version of cognitive work analysis: a first application to medical emergency situations.
Ke, Qi, Zhang, Chen, Jiao, Zhou, Zhao, Wan, Ming (b0165) 2015; 98
Yin, Zhang (b0285) 2017; 260
Yung (b0295) 2014; 57
Debie, Rojas, Fidock, Barlow, Kasmarik, Anavatti (b0050) 2021; 51
Hai, Cuong, Khoa, Toi (b0090) 2013; 7
Hennrich, J., Herff, C., Heger, D., & Schultz, T. (2015, November).
Jeon, Cai (b0155) 2022; 53
71, Part A. https://doi.org/10.1016/j.bspc.2021.103094.
Paas, Tuovinen, Tabbers, Van Gerven (b0210) 2003; 38
Halim (10.1016/j.eswa.2022.118694_b0100) 2020; 53
Debie (10.1016/j.eswa.2022.118694_b0050) 2021; 51
Paas (10.1016/j.eswa.2022.118694_b0210) 2003; 38
Zhang (10.1016/j.eswa.2022.118694_b0305) 2019; 27
Pang (10.1016/j.eswa.2022.118694_b0220) 2021; 68
Baldwin (10.1016/j.eswa.2022.118694_b0025) 2012; 59
10.1016/j.eswa.2022.118694_b0145
Aghdam (10.1016/j.eswa.2022.118694_b0010) 2019; 8
Jeon (10.1016/j.eswa.2022.118694_b0155) 2022; 53
Jiang (10.1016/j.eswa.2022.118694_b0160) 2016; 187
Borghini (10.1016/j.eswa.2022.118694_b0030) 2014; 44
Jayaram (10.1016/j.eswa.2022.118694_b0150) 2015; 11
Yin (10.1016/j.eswa.2022.118694_b0290) 2018; 283
Halim (10.1016/j.eswa.2022.118694_b0095) 2019; 119
Drouot (10.1016/j.eswa.2022.118694_b0060) 2022; 103
Fan (10.1016/j.eswa.2022.118694_b0070) 2018; 65
Huang (10.1016/j.eswa.2022.118694_b0140) 2006; 70
Hart (10.1016/j.eswa.2022.118694_b0110) 1988; 52
Suk (10.1016/j.eswa.2022.118694_b0245) 2017; 37
Ke (10.1016/j.eswa.2022.118694_b0165) 2015; 98
Model (10.1016/j.eswa.2022.118694_b0200) 2006; 32
Christensen (10.1016/j.eswa.2022.118694_b0040) 2012; 59
Wang (10.1016/j.eswa.2022.118694_b0260) 2012; 59
Ting (10.1016/j.eswa.2022.118694_b0250) 2010; 40
Qian (10.1016/j.eswa.2022.118694_b0230) 2017; 64
Yung (10.1016/j.eswa.2022.118694_b0295) 2014; 57
Danasingh (10.1016/j.eswa.2022.118694_b0045) 2016; 136
Yin (10.1016/j.eswa.2022.118694_b0270) 2014; 115
10.1016/j.eswa.2022.118694_b0015
Dornhege (10.1016/j.eswa.2022.118694_b0055) 2007
Kuncheva (10.1016/j.eswa.2022.118694_b0175) 2003; 51
Wilson (10.1016/j.eswa.2022.118694_b0265) 2003; 45
Abbass (10.1016/j.eswa.2022.118694_b0005) 2011
Zhang (10.1016/j.eswa.2022.118694_b0300) 2017; 19
Zhou (10.1016/j.eswa.2022.118694_b0315) 2016; 32
Reinerman-Jones (10.1016/j.eswa.2022.118694_b0235) 2016; 88
Fournier (10.1016/j.eswa.2022.118694_b0075) 1999; 31
Krawczyk (10.1016/j.eswa.2022.118694_b0170) 2017; 37
10.1016/j.eswa.2022.118694_b0080
Lal (10.1016/j.eswa.2022.118694_b0180) 2001; 55
Hai (10.1016/j.eswa.2022.118694_b0090) 2013; 7
Yin (10.1016/j.eswa.2022.118694_b0280) 2017; 33
Endsley (10.1016/j.eswa.2022.118694_b0065) 1999; 42
Pan (10.1016/j.eswa.2022.118694_b0215) 2010; 22
Li (10.1016/j.eswa.2022.118694_b0195) 2022; 202
Antonopoulos (10.1016/j.eswa.2022.118694_b0020) 2017; 104
10.1016/j.eswa.2022.118694_b0205
Yin (10.1016/j.eswa.2022.118694_b0285) 2017; 260
Gevins (10.1016/j.eswa.2022.118694_b0085) 2012; 123
10.1016/j.eswa.2022.118694_b0120
Hoerl (10.1016/j.eswa.2022.118694_b0135) 1970; 12
Haraldsson (10.1016/j.eswa.2022.118694_b0105) 2021; 96
Wang (10.1016/j.eswa.2022.118694_b0255) 2014; 129
Sauer (10.1016/j.eswa.2022.118694_b0240) 2013; 44
Pope (10.1016/j.eswa.2022.118694_b0225) 1995; 40
Zhang (10.1016/j.eswa.2022.118694_b0310) 2017; 10637
Li (10.1016/j.eswa.2022.118694_b0190) 2015; 165
10.1016/j.eswa.2022.118694_b0035
Hefron (10.1016/j.eswa.2022.118694_b0115) 2017; 94
Larson (10.1016/j.eswa.2022.118694_b0185) 2017; 111
Hinton (10.1016/j.eswa.2022.118694_b0125) 2006; 313
Ho (10.1016/j.eswa.2022.118694_b0130) 2019; 7
Yin (10.1016/j.eswa.2022.118694_b0275) 2014; 113
References_xml – volume: 51
  start-page: 181
  year: 2003
  end-page: 207
  ident: b0175
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Machine Learning
– volume: 68
  start-page: 102711
  year: 2021
  ident: b0220
  article-title: Subject-specific mental workload classification using EEG and stochastic configuration network (SCN)
  publication-title: Biomedical Signal Processing and Control
– volume: 129
  start-page: 94
  year: 2014
  end-page: 106
  ident: b0255
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
– reference: , 79, 98-106. https://doi.org/10.1016/j.apergo.2018.07.008.
– volume: 37
  start-page: 132
  year: 2017
  end-page: 156
  ident: b0170
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Information Fusion
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  ident: b0245
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Medical Image Analysis
– reference: , 74, 221-232. https://doi.org/10.1016/j.apergo.2018.08.028.
– reference: Hennrich, J., Herff, C., Heger, D., & Schultz, T. (2015, November).
– volume: 113
  start-page: 101
  year: 2014
  end-page: 115
  ident: b0275
  article-title: Operator functional state classification using least square support vector machine based recursive feature elimination technique
  publication-title: Computer Methods and Programs in Biomedicine
– reference: Antonenko, P., Paas, F., & Gog, G. T. R. (2010). Using electroencephalography to measure cognitive load.
– volume: 94
  start-page: 96
  year: 2017
  end-page: 104
  ident: b0115
  article-title: Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation
  publication-title: Pattern Recognition Letters
– volume: 65
  start-page: 43
  year: 2018
  end-page: 51
  ident: b0070
  article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention
  publication-title: IEEE Transactions Biomedical Engineering
– volume: 55
  start-page: 173
  year: 2001
  end-page: 194
  ident: b0180
  article-title: A critical review of the psychophysiology of driver fatigue
  publication-title: Biological Psychology
– volume: 64
  start-page: 743
  year: 2017
  end-page: 754
  ident: b0230
  article-title: Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 40
  start-page: 187
  year: 1995
  end-page: 195
  ident: b0225
  article-title: Biocybernetic system evaluates indices of operator engagement in automated task
  publication-title: Biological Psychology
– volume: 123
  start-page: 1291
  year: 2012
  end-page: 1299
  ident: b0085
  article-title: Long-term and within-day variability of working memory performance and EEG in individuals
  publication-title: Clinical Neurophysiology
– volume: 88
  start-page: 97
  year: 2016
  end-page: 107
  ident: b0235
  article-title: Detection tasks in nuclear power plant operation: Vigilance decrement and physiological workload monitoring
  publication-title: Safety Science
– volume: 11
  start-page: 20
  year: 2015
  end-page: 31
  ident: b0150
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Computational Intelligence Magazine
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0125
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 44
  start-page: 119
  year: 2013
  end-page: 127
  ident: b0240
  article-title: Designing automation for complex work environments under different levels of stress
  publication-title: Applied Ergonomics
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b0215
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 53
  start-page: 66
  year: 2020
  end-page: 79
  ident: b0100
  article-title: On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning
  publication-title: Information Fusion
– volume: 59
  start-page: 64
  year: 2012
  end-page: 69
  ident: b0260
  article-title: Cross-subject workload classification with a hierarchical Bayes model
  publication-title: NeuroImage
– volume: 165
  start-page: 23
  year: 2015
  end-page: 31
  ident: b0190
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
– reference: , 71, Part A. https://doi.org/10.1016/j.bspc.2021.103094.
– volume: 59
  start-page: 48
  year: 2012
  end-page: 56
  ident: b0025
  article-title: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification
  publication-title: NeuroImage
– volume: 42
  start-page: 462
  year: 1999
  end-page: 492
  ident: b0065
  article-title: Level of automation effects on performance, situation awareness and workload in a dynamic control task
  publication-title: Ergonomics
– volume: 260
  start-page: 349
  year: 2017
  end-page: 366
  ident: b0285
  article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights
  publication-title: Neurocomputing
– volume: 8
  start-page: 145
  year: 2019
  end-page: 153
  ident: b0010
  article-title: Fatigue assessment scales: A comprehensive literature review
  publication-title: Archives of Hygiene Sciences
– year: 2011
  ident: b0005
  article-title: Towards a code of best practice for evaluating air traffic control interfaces
– volume: 119
  start-page: 393
  year: 2019
  end-page: 423
  ident: b0095
  article-title: A data science-based framework to categorize academic journals
  publication-title: Scientometrics
– volume: 53
  year: 2022
  ident: b0155
  article-title: Multi-class classification of construction hazards via cognitive states assessment using wearable EEG
  publication-title: Advanced Engineering Informatics
– volume: 111
  start-page: 33
  year: 2017
  end-page: 41
  ident: b0185
  article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor
  publication-title: International Journal of Psychophysiology
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0140
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
– volume: 33
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0280
  article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model
  publication-title: Biomedical Signal Processing and Control
– volume: 187
  start-page: 109
  year: 2016
  end-page: 118
  ident: b0160
  article-title: Dimensionality reduction on anchorgraph with an efficient locality preserving projection
  publication-title: Neurocomputing
– volume: 52
  start-page: 139
  year: 1988
  end-page: 183
  ident: b0110
  article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research
  publication-title: Advances in Psychology
– volume: 32
  start-page: 1631
  year: 2006
  end-page: 1641
  ident: b0200
  article-title: Learning subject-specific spatial and temporal filters for single-trial EEG classification
  publication-title: NeuroImage
– start-page: 409
  year: 2007
  end-page: 422
  ident: b0055
  article-title: Improving human performance in a real operating environment through real-time mental workload detection
  publication-title: Toward Brain-Computer Interfacing
– volume: 283
  start-page: 266
  year: 2018
  end-page: 281
  ident: b0290
  article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine
  publication-title: Neurocomputing
– volume: 51
  start-page: 1542
  year: 2021
  end-page: 1555
  ident: b0050
  article-title: Multimodal fusion for objective assessment of cognitive workload: A review
  publication-title: IEEE Transactions on Cybernetics
– reference: . In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan.
– volume: 103
  start-page: 103793
  year: 2022
  ident: b0060
  article-title: Augmented reality on industrial assembly line: Impact on effectiveness and mental workload
  publication-title: Applied Ergonomics
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: b0135
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 59
  start-page: 57
  year: 2012
  end-page: 63
  ident: b0040
  article-title: The effects of day-to-day variability of physiological data on operator functional state classification
  publication-title: NeuroImage
– volume: 115
  start-page: 119
  year: 2014
  end-page: 134
  ident: b0270
  article-title: Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector machine-based clustering and classification techniques
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 7
  start-page: 24392
  year: 2019
  end-page: 24403
  ident: b0130
  article-title: Discrimination of mental workload levels from multi-channel fNIRS using deep leaning-based approaches
  publication-title: IEEE Access
– reference: Huang, J., Liu, Y., & Peng, X. Y. (2022). Recognition of driver’s mental workload based on physiological signals, a comparative study.
– volume: 40
  start-page: 251
  year: 2010
  end-page: 262
  ident: b0250
  article-title: Real-time adaptive automation system based on identification of operator functional state in simulated process control operations
  publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A Systems and Humans
– volume: 98
  start-page: 157
  year: 2015
  end-page: 166
  ident: b0165
  article-title: Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression
  publication-title: International Journal of Psychophysiology
– volume: 96
  start-page: 103493
  year: 2021
  ident: b0105
  article-title: Comparing the Structured Multidisciplinary work Evaluation Tool (SMET) questionnaire with technical measurements of physical workload in certified nursing assistants in a medical ward setting
  publication-title: Applied Ergonomics
– reference: Morineau, T., & Flach, J. M. (2019). The heuristic version of cognitive work analysis: a first application to medical emergency situations.
– volume: 27
  start-page: 31
  year: 2019
  end-page: 42
  ident: b0305
  article-title: Learning spatial–spectral temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 44
  start-page: 58
  year: 2014
  end-page: 75
  ident: b0030
  article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 57
  start-page: 1562
  year: 2014
  end-page: 1573
  ident: b0295
  article-title: Detecting within- and between-day manifestations of neuromuscular fatigue at work: An exploratory study
  publication-title: Ergonomics
– volume: 32
  start-page: 40
  year: 2016
  end-page: 48
  ident: b0315
  article-title: Ensemble similarity learning for kinship verification from facial images in the wild
  publication-title: Information Fusion
– reference: . https://doi.org/10.1201/b12791-3.9.
– volume: 136
  start-page: 9
  year: 2016
  end-page: 17
  ident: b0045
  article-title: Literature review on feature selection methods for high-dimensional data
  publication-title: International Journal of Computer Applications
– volume: 45
  start-page: 381
  year: 2003
  end-page: 389
  ident: b0265
  article-title: Operator functional state classification using multiple psychophysiological features in an air traffic control task
  publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society
– volume: 38
  start-page: 63
  year: 2003
  end-page: 71
  ident: b0210
  article-title: Cognitive load measurement as means to advance cognitive load theory
  publication-title: Educational Psychologist
– volume: 31
  start-page: 129
  year: 1999
  end-page: 145
  ident: b0075
  article-title: Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: Manipulations of task difficulty and training
  publication-title: International Journal of Psychophysiology
– volume: 104
  start-page: 129
  year: 2017
  end-page: 134
  ident: b0020
  article-title: Analyzing chaos in higher order disordered quartic-sextic Klein-Gordon lattices using q-statistics
  publication-title: Chaos, Solitons & Fractals
– volume: 10637
  start-page: 543
  year: 2017
  end-page: 552
  ident: b0310
  article-title: EEG-Based sleep quality evaluation with deep transfer learning
  publication-title: International Conference on Neural Information Processing
– volume: 7
  start-page: 24392
  year: 2013
  end-page: 24403
  ident: b0090
  article-title: Temporal hemodynamic classification of two hands tapping using functional near– infrared spectroscopy
  publication-title: Frontiers in Human Neuroscience
– volume: 202
  start-page: 136
  year: 2022
  end-page: 143
  ident: b0195
  article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness
  publication-title: Methods
– reference: Charles, R. L., & Jim, N. (2019). Measuring mental workload using physiological measures: a systematic review.
– volume: 19
  start-page: 587
  year: 2017
  end-page: 605
  ident: b0300
  article-title: Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques
  publication-title: Cognition Technology & Work
– reference: Gawron, V., French, J., & Funke, D. (2001).
– reference: , 22, 425-438. https://doi.org/10.1007/s10648-010-9130-y.
– year: 2011
  ident: 10.1016/j.eswa.2022.118694_b0005
– volume: 40
  start-page: 251
  year: 2010
  ident: 10.1016/j.eswa.2022.118694_b0250
  article-title: Real-time adaptive automation system based on identification of operator functional state in simulated process control operations
  publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A Systems and Humans
  doi: 10.1109/TSMCA.2009.2035301
– volume: 96
  start-page: 103493
  year: 2021
  ident: 10.1016/j.eswa.2022.118694_b0105
  article-title: Comparing the Structured Multidisciplinary work Evaluation Tool (SMET) questionnaire with technical measurements of physical workload in certified nursing assistants in a medical ward setting
  publication-title: Applied Ergonomics
  doi: 10.1016/j.apergo.2021.103493
– volume: 8
  start-page: 145
  year: 2019
  ident: 10.1016/j.eswa.2022.118694_b0010
  article-title: Fatigue assessment scales: A comprehensive literature review
  publication-title: Archives of Hygiene Sciences
  doi: 10.29252/ArchHygSci.8.3.145
– volume: 55
  start-page: 173
  year: 2001
  ident: 10.1016/j.eswa.2022.118694_b0180
  article-title: A critical review of the psychophysiology of driver fatigue
  publication-title: Biological Psychology
  doi: 10.1016/S0301-0511(00)00085-5
– ident: 10.1016/j.eswa.2022.118694_b0015
  doi: 10.1007/s10648-010-9130-y
– volume: 42
  start-page: 462
  year: 1999
  ident: 10.1016/j.eswa.2022.118694_b0065
  article-title: Level of automation effects on performance, situation awareness and workload in a dynamic control task
  publication-title: Ergonomics
  doi: 10.1080/001401399185595
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.eswa.2022.118694_b0135
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 187
  start-page: 109
  year: 2016
  ident: 10.1016/j.eswa.2022.118694_b0160
  article-title: Dimensionality reduction on anchorgraph with an efficient locality preserving projection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.128
– volume: 104
  start-page: 129
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0020
  article-title: Analyzing chaos in higher order disordered quartic-sextic Klein-Gordon lattices using q-statistics
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2017.08.005
– volume: 45
  start-page: 381
  year: 2003
  ident: 10.1016/j.eswa.2022.118694_b0265
  article-title: Operator functional state classification using multiple psychophysiological features in an air traffic control task
  publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society
  doi: 10.1518/hfes.45.3.381.27252
– volume: 123
  start-page: 1291
  year: 2012
  ident: 10.1016/j.eswa.2022.118694_b0085
  article-title: Long-term and within-day variability of working memory performance and EEG in individuals
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2011.11.004
– volume: 33
  start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0280
  article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.11.013
– volume: 59
  start-page: 57
  year: 2012
  ident: 10.1016/j.eswa.2022.118694_b0040
  article-title: The effects of day-to-day variability of physiological data on operator functional state classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.07.091
– volume: 10637
  start-page: 543
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0310
  article-title: EEG-Based sleep quality evaluation with deep transfer learning
  publication-title: International Conference on Neural Information Processing
– volume: 11
  start-page: 20
  year: 2015
  ident: 10.1016/j.eswa.2022.118694_b0150
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2015.2501545
– volume: 32
  start-page: 1631
  year: 2006
  ident: 10.1016/j.eswa.2022.118694_b0200
  article-title: Learning subject-specific spatial and temporal filters for single-trial EEG classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.04.224
– volume: 53
  year: 2022
  ident: 10.1016/j.eswa.2022.118694_b0155
  article-title: Multi-class classification of construction hazards via cognitive states assessment using wearable EEG
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2022.101646
– ident: 10.1016/j.eswa.2022.118694_b0205
  doi: 10.1016/j.apergo.2018.07.008
– volume: 51
  start-page: 1542
  year: 2021
  ident: 10.1016/j.eswa.2022.118694_b0050
  article-title: Multimodal fusion for objective assessment of cognitive workload: A review
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2939399
– volume: 31
  start-page: 129
  year: 1999
  ident: 10.1016/j.eswa.2022.118694_b0075
  article-title: Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: Manipulations of task difficulty and training
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/S0167-8760(98)00049-X
– volume: 94
  start-page: 96
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0115
  article-title: Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.05.020
– volume: 68
  start-page: 102711
  year: 2021
  ident: 10.1016/j.eswa.2022.118694_b0220
  article-title: Subject-specific mental workload classification using EEG and stochastic configuration network (SCN)
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102711
– volume: 53
  start-page: 66
  year: 2020
  ident: 10.1016/j.eswa.2022.118694_b0100
  article-title: On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.06.006
– start-page: 409
  year: 2007
  ident: 10.1016/j.eswa.2022.118694_b0055
  article-title: Improving human performance in a real operating environment through real-time mental workload detection
  publication-title: Toward Brain-Computer Interfacing
– volume: 52
  start-page: 139
  year: 1988
  ident: 10.1016/j.eswa.2022.118694_b0110
  article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research
  publication-title: Advances in Psychology
  doi: 10.1016/S0166-4115(08)62386-9
– volume: 64
  start-page: 743
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0230
  article-title: Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2016.2574812
– volume: 88
  start-page: 97
  year: 2016
  ident: 10.1016/j.eswa.2022.118694_b0235
  article-title: Detection tasks in nuclear power plant operation: Vigilance decrement and physiological workload monitoring
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2016.05.002
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.eswa.2022.118694_b0125
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 44
  start-page: 119
  year: 2013
  ident: 10.1016/j.eswa.2022.118694_b0240
  article-title: Designing automation for complex work environments under different levels of stress
  publication-title: Applied Ergonomics
  doi: 10.1016/j.apergo.2012.05.008
– volume: 19
  start-page: 587
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0300
  article-title: Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques
  publication-title: Cognition Technology & Work
  doi: 10.1007/s10111-017-0425-3
– volume: 44
  start-page: 58
  year: 2014
  ident: 10.1016/j.eswa.2022.118694_b0030
  article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness
  publication-title: Neuroscience & Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2012.10.003
– volume: 103
  start-page: 103793
  year: 2022
  ident: 10.1016/j.eswa.2022.118694_b0060
  article-title: Augmented reality on industrial assembly line: Impact on effectiveness and mental workload
  publication-title: Applied Ergonomics
  doi: 10.1016/j.apergo.2022.103793
– volume: 7
  start-page: 24392
  year: 2019
  ident: 10.1016/j.eswa.2022.118694_b0130
  article-title: Discrimination of mental workload levels from multi-channel fNIRS using deep leaning-based approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900127
– volume: 32
  start-page: 40
  year: 2016
  ident: 10.1016/j.eswa.2022.118694_b0315
  article-title: Ensemble similarity learning for kinship verification from facial images in the wild
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2015.08.006
– ident: 10.1016/j.eswa.2022.118694_b0035
  doi: 10.1016/j.apergo.2018.08.028
– volume: 27
  start-page: 31
  year: 2019
  ident: 10.1016/j.eswa.2022.118694_b0305
  article-title: Learning spatial–spectral temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2018.2884641
– volume: 165
  start-page: 23
  year: 2015
  ident: 10.1016/j.eswa.2022.118694_b0190
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
– volume: 115
  start-page: 119
  year: 2014
  ident: 10.1016/j.eswa.2022.118694_b0270
  article-title: Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector machine-based clustering and classification techniques
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2014.04.011
– volume: 65
  start-page: 43
  year: 2018
  ident: 10.1016/j.eswa.2022.118694_b0070
  article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention
  publication-title: IEEE Transactions Biomedical Engineering
  doi: 10.1109/TBME.2017.2693157
– volume: 7
  start-page: 24392
  year: 2013
  ident: 10.1016/j.eswa.2022.118694_b0090
  article-title: Temporal hemodynamic classification of two hands tapping using functional near– infrared spectroscopy
  publication-title: Frontiers in Human Neuroscience
– volume: 40
  start-page: 187
  year: 1995
  ident: 10.1016/j.eswa.2022.118694_b0225
  article-title: Biocybernetic system evaluates indices of operator engagement in automated task
  publication-title: Biological Psychology
  doi: 10.1016/0301-0511(95)05116-3
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.eswa.2022.118694_b0140
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 136
  start-page: 9
  year: 2016
  ident: 10.1016/j.eswa.2022.118694_b0045
  article-title: Literature review on feature selection methods for high-dimensional data
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2016908317
– volume: 111
  start-page: 33
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0185
  article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2016.06.015
– volume: 129
  start-page: 94
  year: 2014
  ident: 10.1016/j.eswa.2022.118694_b0255
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.046
– volume: 38
  start-page: 63
  year: 2003
  ident: 10.1016/j.eswa.2022.118694_b0210
  article-title: Cognitive load measurement as means to advance cognitive load theory
  publication-title: Educational Psychologist
  doi: 10.1207/S15326985EP3801_8
– volume: 119
  start-page: 393
  year: 2019
  ident: 10.1016/j.eswa.2022.118694_b0095
  article-title: A data science-based framework to categorize academic journals
  publication-title: Scientometrics
  doi: 10.1007/s11192-019-03035-w
– volume: 98
  start-page: 157
  year: 2015
  ident: 10.1016/j.eswa.2022.118694_b0165
  article-title: Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2015.10.004
– ident: 10.1016/j.eswa.2022.118694_b0080
  doi: 10.1201/b12791-3.9
– volume: 113
  start-page: 101
  year: 2014
  ident: 10.1016/j.eswa.2022.118694_b0275
  article-title: Operator functional state classification using least square support vector machine based recursive feature elimination technique
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2013.09.007
– volume: 59
  start-page: 48
  year: 2012
  ident: 10.1016/j.eswa.2022.118694_b0025
  article-title: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.07.047
– ident: 10.1016/j.eswa.2022.118694_b0120
  doi: 10.1109/EMBC.2015.7318984
– volume: 37
  start-page: 101
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0245
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2017.01.008
– volume: 260
  start-page: 349
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0285
  article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.002
– volume: 57
  start-page: 1562
  year: 2014
  ident: 10.1016/j.eswa.2022.118694_b0295
  article-title: Detecting within- and between-day manifestations of neuromuscular fatigue at work: An exploratory study
  publication-title: Ergonomics
  doi: 10.1080/00140139.2014.934299
– volume: 283
  start-page: 266
  year: 2018
  ident: 10.1016/j.eswa.2022.118694_b0290
  article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.062
– volume: 37
  start-page: 132
  year: 2017
  ident: 10.1016/j.eswa.2022.118694_b0170
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.02.004
– volume: 59
  start-page: 64
  year: 2012
  ident: 10.1016/j.eswa.2022.118694_b0260
  article-title: Cross-subject workload classification with a hierarchical Bayes model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.07.094
– volume: 51
  start-page: 181
  year: 2003
  ident: 10.1016/j.eswa.2022.118694_b0175
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Machine Learning
  doi: 10.1023/A:1022859003006
– volume: 202
  start-page: 136
  year: 2022
  ident: 10.1016/j.eswa.2022.118694_b0195
  article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.04.009
– ident: 10.1016/j.eswa.2022.118694_b0145
  doi: 10.1016/j.bspc.2021.103094
– volume: 22
  start-page: 1345
  year: 2010
  ident: 10.1016/j.eswa.2022.118694_b0215
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
SSID ssj0017007
Score 2.4657645
Snippet •The electroencephalogram (EEG) is used to evaluate human cognitive workload.•Inter-subject EEG modeling scheme is employed.•Approach of cascade ensemble of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118694
SubjectTerms Abstraction fusion
Cognitive workload
Electroencephalogram
Extreme learning machine
Stacked denoising autoencoder
Title Inter-subject cognitive workload estimation based on a cascade ensemble of multilayer autoencoders
URI https://dx.doi.org/10.1016/j.eswa.2022.118694
Volume 211
WOSCitedRecordID wos000870887600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQcuvBHlJR-4Ra4S5-HkWKEiqFCFRBELl8ivqK22yaqbLXvkpzOztpNQUAVIXKLEG8crz6fx-PM8CHmVFoZj4TdmKlmxTImCSSlSZniJ6aUyKZqtpN-L4-NyPq8-zGbfQyzM1UK0bbnZVMv_KmpoA2Fj6OxfiHv4KDTAPQgdriB2uP6R4LccH1utFTIs0egehB5Yi06aCPNquIDFCNcwg-cFMtJyha7yEWxr7YVyLodbb8OFBKs8kuu-w5yXxnvMD2w-pkrufULoECo3ORQfiWnrtAoy1Evr10tUNy6JwdfTbmz77EnsL9C2OZv8MNDbR4Dq07WcchY8vcZZDME0o-eSYyQFyxJXtGffOn1cAm4K4YooBoXNnXr-Rfk7HuJ8366-YUYpzmE9KIsqG5e6wQHxIw6GY3GOm2BcxHe5yCvQi7sH7w7nR8NJlIhdyH34cz7wyvkIXh_p98bNxGA5uUfu-J0GPXAIuU9mtn1A7oYqHtQr9YdE_QQYOgCGBsDQETB0CxgKN5J6wNAAGNo1dAQMnQLmEfn05vDk9VvmK28wncZxz7TVMOeqUbZItJJa5VJpxVPL8wYsYmmavExtorThhTA6iaumNLmBzYCQmY51-pjstF1rnxCqciFsljY6UXGmlJKyrLiETYUtcnzaI0mYslr7tPRYHWVRB__D8xqnucZprt0075Fo6LN0SVlufDsPkqi9WenMxRqAc0O_p__Y7xm5PWL-OdnpL9f2Bbmlr_qz1eVLj68fiKyjGA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+cognitive+workload+estimation+based+on+a+cascade+ensemble+of+multilayer+autoencoders&rft.jtitle=Expert+systems+with+applications&rft.au=Zheng%2C+Zhanpeng&rft.au=Yin%2C+Zhong&rft.au=Wang%2C+Yongxiong&rft.au=Zhang%2C+Jianhua&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=211&rft_id=info:doi/10.1016%2Fj.eswa.2022.118694&rft.externalDocID=S0957417422017262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon